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Abstract

In this paper, we describe our progress in identifying
and tracking storms at multiple scales from satellite in-
frared (11-micron Band 4) and visible (Band 1) channels.
Storms are identified by clustering the pixels in the in-
put images using spatial-contiguity-enhanced K-means
clustering. Identified clusters are then processed mor-
phologically to yield self-consistent storms.

Identified storms (at all the scales) are tracked using
a hybrid scheme that minimizes mean absolute error be-
tween frames of the input sequence of images and then
smoothed temporally using Kalman filtering. This yields
a grid of motion vectors at each pixel in the spatial do-
main.

The motion vector estimated from the sequence is
used to nowcast the images. Comparison of the now-
casts with the observed values at the corresponding time
gives a measure of skill of the nowcast.

Statistical properties are extracted for each cluster.
The extracted properties are used as inputs to an auto-
mated decision tree training algorithm to identify regions
of overshooting tops.

Results and measures of skill are demonstrated on a
sequence of images from Oct. 12-13, 2001.
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1. Short-term forecast methods

There are two broad techniques to ”track” storms from
remotely sensed imagery. One method is to identify the
centroids of spatially-contiguous pixels above a particu-
lar threshold and to match these centroids across time.
A principed approach to such association can use linear
programming (Dixon 1994), although most implementa-
tions use heuristics based on proximity and size of the
storms in question. Change in position and trends of
storm properties are then extrapolated.

A second technique is to use rectangular sub-grids
and find the maximum correlation within a search ra-
dius (Rinehart and Garvey 1978; Tuttle and Gall 1999).
A modification of this technique is to pre-filter the data so
as to track only the larger scales (Wolfson et al. 1999;
Lakshmanan 2000). It is also possible to use sub-grids
ranging in size from that of the entire image to small
16km x 16km grids and to compute motion estimates at
each of these scales. Smoothness criteria can be used
to constrain these estimates at different scales.

Identifying, matching and extrapolating storm core lo-
cations is suitable for small scale storms. The large scale
features and cross-correlation technique is suitable for
longer forecasts, but with loss of detailed motion esti-
mates. An assumption here is that the storms are of the
scale of the sub-grid, not larger. The multiscale estima-
tion is suitable also for large scale forecasts, but with less
precise detailed motion estimates.

When used for advection, all the correlation tech-
niques rely on reverse projection, so there needs to be
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wind speed at the spot where the storm is moving to.
The image template methods also assume that all pixels
within a grid are moving together.

We use a hybrid approach where motion estimates
are made for groups of storms (rather than for sub-grids
of the image), but at various scales. The motion esti-
mate for a storm cell is the movement that minimizes the
mean-absolute-error between the current frame and cor-
responding pixels in the previous frame, except that the
template is not a sub-grid of the image, but is instead the
actual shape of the storm cell.

Instead of simply matching storm cells across frames,
motion estimates are made by finding the best match for
the storm-template. Thus, the major steps in the tech-
nique are:

1. Find storms at different scales.

2. Estimate motion at the various scales.

3. Forecast for different periods using motion at differ-
ent scales.

2. Identifying storms

A K-Means clustering technique from Lakshmanan et al.
(2003) is used to identify components in vector fields.
The technique provides nested partitions, i.e. the iden-
tified storms structures are strictly hierarchical. The
technique works by clustering image values (reflectiv-
ity/infrared temperature, etc.) in the neighborhood of a
pixel on two opposing criteria:

• Belong to same cluster as your neighbors.

• Belong to cluster whose mean is closest to your
value.

Hierarchical segmentation is incorporated into the K-
Means clustering technique by steadily relaxing inter-
cluster distances.

K of this K-Means clustering is not the number of re-
gions in the final segmented output. It is the number of
central vectors about which we do the clustering. The
number of regions is determined by the spatial location.
As the number K increases, the clusters cover a smaller

range in the texture space. In case the number of re-
gions is not known a priori, a very high value of K may
be chosen. The most detailed segmentation may have
too many regions, but coarser levels might yield the de-
sired result. This is one advantage of using a hierarchical
technique.

We iteratively move pixels minimizing

E(k) = λdm(k) + (1− λ)dc(k) 0 ≤ λ ≤ 1 (1)

where the distance in the measurement space is:

dm(k) =‖ µn
k − Txy ‖ (2)

and the discontiguity measure is::

dc(k) =
∑

ijεNxy

(1− δ(Sn
ij − k)) (3)

A region growing algorithm is employed to build a set
of connected regions, where each region consists of 8-
connected pixels that belong to the same K-Means clus-
ter. If a connected region is too small, then its cluster
mean (the mean of the texture vectors at each pixel in
the region) is compared to the cluster means of the ad-
joining regions and the small region is merged with the
closest mean. The result of the K-Means segmentation,
region growing and region merge steps is the most de-
tailed segmentation of the image.

The inter-cluster distances of all adjacent clusters (or
regions) in the image are computed. At each stage
of the hierarchical segmentation, a distance threshold
equal to the average inter-cluster distance of the remain-
ing threshold is used. A user-defined size threshold is
also used. If a cluster is smaller than the size thresh-
old, then it is combined with the closest cluster provided
it is within the distance threshold. If no nearby cluster
exists, the cluster that doesn’t meet the size criterion is
retained as an individual storm at this scale. When the
clusters are merged, the cluster means updated. This
process is continued until no two adjacent regions are
closer in cluster space than the distance threshold and
no regions smaller than the size threshold are left. When
this process is complete, we have the next coarser scale
of the segmentation. This process is repeated until no
changes happen.

We carried out this K-means segmentation process
on the infrared (11-micron) channel using K = 4 and



Figure 1: (a) Infrared image (b) Coarsest scale of seg-
mentation

size thresholds of 50, 200 and 500 pixels (where each
pixel is approximately 4kmx4km). Since we are inter-
ested in forecast intervals on the order of hours, only the
largest scale of segmentation is used. Example results
are shown in Figure 1.

3. Motion Estimation

Once the storms have been identified from the images,
these storms are used as a template and the movement
that minimizes the absolute-error between two frames
is computed. For satellite imagery, we used frames 60
minutes apart. This time scale was chosen because we
wished to create forecasts of the images at hourly inter-
vals.

Motion estimation is done by moving a template of the

Figure 2: Matrix of mean absolute error by position.
Larger errors are “hotter”. Two different locations are
shown.

identified cluster at the appropriate scale around in the
previous image. A matrix of mean absolute error at the
different positions is obtained as shown in Figure 2

The field is minimized by weighting each pixel by how
much it differs from the absolute minimum and finding
the centroid.

The procedure gives a motion estimate in areas where
there are storms. In between storms, the wind vectors
are interpolated spatially, so as to yield a smooth, con-
tinuous windfield.

4. Short-term Forecast

The forecast of the fields is done based on the motion
estimates, growth and decay heuristic and the current
data. Forecasts can be made on fields other than the
tracked field. For example, motion estimates were de-
rived from the infrared channel and applied to both the
IR and visible channels.

The forecast is done in three steps:

1. Forward: project data forward in time to a spatial
location given by the motion estimate at their current
location and the elapsed time.



Figure 3: Detail of windfield extracted from matching
template.

2. Define a background (global) motion estimate given
by the mean storm motion.

3. Reverse: obtain data at a spatial point in the future
based on the current wind direction at that spot and
current spatial distribution of data.

Example forecast images are shown in Figures 4
and 5. It is apparent that the varying intensity levels in
visible imagery poses a problem – an albedo-type image
needs to be used in the future.

The skill of this technique is quantititavely measured
by comparing, for example, the 60 minute forecast
against the actual field closest to 60 minutes ahead. Re-
sults over a 48-hour period on both IR and visible chan-
nels, as compared to a persistence forecast, are shown
in Figure 6. As can be observed from the figures, the ad-
vection forecast does poorly when storms are evolving
(first half of the sequence), but beats persistence when
the storms are organized (second half of the sequence).
Also, the IR forecasts are skilful, but the visible channel
forecasts are not.
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Figure 4: (a) Infrared Image (b) 1-hour forecast (c) 2-
hour forecast (d) 3-hr forecast
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Figure 5: (a) Visible Image (b) 1-hour forecast (c) 2-hour
forecast (d) 3-hr forecast

Figure 6: Skill at forecasting position and intensity of
storms in infrared and visible imagery over time, as com-
pared to a persistence forecast
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