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They say that Understanding ought to work by the rules of

right reason. These rules are, or ought to be, contained in

Logic; but the actual science of logic is conversant at present

only with things either certain, impossible, or entirely doubt-

ful, none of which (fortunately) we have to reason on. There-

fore the true logic for this world is the calculus of Probabilities,

which takes account of the magnitude of the probability which

is, or ought to be, in a reasonable man’s mind.

James Clerk Maxwell (1850)

1. INTRODUCTION

An increasingly capable sensing technology for concentra-

tion measurements of contaminants [e.g., chemical, biologi-

cal, or radiological (CBR) agents] released into the turbulent

atmosphere, either accidentally or deliberately, has fostered

interest in exploiting this information for detection, identifi-

cation and reconstruction of pollutant (contaminant) sources

responsible for the observed concentration. A critical capabil-

ity gap in current emergency and retrospective management

efforts, directed at terrorist incidents involving the covert re-

lease of a CBR agent in a densely populated urban center,

is the localization of the unknown source(s) following event

detection by an array of independent CBR sensors. These sen-

sors are placed at different points in space within a designated

region in order to function as “electronic noses” that are able

to provide quantitative measurements of the concentration of

various air admixtures of contaminants.

For example, the Department of Homeland Security (DHS)

has deployed (albeit sparse) arrays of biological agent sen-

sors in 31 cities across the United States as part of the

BioWatch program (Shea and Lister, 2003) in order to pro-

vide early detection and warning of a covert biological event.

The BioWatch program has provided the impetus for recent

research efforts directed towards a solution of the source recon-

struction problem for inferring the location and emission rate

of the source(s) of contamination. Certainly, determination

of the characteristics of the unknown source is perhaps the

most critical information required by emergency responders

for the delineation of hazard zones (toxic corridors) resulting

from the contaminant release and for implementation of an

appropriate mitigation strategy (e.g., identification of exposed

individuals, formulation of decisions for prophylatic treatment

in the case of biological agents) required to counter the CBR

agent release. Further motivation is provided by a network of

40 radiological detectors that has been set up as a verification

tool for the Comprehensive Nuclear Test Ban Treaty (CTBT)

in order to provide world wide monitoring of radioactive no-

ble gases that can be used potentially for source localization

and characterization of a clandestine nuclear test (Carrigan et

al, 1996; Hourdin and Issartel, 2000), following upon the ear-

∗Corresponding author address: Hazard Protection Section,
Defence R&D Canada – Suffield, P.O. Box 4000, Medicine Hat,
AB, T1A 8K6, Canada, e-mail:eugene.yee@drdc-rddc.gc.ca

lier suggestions (Van der Vink and Park, 1994) to supplement

seismic monitoring techniques with a monitoring network for

atmospheric radionuclides.

Although the problem of the forward prediction of the con-

centration field resulting from the dispersion of a contaminant

released in a complex turbulent flow (with a known source) has

received considerable attention from researchers, the “reverse”

prediction of the source location and strength using a finite

number of noisy concentration data obtained from an array of

sensors has received considerably less attention, in spite of the

fact that the importance of the solution of this problem for a

number of practical applications is obvious. Early work on in-

verse source determination focussed on the problem of source

strength estimation, whereby the location of the source was

assumed to be known exactly a priori. For example, Hanna

et al (1990) used three different types of dispersion models to

estimate the emission rate (source strength) for the localized

sources used in the Project Prairie Grass experiments. Gordon

et al (1988) and Wilson and Shum (1992) applied a forward-

time Lagrangian stochastic trajectory model, in conjunction

with a mass balance technique, to estimate the rate of am-

monia volatilization from field plots (viz., area sources on the

ground surface), while Flesch et al (1995) used a backward-

time Lagrangian stochastic dispersion model to estimate the

emission rate from a sustained surface area source over sim-

ple terrain. Kaharabata et al (2000) used an approximate

solution to the advection-diffusion equation to determine the

source strength from microplots over an open field, using single

and multipoint measurements of the concentration downwind

of the contaminated field plot. For longer-range dispersion,

Robertson and Langner (1998) estimated the emission rates

for the European Tracer Experiment (Nodop et al, 1998) using

a variational data assimilation procedure to minimize a cost

function defined to be the sum of squared differences between

the model solution and the concentration measurements over

a 24-h assimilation period (window). A different approach was

proposed by Siebert and Stohl (1999), who attempted to re-

construct the source strength using Tikhonov regularization.

Finally, Skiba (2003) used an adjoint transport model to as-

sess emission rates from various industrial plants in Mexico,

whose locations were assumed to be known a priori.

A number of researchers have focussed on the problem of

recovering the location of an unknown source on the basis of

available concentration measurements, given that the source

strength is known a priori. Khapalov (1994) formulated

the source localization problem as a nonlinear identification

problem based on the diffusion system modeling involving

a distributed system of parabolic type. Another optimiza-

tion approach was followed by Alpay and Shore (2000) who

described an “intelligent” brute-force method for source lo-

calization, which is based on the simulation of every possible

scenario, with the likely source location being that which min-

imizes an appropriate norm between the model predictions

of concentration for that source location and the measured

concentration data. Matthes et al (2005) employed a two-
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step approach for source localization for the simple (albeit

unrealistic) case of an emitted substance transported by ho-

mogeneous advection and isotropic diffusion. This method was

designed to overcome convergence difficulties that have been

experienced by various researchers using gradient-based opti-

mization methods for formulation of the source localization

problem.

The joint estimation of the source location and strength, in

the context of dispersion on a global scale, was proposed by

Pudykiewicz (1998), who inferred source parameters (location,

emission rate, and time of release) by using a superposition of

influence functions obtained as a solution of an adjoint tracer

transport equation to estimate the source location, in con-

junction with the Lagrange duality relation to estimate the

strength of the source. Bocquet (2005a, 2005b) applied the

principle of maximum entropy in the mean (MEM) to regu-

larize the ill-posed nature of the source inversion. Thomson

et al (2006) and Allen et al (2007) proposed, respectively, the

application of simulated annealing and a genetic algorithm for

solving the optimization problems (involving various cost func-

tions with varying regularization terms) associated with source

characterization. In the line of probabilistic (as opposed to

optimization) approaches, a Bayesian inferential methodology

used in conjunction with the adjoint method for representa-

tion of the source-receptor relationship was proposed by Yee

(2005, 2006), Yee et al (2006), Keats et al (2006), Keats et

al (2007a, 2007b), Yee et al (2007), and Yee (2007) for the

simultaneous determination of all source parameters for dis-

persion of conservative and non-conservative scalars in simple

(level, unobstructed terrain) and complex (e.g., urban terrain,

complex terain over continental scales) environments.

In all previous studies cited here, with the exception of

Yee (2007), the problem of identification of source parameters

was restricted to one source. The determination of the char-

acteristics of multiple localized sources was briefly addressed

in Yee (2007), but the approach used there assumed that the

number of sources was known a priori. The problem of re-

construction of an unknown number of sources using a finite

number of noisy concentration measurements obtained from

an array of sensors is of great interest for current emergency

and retrospective management efforts directed at terrorist in-

cidents involving the release of CBR (or, other toxic) agents.

In this application, the array of CBR sensors measures the su-

perposition of concentrations arising from multiple interfering

sources in which both number of sources and the characteris-

tics (e.g., location, emission rate, release time) of each source

are unknown a priori. The determination of the number of

sources is a difficult problem and involves some form of model

selection.

In this paper, we formulate a Bayesian inferential scheme

for the joint determination of the number of contaminant

sources and the parameters for each source, given a finite num-

ber of concentration measurements made by an array of sen-

sors. The Bayesian formulation of a solution for this problem

provides a computational challenge owing to the fact that the

resulting integrals of the posterior distribution of the source

parameters over the hypothesis space are not analytically

tractable, and standard numerical methods for integration

cannot be applied to give accurate results due to the potential

high dimensionality of the hypothesis space (of possible source

distribution models). To overcome this problem, we demon-

strate how an innovative Metropolis-coupled reversible-jump

Markov chain Monte Carlo method can be used in conjunction

with an adjoint representation for the source-receptor relation-

ship (defining the dispersion of the toxic material), in order to

provide a fast and reliable framework for Bayesian inference in

this context [viz., to estimate the number of unknown sources

and the relevant parameters (e.g., emission rate, source loca-

tion, etc.) for each source].

2. SOURCE-RECEPTOR RELATIONSHIP

2.1 Mean concentration model

To solve the source reconstruction problem using Bayesian

probability theory, it is necessary to relate the hypotheses

of interest concerning the source distribution to the available

concentration data measured by an array of sensors. This is a

source-receptor relationship that describes the transport of a

substance (e.g., CBR material) through the atmosphere after

it has been released from a known source distribution and, as

such, provides a prediction of the average concentration of the

substance in a small volume centered at any given spatial loca-

tion during any given time interval. Let the concentration at a

spatial location x ≡ (x, y, z) and at time t be denoted C
(
x, t
)
.

The mean concentration “seen” by a sensor corresponds to an

average of C(x,t) over the sensor volume and averaging time

(centered at xr and tr , respectively) and is given by

C
(
xr , tr

)
≡
∫ T

0
dt

∫

D
dxC

(
x, t
)
h(x, t|xr , tr)

≡ 〈C, h〉(xr , tr), (1)

where h(x, t|xr , tr) is the spatial-temporal filtering function of

(x, t) for a concentration sensor measurement at (xr , tr) with

∫ T

0
dt

∫

D
dx h(x, t|xr, tr) = 1, (2)

and D × [0, T ] corresponds to a space-time volume that con-

tains the source and the receptors (sensors).

The concentration C(x, t) can be determined using either

an Eulerian or a Lagrangian approach for the atmospheric

diffusion. In this paper we focus on a Lagrangian approach

because this is perhaps the most natural and simplest descrip-

tion of turbulent diffusion. This approach involves model-

ing dispersion through the random walks for “marked” fluid

elements. For the source-oriented approach within the La-

grangian description, the concentration C(x, t) can be deter-

mined by releasing “marked” fluid particles from the source

distribution S ≡ S(x, t) and following these particles forward

in time using the following stochastic differential equation

(Thomson, 1987):

dX(t) = U(t) dt,

dU(t) = a(X,U, t) dt+
(
C0ǫ(X, t)

)1/2
dW(t), (3)

where X ≡ X(t) ≡ (Xi(t)) = (X1(t), X2(t), X3(t)) and

U ≡ U(t) ≡ (Ui(t)) = (U1(t), U2(t), U3(t)) are the (La-

grangian) position and velocity, respectively, of a “marked”

fluid element (or, particle) at time t (marked by the source

as the fluid element passes through it at some earlier time

t′), so (X,U) determines the state of the fluid particle at any

time t after its intial release from the source distribution S.

In Eq. (3), C0 is the Kolmogorov universal constant (associ-

ated with the Kolmogorov similarity hypothesis for the form
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of the Lagrangian velocity structure function in the inertial

subrange); ǫ is the mean dissipation rate of turbulence kinetic

energy; dW(t) ≡ (dWi(t)) = (dW1(t), dW2(t), dW3(t)) are

the increments of a vector-valued (three-dimensional) Wiener

process (i.e., these increments have a Gaussian distribution

with zero mean and variance dt (infinitessimal time step), and

non-overlapping increments are statistically independent); and

a ≡ (ai) = (a1, a2, a3) is the drift coefficient vector (or, more

precisely, the conditional mean acceleration).

Equation (3) is a forward-time Lagrangian stochastic (LS)

trajectory simulation model. In this source-oriented approach,

“marked” fluid elements with initial space-time coordinates

(x′, t′) are sampled from a space-time density function pro-

portional to the (prescribed) source distribution S(x′, t′). The

forward Lagrangian trajectories (t > t′) of these “marked”

fluid elements, which emanate from the source and move to-

wards the receptor, are determined in accordance to Eq. (3).

This algorithmic procedure permits the evaluation of the mean

concentration “seen” by a sensor at any arbitrary receptor

space-time point (xr , tr) in accordance to Eq. (1). Note that

evaluation of the inner product C(xr , tr) = 〈C, h〉(xr , tr) in-

volves two basic functions: the source distribution S(x′, t′)

and the detector space-time filtering function h(x, t|xr , tr).

Unfortunately, the source-oriented approach described here is

too computationally expensive for use in a Bayesian inferen-

tial approach for source reconstruction, because sampling from

the posterior distribution for the source parameters (described

later in this paper) requires a large number of forward source-

receptor relationships to be determined, each of which involves

the solution of the stochastic differential equation given by

Eq. (3). Therefore, for the Bayesian inversion of concentra-

tion data to be practical, fast and efficient techniques are

required for the determination of the source-receptor relation-

ship within the context of sampling in the (large) hypothesis

space of the source distribution models required for posterior

inference.

In view of this, it is much more attractive to apply a

receptor-oriented approach1 for representation of the source-

receptor relationship, owing to the fact that this approach

provides a fast technique for predicting mean concentration

data at a given receptor location for arbitrary hypotheses

about the source distribution. As a consequence, we adopt and

develop this formulation of the source-receptor relationship, as

it provides a fast and reliable framework for Bayesian inference

in the context of source reconstruction. To this purpose, we

consider a mathematical representation for the source-receptor

1A rigorous analysis of turbulent diffusion of a single particle
in the source-oriented approach is contained in the classical work
of Taylor (1921) in which he formulates a fundamental theory for

a ‘diffusion by continuous movement’ that addresses explicitly the
question of “how far, on average, will a single fluid particle migrate
from its point of release in a time t as a result of the turbulent

eddying?”. Taylor’s analysis of diffusion in stationary homoge-
neous turbulence demonstrates clearly the nature of turbulence as
a correlated random walk and led to an important advance in our

understanding of turbulent diffusion. However, the idea of using a
receptor-oriented approach for the computation of turbulent dif-

fusion seems to have been first proposed almost four decades later
by Gifford (1959) in the context of the efficient determination of
the concentration at a receptor due to multiple sources.

relationship that is dual to the one given by Eq. (1) as follows:

C
(
xr , tr

)
≡
∫ T

0
dt

∫

D
dxC

(
x, t
)
h(x, t|xr , tr)

=

∫ tr

−∞
dt′
∫

D
dx′C∗

(
x
′, t′|xr, tr

)
S(x′, t′)

≡ 〈C∗, S〉(xr , tr), (4)

where C∗(x′, t′|xr, tr) is an adjunct (dual) concentration at

space-time point (x′, t′) associated with the sensor concen-

tration data at location xr and time tr (with t′ < tr). We

note that C∗(x′, t′|xr, tr) is explictly constructed so that it

verifies the duality relationship implied by Eq. (4); namely,

〈C, h〉 = 〈C∗, S〉.
Figure 1 illustrates explicitly the duality relationship be-

tween C, h, C∗, and S. If we interpret S as a vector in V , the

vector space of source functions, then C∗ can be viewed as the

vector dual (or conjugate) to S belonging to the dual vector

space V ∗ (or, conjugate concentration function space) defined

to be the space of all linear functionals C∗ : V → R. There

is a one-to-one correspondence between the vector S ∈ V

and the dual vector C∗ ∈ V ∗, and this correspondence (or,

more precisely, isomorphism between V and V ∗) can be de-

fined through the scalar product 〈C∗, S〉 that pairs S with

C∗.2 Similarly, C and h can be interpreted as dual (or con-

jugate) vectors lying in the concentration function space U

and detector function space U∗, respectively, with U∗ being

the dual vector space to U with the isomorphism between

these two spaces defined through the scalar product 〈h, C〉
with C ∈ U and h ∈ U∗. More interestingly, C can be paired

with its dual h and C∗ can be paired with its dual S such

that the duality relationship 〈C, h〉 = 〈C∗, S〉 is exactly sat-

isfied. Now, S can be related to C through the mapping G

(viz., C = G(S) ≡ GS) defined using the forward LS model

(source-receptor relationship). However, a mathematically

equivalent representation of the source-receptor relationship

can be formulated by relating h to C∗ through the adjoint

mapping G∗3 (viz., C∗ = G∗(h) ≡ G∗h) with G∗ explicitly

constructed so that the duality relation is exactly satisfied:

〈C∗, S〉 = 〈G∗h, S〉 = 〈h,GS〉 = 〈h,C〉 = 〈C, h〉, for any

source S ∈ V and any receptor h ∈ U∗.

The adjoint mapping G∗ in Fig. 1 can be realized through a

backward LS model (the latter of which constitutes a mathe-

matically equivalent representation of the source-receptor rela-

tionship). A backward-time Lagrangian trajectory simulation

model, that is dual to the forward-time Lagrangian trajec-

tory simulation model given by Eq. (3), can be constructed

for the computation of C∗ so that it exactly satisfies the du-

ality relationship 〈C, h〉 = 〈C∗, S〉. To this end, suppose the

backward-time Lagrangian trajectory model is defined as the

solution to the following stochastic differential equation:

dXb(t′) = U
b(t′) dt′,

dUb(t′) = a
b(Xb,Ub, t′) dt′ +

(
C0ǫ(X

b, t′)
)1/2

dW(t′), (5)

where t′ < tr and at any given time t′, (Xb,Ub) is a point in

the phase space along the backward trajectory of the “marked”

2In fact, the scalar product 〈C∗, S〉 can be interpreted as an

explicit mathematical representation for collection of all linear
functionals C∗ : V → R that can be defined on V .

3In functional analysis, a linear operator G∗ : U∗ → V ∗ is
call the dual or pull-back of the linear operator G : V → U if
〈G∗h, S〉 = 〈h, GS〉, ∀S ∈ V, h ∈ U∗.
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Figure 1: Commutative diagram illustrating the duality re-

lationship 〈C, h〉 = 〈C∗, S〉 verified by C, h, C∗, and S,

with C = GS ∈ U (G : V → U) and C∗ = G∗h ∈ V ∗

(G∗ : U∗ → V ∗) ∀S ∈ V, h ∈ U∗, corresponding to two math-

ematically equivalent representations for the source-receptor

relationship. Each of these two mathematical representations

predict that the mean concentration C measured by a detec-

tor is given by C = 〈C, h〉 = 〈C∗, S〉. From the perspective of

a Lagrangian approach for turbulent diffusion, the mapping

G is realized in terms of a forward-time LS model, whereas

the associated (adjoint) mapping G∗ is realized in terms of a

backward-time LS model.

fluid element (here assumed to be marked or tagged as a fluid

particle which at time tr passed through the spatial volume

of the detector at location xr). The displacement statistics

of “marked” fluid elements released from the receptor loca-

tion xr at time tr can be used to compute C∗(x′, t′|xr, tr)

(which is interpreted here as a function of x
′ and t′). It can

be shown (Thomson, 1987; Flesch et al, 1992) that C∗ ob-

tained from Eq. (1) for a detector with the filtering function

h and C obtained from Eq. (4) for a release from the source

density S is exactly consistent with the duality relationship

〈C, h〉 = 〈C∗, S〉 if and only if a
b in Eq. (5) is related to a in

Eq. (3) through the following “gauge” transformation:

ab
i (x,u, t) = ai(x,u, t) − C0ǫ(x, t)

∂

∂ui
ln pE(u;x, t), (6)

where pE(u;x, t) is the probability density function of the Eu-

lerian velocity at (x, t).4 The relationship given by Eq. (6) is

derived on the assumption that the conditional acceleration

ai for the forward-time Lagrangian trajectory model satis-

fies Thomson’s (1987) well-mixed criterion (viz., an initially

well-mixed distribution of particles should remain so). As a

consequence, Eq. (6) guarantees that the conditional acceler-

ation ab
i for the backward-time Lagrangian trajectory model

also verifies the well-mixed criterion.

2.2. Model for concentration observations

The models described above provide predictions for the

4More specifically, the form of the conditional accelera-

tion ab
i for the backward-time Lagrangian trajectory model

given by Eq. (6) ensures that the transition density function

pf

L
(x, u, t|x′, u′, t′) of the forward-time Lagrangian trajectory

model of Eq. (3) is related to the transition density function
pb

L(x′, u′, t′|x, u, t) of the backward-time Lagrangian trajectory

model of Eq. (5) as follows: pf

L
(x, u, t|x′, u′, t′)pE(u′;x′, t′) =

pb
L(x′, u′, t′|x, u, t)pE(u;x, t). The latter constraint guarantees

that the duality relationship 〈C, h〉 = 〈C∗, S〉 is satisfied exactly.

“ideal” mean concentration seen by a sensor at the recep-

tor space-time point (xr , tr). The actual concentration data

measured by the sensor will not usually agree with the con-

centration predicted by the model owing to the noise process

imposed on the concentration data, which by its very na-

ture is expected to have a very complicated structure. To

this purpose, it is assumed that the actual concentration data

available from the sensor array were measured at a finite num-

ber of sensor locations and at a finite number of time points at

each sensor location. The actual concentration datum di,j(i)

acquired by the sensor at receptor location xri
and at time

t
(i)
j (i = 1, 2, . . . , Nd and j = 1, 2, . . . , N

(i)
t , where Nd is the

number of sensors and N
(i)
t is the number of time samples

measured at the i-th sensor) is assumed to be the sum of a

modeled mean concentration signal C(xri
, t

(i)
j ; Θ) and “noise”

ei,j(i) , so

di,j(i) = C(xri
, t

(i)
j ; Θ) + ei,j(i) , (7)

where Θ is an appropriate parameter vector describing the

source distribution S; and, C(xr , tr ; Θ) is the modeled mean

concentration at location xr and time tr , determined in ac-

cordance to Eq. (4) for a source distribution characterized by

parameter vector Θ. For simplicity of notation, the variables

in Eq. (7) which are indexed or labelled by (i, j(i)) will be

ordered in some regular and convenient manner (e.g., lexi-

cographic ordering) and this collection will be indexed by J

(J = 1, 2, . . . , N , with N ≡ ∑Nd
i=1N

(i)
t being the total num-

ber of measured concentration data). Then, we can write the

observational model as follows:

dJ = CJ (Θ) + eJ , J = 1, 2, . . . , N, (8)

where CJ (Θ) ≡ C(xri
, t

(i)
j ; Θ).

In Eq. (8), eJ is a noise term representing the uncertainty

in dJ . In general, eJ consist of errors (e.g, input, stochastic,

and measurement) and any real signal in the data that cannot

be explained by the model. The random error eJ can be split

into four terms as discussed by Rao (2005), so

eJ = η
(1)
J + η

(2)
J + η

(3)
J + η

(4)
J . (9)

The first term η
(1)
J of the error corresponds to model error aris-

ing from uncertainties in the representation of various physical

processes in the dispersion model used to predict the mean

concentration. The second term η
(2)
J describes the input error

arising from uncertainties in the values of empirical parame-

ters and/or specification of the input meteorology (initial and

boundary conditions) used by the dispersion model. The third

term η
(3)
J of the error is the stochastic uncertainty arising from

the turbulent nature of the atmosphere, which gives rise nat-

urally to random concentration fluctuations in hazardous gas

releases. Finally, η
(4)
J describes the noise inherent in the sensor

(essentially measurement or instrument error).

Rao (2005) discusses the nature of these four types of

error with respect to characterization of uncertainties in at-

mospheric dispersion models, and provides a comprehensive

review of sensitivity and/or uncertainty analysis methods that

have been used to quantify and reduce them. In this paper,

all the various error contributions to the noise term are simply

lumped together and denoted by eJ [see Eqs. (8) and (9)]. It is

assumed that the observer does not have a detailed knowledge

of the probability distribution of the noise (aggregate error),
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other than that the observer has an estimate for the expected

scale of variation of the noise. More specifically, it is assumed

that the noise scale parameter associated with eJ (aggregate

error of the J-th concentration observation) is provided in the

form of a (finite) variance σ2
J .

In this paper, we assume a priori that the model concentra-

tion CJ (Θ) in Eq. (8) results from the release of a contaminant

(e.g., CBR material) from Ns transient point sources. It is as-

sumed that the k-th source was located at xs,k and that this

source was activated (turned on) at time T k
b and deactivated

(turned off) at a later time T k
e . Furthermore, over the time

period from T k
b to T k

e , the source was assumed to be releasing

contaminant at a constant emission rate Qk (k = 1, 2, . . . Ns).

Consequently, the (unknown) source distribution is assumed

a priori to have the following form:

S(x, t) =

Ns∑

k=1

Qkδ
(
x − xs,k

)[
H(t − T k

b ) −H(t − T k
e )
]
, (10)

where δ(·) and H(·) are the Dirac delta and Heavi-

side unit step functions, respectively. It is convenient

to define a source parameter vector θNs
corresponding

to the source distribution S of Eq. (10) as θNs
≡

(xs,1, T 1
b , T

1
e , Q1, . . . ,xs,Ns

, TNs
b , TNs

e , QNs
) ∈ R

6Ns . Fur-

thermore, let Θ ≡ (Ns, θNs
). If we substitute Eq. (10) into

Eq. (4), the model concentration CJ (Θ) “seen” by the sensor

at location xrJ and time trJ is given explicitly by

CJ (Θ) =

Ns∑

k=1

Qk

∫ min(trJ ,Tk
e )

Tk
b

C∗(xs,k , ts|xrJ , trJ ) dts. (11)

It should be noted that Eq. (10) can be interpreted as the

mathematical representation5 of a general source distribution

S (e.g., area or volume source with arbitrary geometry) in

terms of the basis functions bk(x, t) = Qkδ
(
x − xs,k

)[
H(t −

T k
b ) − H(t − T k

e )
]

consisting for elemental (transient) source

atoms scattered randomly with positions xs,k over the do-

main D of interest. For a large enough value of Ns, source

distributions of arbitrary complexity can be approximated to

any prescribed accuracy using the representation of Eq. (10).

In this sense, the source reconstruction algorithm described

in this paper can be applied to recover an arbitrary source

distribution. Nevertheless, the primary focus of this paper is

the recovery of the characteristics of a small number of point

sources (say Ns ≤ 10) when the number of sources is unknown

a priori.

With the formulation above, the problem of source recon-

struction reduces to the following: given the observed vector

of concentration data D ≡ (d1, d2, . . . , dN ), the objective is to

estimate Ns and θNs
or, equivalently, Θ.

3. BAYESIAN PROBABILITY THEORY

To determine the number of sources and reconstruct the

characteristics (e.g., location, emission rate, release time) of

5Eq. (10) provides a structure-based representation for an ar-
bitrary source distribution, whereby the amount of structure re-

quired to approximate the geometrical and physical characteristics
of the source can accomodated to any degree of accuracy by vary-
ing the number of source atoms used in this representation.

each source (parameters encapsulated in Θ), given the vec-

tor of concentration observations D obtained from an array of

sensors, the techniques of Bayesian inference are employed.

The Bayesian framework is attractive in the current con-

text because it provides a rigorous mathematical foundation

for making inferences about the source parameters and, as

a consequence, provides a rigorous basis for quantifying the

uncertainties in the estimated source parameters. Bayesian

inference can be obtained from the product rule of probability

calculus, the latter of which can be derived rigorously starting

with the formulation of a small number of desiderata required

to define a rational theory of inference as first enunciated by

Cox (1947), with a more complete treatment given by Jaynes

(2003) in his definitive treatise. This formulation leads to the

ordinary rules (sum and product rules) of probability calcu-

lus and implies that every allowed (mathematically consistent)

theory for inference must be equivalent to probability theory,

or else inconsistent (viz., no other calculus is admissible for

inference that is consistent with the above mentioned desider-

ata).6

The basic relationship quantifying parameter inference is

Bayes’ rule, which in the context of the current problem can

be expressed as follows:

p(Θ|D, I)p(D|I) = p(D|Θ, I)p(Θ|I). (12)

The factors in Eq. (12) are: (1) p(Θ|I) is the prior proba-

bility density function (PDF) of the source parameter vector

Θ that encapsulates our state of knowledge of the parame-

ters before the receipt of the concentration measurements; (2)

p(D|Θ, I) is termed the likelihood function when considered

as a function of Θ, but is known as the sampling distribu-

tion when considered as a function of D (the latter being

the probability of observing the concentration data D when

given the source parameters Θ); (3) p(D|I) is termed the ev-

idence (also, frequently referred to as the prior predictive or

the marginal likelihood); and, (4) p(Θ|D, I) is the posterior

probability density function of the parameters Θ of interest,

that corresponds to the update of p(Θ|I) incorporating the

knowledge gained about Θ after receipt of the concentration

observations D. All the terms here are to be interpreted given

the background (contextual) information I (e.g., background

meteorology, source-receptor relationship, etc.) that defines

the source reconstruction problem. This is the meaning of I

after the vertical bar “|” which is used here to denote “condi-

tional upon”.

Using Bayesian inference, all information in the measured

concentration data relevant to the problem of estimating the

source parameter vector Θ is summarized in the posterior PDF

6Cox (1947) demonstrated rigorously that a theory of plausi-
ble reasoning that satisfies three desiderata must necessarily lead
to a theory for inference that is mathematically equivalent (iso-

morphic) to probability calculus. These three desiderata are (1)
degrees of plausibility can be represented by real numbers; (2)
consistency with deductive (Aristotelian) logic in the limit when

all propositions are either certainly true or certainly false; and,
(3) mathematical (internal) consistency of the schemata in the
sense that if a result can be reasoned out in more than one way,

every possible way must lead to the same answer. This analysis
demonstrates conclusively that Bayesian probability theory (or,

probability theory as an extended logic) is the correct mathemati-
cal language for inference and, moreover, constitutes the uniquely

“right” rules for conducting inference (or, plausible reasoning).
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p(Θ|D, I), which by virtue of Eq. (12), is given by

p(Θ|D, I) ∝ p(D|Θ, I)p(Θ|I). (13)

It is noted that for parameter estimation, the evidence p(D|I)
is Θ-independent and simply plays the role of a normalization

factor; hence, p(Θ|D, I) is expressed simply as a proportional-

ity in Eq. (13). To proceed further in the specification of the

posterior PDF, we now need to assign functional forms for the

prior PDF p(Θ|I) and the likelihood function p(D|Θ, I).

3.1. Assignment of prior PDF

First, let us consider the assignment of the prior PDF

p(Θ|I) ≡ p((Ns, θNs
)|I). To proceed, it is necessary to state

explicitly what is known about the source parameters before

the receipt of the concentration data. To this purpose, we

assume the logical independence of the various source pa-

rameters; that is to say, knowing the value of the number

of sources tells us nothing about the various source charac-

teristics (e.g., location, emission rate, release time), knowing

the characteristics of one source tells us nothing about those

of another source, knowing the location of a particular source

tells us nothing about the emission rate or when the source

was turned on/off, etc. In consequence, the prior probabil-

ity p((Ns, θNs
)|I) factorizes (by repeated application of the

product rule of probability calculus) as follows:

p((Ns, θNs
)|I) = p(Ns|I)

Ns∏

k=1

p(Qk|I)p(xs,k|I)

×p(T k
b |I)p(T k

e |T k
b , I). (14)

Let us now consider the assignment of each of the (compo-

nent) prior distributions in Eq. (14). The prior distribution on

Ns (number of sources) is chosen to be a binomial distribution

defined on the set {1, 2, . . . , N∗
s }, where N∗

s is the maximum

number of sources. More specifically, the binomial prior for

Ns has the form (offset by the minimum number of sources,

here assumed without any loss in generality to be one):

p(Ns|I) =
(N∗

s − 1)!

(Ns − 1)!(N∗
s −Ns)!

×p∗(Ns−1)(1 − p∗)N∗
s −Ns , (15)

where p∗ ∈ [0, 1] is the binomial rate.

Given Ns, the prior distributions for Qk, xs,k , T k
b and

T k
e (k = 1, 2, . . . , Ns) are each chosen to be either Bernoulli-

uniform or uniform over an appropriate domain of definition.

More specifically, the prior distribution for Qk is assigned a

Bernoulli-uniform mixture model:

p(Qk|I) = (1 − γ)δ(Qk) + γI(0,Q∗)(Qk)
/
Q∗, (16)

(k = 1, 2, . . . , Ns) where γ is an intermittency factor, de-

fined as the probability that the source is turned on (viz.,

Pr(Qk > 0) = γ, so Pr(Qk = 0) = 1− γ); and, Q∗ is an upper

bound for the expected emission rate. Furthermore, IA(x) is

the indicator function for set A (viz., IA(x) = 1 if x ∈ A, and

IA(x) = 0 if x 6∈ A). This mixture probability model for Qk

allows for the hypothesis that any given source in the domain

can be turned off (Qk = 0) with a finite probability (= 1−γ).
The prior distribution for xs,k is chosen to be uniform over

some large region D ⊂ R
3:

p(xs,k|I) = ID(xs,k)
/
V(D), k = 1, 2, . . . , Ns, (17)

where V(D) is the volume of the region D.

The prior distributions for T k
b and T k

e are assigned uniform

distributions with the following forms:

p(T k
b |I) = I(0,T∗)(T

k
b )
/
T ∗, (18)

and

p(T k
e |T k

b , I) = I(Tk
b

,T∗)(T
k
e )
/(
T ∗ − T k

b

)
, (19)

for k = 1, 2, . . . , Ns. Here, T ∗ is an upper bound on the time

at which the source was turned on or off.7 Note that the time

that the source is turned off must necessarily occur after it has

been turned on, and this information is encoded in the form

of the prior distribution for T k
e given by Eq. (19), where the

distribution is seen to be conditioned on T k
b .

3.2. Assignment of likelihood function

Next, let us consider the assignment of a functional form

for the likelihood function p(D|Θ, I). The likelihood function

is equivalent to the direct probability for the concentration

data D, given the source parameters Θ. In the absence of a

detailed knowledge of the noise distribution eJ [cf. Eq. (9)],

other than that it has a finite variance σ2
J , the application of

the principle of maximum entropy (Jaynes, 2003) informs us

that a Gaussian distribution is the most conservative choice

for the direct probability of the data D (or, equivalently, of

the noise e ≡ (e1, e2, . . . , eN )).

The entropy of the PDF of the noise is a measure of its

information content (viz., it is the asymptotic measure of the

size of the basic support set of the distribution or ‘volume’

occupied by the sensibly probable noise values). The princi-

ple of maximum entropy is applied to ensure that the PDF

representing our ‘state of information’ about the noise values

does not encapsulate unwarranted assumptions (e.g., about

higher-order moments of the noise which are not available).

Choosing a distribution for the noise that provides the largest

support set permitted by the information allows the largest

range of possible variations in the noise values consistent with

the available information (implying the most conservative es-

timates for these values).

Assigning a Gaussian distribution for the noise using the

maximum entropy principle makes no statement about the

true (unknown) sampling distribution of the noise (which has

a very complicated structure for the current problem). Rather,

it simply represents a maximally uninformative state of knowl-

edge, a state of knowledge that reflects what the observer

knows about the true noise in the data (namely, the mean and

variance of the noise, with all other properties of the noise be-

ing irrelevant to the inference since these are unknown to the

observer).

From these considerations, the likelihood function for our

problem has the following form [in light of Eq. (8)]:

p(D|Θ, I) =
1

∏N
J=1

√
2πσJ

exp

(
−1

2
χ2(Θ)

)
, (20)

where

χ2(Θ) ≡
N∑

J=1

(
dJ − CJ (Θ)

σJ

)2

. (21)

7Different upper bounds can be chosen for T k
b and T k

e in the

prior PDFs of Eqs. (18) and (19), but for the formulation in this
paper we simply used a common upper bound for the source on
and off times (with effectively no loss in generality).

6



3.3. Posterior distribution of source parameters

Inserting Eqs. (14)–(19) and Eqs. (20) and (21) in

Eq. (13), the posterior distribution for the source parameters,

p(Θ|D, I), can be expressed by the following proportionality:

p(Θ|D, I) ∝ 1
∏N

J=1

√
2πσJ

exp



−1

2

N∑

J=1

(
dJ − CJ (Θ)

σJ

)2




× (N∗
s − 1)!

(Ns − 1)!(N∗
s −Ns)!

p∗(Ns−1)(1 − p∗)N∗
s −Ns

×
Ns∏

k=1

[
(1 − γ)δ(Qk) + γI(0,Q∗)(Qk)

/
Q∗
]

×ID(xs,k)I(0,T∗)(T
k
b )

I(Tk
b

,T∗)(T
k
e )

(
T ∗ − T k

b

) , (22)

recalling that the source parameter vector Θ ≡ (Ns, θNs
).

Here, CJ (Θ) is determined in accordance to Eq. (11) with the

adjunct “concentration” field C∗(x′, t′|xr, tr) predicted using

a backward-time Lagrangian stochastic model [cf. Eqs. (5) and

(6)].

3.4. Summary statistics for inferred source parameters

The posterior distribution for Θ provides the full solution

for the multiple source reconstruction problem. Inferences on

the values of the source parameters are based on this posterior

distribution.8 The posterior distribution may be summarized

by various statistics of interest such as the posterior mean of

each source parameter, say θi
Ns

(which can be an emission

rate Qk, or source location xs,k, or time at which the source

was turned on (off) T k
b (T k

e ) for the k-th source for a source

distribution consisting of Ns sources with k = 1, 2, . . . , Ns):

θi
Ns

= E[θi
Ns

|D] ≡
∫
θi
Ns
p((Ns, θNs

)|D, I) dθNs
, (23)

where E[·] denotes mathematical expectation. A measure of

the uncertainty of this estimate of θi
Ns

is the posterior stan-

dard deviation σ(θi
Ns

):

σ2(θi
Ns

) = E[ (θi
Ns

− θi
Ns

)2|D ]

≡
∫ (

θi
Ns

− θi
Ns

)2
p((Ns, θNs

)|D, I) dθNs
. (24)

8The posterior distribution also forms the basis for predictions

of the expected concentration arising from the (unknown) source
distribution at space-time points in the domain where there are
no detectors. The Bayesian approach to prediction is based on

the predictive probability density function, p(D′|D, I), given by

p(D′|D, I) =

∫

R6Ns

p(D′|D, Θ, I)p(Θ|D, I) dΘ

=

∫

R6Ns

p(D′|Θ, I)p(Θ|D, I) dΘ,

where D
′ is the vector of expected concentration values (at various

space-time locations in the domain) that will predicted. Note that

the predictive density is determined by the convex hull spanned
by the possible hypotheses for the source distribution models Θ,
with the boundaries (or “vertices”) for the convex hull determined

by the likelihood function p(D′|Θ, I) for D
′. Finally, with perfect

knowledge of the source (so Θ = Θ∗ exactly), p(Θ|D, I) = δ(Θ −

Θ∗) and p(D′|D, I) = p(D′|Θ∗, I) (viz., the predictive density in
this special case is simply the sampling distribution for D

′ with a
fixed value of Θ = Θ∗).

Alternatively, a p% credible [or, highest posterior density

(HPD)] interval that contains the source parameter θi with p%

probability, with the lower and upper bounds of the interval

specified such that the probability density within the interval

is everywhere larger than that outside it, can be used as a

measure of the uncertainty in the determination of θi. Finally,

an estimate for the number of sources can be obtained from

the maximum a posteriori estimate as follows:

N̂s = argmax
Ns

p(Ns|D, I), (25)

where p(Ns|D, I) is the posterior probability of the number of

sources, given the concentration data and the contextual back-

ground information. The posterior probability for the number

of sources is a marginal posterior probability, where all the

parameters we are not interested in (e.g., θNs
) are removed,

through the process of integrating over these parameters. This

process is referred to as marginalization.

In general, Bayesian probability theory never advocates the

minimization, maximization, or optimization of any objective

or cost function (in sharp contrast to the underlying basis

for the application of regularization procedures for source re-

construction which attempts to find an “optimal” solution by

setting a balance between the importance of quality (regu-

larization) and of fitting the data, with sometimes arbitrary

choices for the functional used to represent the regularization

in the problem). Rather, the rules of Bayesian probability the-

ory demand that we sum or integrate over unknown quantities,

so that the effect is to average over all plausible values of these

quantities. The underlying philosophy of Bayesian probabil-

ity theory for source reconstruction is to find and explore all

regions in the hypothesis space (of source distribution mod-

els) of reasonably large plausibility, and not simply to find the

highest point of maximum posterior probability.9 This pro-

cedure allows a rigorous assessment of the uncertainty in our

inferences of the source parameters.

4. BAYESIAN COMPUTATION AND MARKOV CHAINS

A perusal of Eq. (22) shows that the posterior distribution

is highly nonlinear in the source parameters associated with

location (xs,k) and with the times the source was turned on

(T k
b ) or off (T k

e ), and that explicit evaluations of Eqs. (23) and

(24) (and similar integrals or functionals arising in Bayesian

analysis) are impossible. In view of this, we apply posterior

sampling for evaluation of these integrals, which is imple-

mented using a Markov chain Monte Carlo (MCMC) algo-

rithm (Gilks et al, 1996; Gelman et al, 2003). A MCMC

algorithm can be used to generate samples of source distri-

bution models (characterized by Θ) from the posterior distri-

bution in Eq. (22). Towards this objective, a Markov chain{
Θ(t)

}
≡
{
(N

(t)
s , θ

(t)

N
(t)
s

)
}

is constructed whose stationary (or,

invariant) distribution is the posterior distribution p(Θ|D, I)
of the parameters Θ = (Ns, θNs

).

9Indeed, in a number of cases of source reconstruction encoun-
tered by the author [including some cases of source inversion for

dispersion over simple terrain such as for Project Prairie Grass
(Yee, 2005)], the posterior distribution of the source parameters

is multimodal and highly asymmetrical, and the highest peak in
this distribution is very narrow and located far from the bulk of
the distribution where the probability mass is concentrated.
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All quantities of interest, such as posterior means of various

source parameters and various marginal posterior distribu-

tions, can be estimated by sample path averages of the Markov

process
{
Θ(t)

}
. For example, the marginal posterior distribu-

tion p(Ns|D, I), which is required in Eq. (25) for the inference

of Ns, can be estimated as follows:

p̂(Ns|D, I) =
1

N ′
#
{
t : N

(t)
s = Ns

}

=
1

N ′

N′∑

t=1

I{Ns}(N
(t)
s ), (26)

where N ′ is the number of samples Θ(1),Θ(2), . . . drawn from

a sampled realization of the Markov chain and I{Ns}(·) is used

to select those samples
{
Θ(t), t = 1, 2, . . . , N ′

}
drawn from the

Markov chain that correspond to source distribution models

containing exactly Ns sources (viz., those samples of source

distribution models with N
(t)
s = Ns). Similarly, from the

samples of source distributions generated from such a Markov

chain, the posterior means of various source parameters θi
Ns

[see Eq. (23)] can be estimated by

Ê[θi
Ns

|D] =

∑N′

t=1 θ
i(t)

N
(t)
s

I{Ns}(N
(t)
s )

∑N′

t=1 I{Ns}(N
(t)
s )

. (27)

The difficulty in the construction of a Markov chain for

sampling source distribution models from the posterior distri-

bution of Eq. (22) resides in the fact that Ns is an unknown,

requiring the design of a Markov chain that can simultaneously

explore both parameter and model spaces. More specifically,

the length of the parameter vector θNs
∈ R6Ns is variable be-

cause it depends on the value of Ns (number of source atoms)

which is not known a priori. This can result in algorithmic

complications. Furthermore, if the expected number of source

atoms in the source distribution is large, then so too is the

corresponding hypothesis space which must be sampled. In

the current problem, we need to consider a set of source dis-

tribution models M =
{
MNs

}N∗
s

Ns=1
indexed by the integer

parameter Ns ∈ Ns ≡
{
1, 2, . . . , N∗

s

}
, each characterized by a

source parameter vector θNs
∈ R6Ns . Here, model MNs

cor-

responds to all permissible source distributions having exactly

Ns sources. The simultaneous exploration of a number of can-

didate source models involving differing numbers of sources

can be realized using the reversible-jump MCMC algorithm

that was originally introduced by Green (1995) in the context

of a Bayesian model determination problem. The remainder

of this section will describe the design of a reversible-jump

MCMC algorithm for multiple source reconstruction, in the

case where the number of sources is unknown a priori . Ac-

tually, this algorithm can be used also for the reconstruction

of an arbitrary source distribution of unknown geometry (e.g.,

volume source whose geometry is unknown a priori) by sim-

ply allowing Ns to be very large, or even infinite (if no upper

bound N∗
s is imposed on the allowable number of sources Ns

in the source distribution).10

10In the case in which Ns is allowed to be infinite, the prior dis-

tribution for Ns given by Eq. (15) must be replaced by a discrete
probability distribution having support over the natural numbers

N (e.g., Poisson distribution, geometric distribution, etc.). Since
there is no upper limit on the number of source atoms in the source
distribution, the overall hypothesis space is formally a countably

4.1. Propagation moves

The objective of MCMC is to construct a Markov chain

whose stationary distribution is one that coincides exactly

with the target probability density function that we are try-

ing to sample from [e.g., in our case that target probability

distribution is the posterior distribution p(Θ|D, I) given in

Eq. (22)]. In this subsection, we consider the problem of con-

struction of a MCMC algorithm that samples from p(Θ|D, I)
for fixed Ns. The basic MCMC algorithm consists of two com-

ponents: (1) a transition or proposal distribution function (or

transition kernel) T (Θ′|Θ); and, (2) an acceptance probability

α(Θ,Θ′). These two components are related as follows: given

a chain in the current state Θ(t) = Θ at iteration t, a pro-

posed new state Θ′ = P(Θ) = P
(
(Ns, θNs

)
)

=
(
Ns, θ′Ns

)
is

drawn from some proposal (transition) distribution T (Θ′|Θ)

and this new point is accepted as the new state of the chain at

iteration (t+1) with the standard Metropolis-Hastings (M-H)

acceptance probability (Gelman et al, 2003) given by

α(Θ,Θ′) = min

{
1,
p(Θ′|D, I)T (Θ′|Θ)

p(Θ|D, I)T (Θ|Θ′)

}
. (28)

Note that P(·) is a pure propagation operation (move) that

“translates” θNs
∈ R6Ns to θ′Ns

∈ R6Ns , while keeping Ns

fixed (update move in a fixed-dimensional hypothesis space).

If the proposal for this propagation move is accepted, then

the new state at iteration (t + 1) is Θ(t+1) = Θ′; otherwise,

Θ(t+1) = Θ. Finally, it is noted that the M-H algorithm

does not require the normalization of p(Θ|D, I) be known

[cf. Eq. (28)].

To proceed further, it is necessary to specify appro-

priate forms for the proposal density T (Θ′|Θ). For the

propagation move, Ns is fixed and the update occurs

only for θNs
. To this purpose, it is useful to partition

θNs
into two blocks of parameters as follows: θNs

=

(θ1, θ2) where θ1 ≡ (Q1, Q2, . . . , QNs
) ∈ RNs and θ2 =

(xs,1, T 1
b , T

1
e , . . . ,xs,Ns

, TNs
b , TNs

e ) ∈ R5Ns . This particular

partitioning of the source parameter vector distinguishes pa-

rameters that are related linearly (θ1) and nonlinearly (θ2) to

the model concentration data as specified in Eq. (11). With

this partitioning of the source parameter vector, a cycle of two

different types of “blocked” component updates (Gibbs step

and M-H step) involving θ1 and θ2 (respectively) are combined

in sequence to form a single iteration of the MCMC sampler

for generation of the updated state of the Markov chain.

First, let us update the emission rates Qk of the various

sources (k = 1, 2, . . . , Ns), which we have collected together

in θ1. For the first part of the iteration (t + 1), we fix the

source parameters in θ2 = θ2(t) (e.g., source locations, ac-

tivation times, deactivation times) to the values obtained in

the previous iteration t and focus on the re-sampling of Qk

(k = 1, 2, . . . , Ns). We choose here to sample the emission

rates one-at-time using Gibbs sampling. The Gibbs sampler

updates Qk as a direct draw from the univariate full condi-

tional posterior distribution p(Qk|θ1−k, θ
2(t),D, I), where θ1−k

is used to denote a subvector containing all the components of

θ1 with the exception of Qk. More specifically, the re-sampling

of Qk (k = 1, 2, . . . , Ns) for iteration (t + 1) proceeds using

infinite union of subspaces θ =
⋃∞

Ns=1 θNs , where θNs ∈ R
6Ns de-

notes the 6Ns-dimensional hypothesis space corresponding to the
collection of source distribution models with exactly Ns source
atoms.
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a systematic sweep Gibbs sampling strategy as follows (viz.,

we sample Q
(t+1)
k in accordance to the conditional probability

distributions indicated below):11

Q
(t+1)
1 ∼ p(Q1|Q(t)

2 , Q
(t)
3 , . . . , Q

(t)
Ns
, θ2(t),D, I);

Q
(t+1)
2 ∼ p(Q2|Q(t+1)

1 , Q
(t)
3 , . . . , Q

(t)
Ns
, θ2(t),D, I);

...

Q
(t+1)
Ns

∼ p(QNs
|Q(t+1)

1 , Q
(t+1)
2 , . . . , Q

(t+1)
Ns−1, θ

2(t),D, I); (29)

which yields θ1(t+1) = (Q
(t+1)
1 , Q

(t+1)
2 , . . . , Q

(t+1)
Ns

) after Ns

cycles. It is noted that Gibbs sampling can be applied

to re-sample Qk because the univariate conditional distri-

bution p(Qk|θ1−k, θ
2(t),D, I) has a particularly simple form

from which it is possible to obtain Qk as a direct draw.

Indeed, a perusal of Eqs. (22), (11), and (16) shows that

p(Qk) ≡ p(Qk|θ1−k, θ
2(t),D, I) possesses a simple Bernoulli-

Gaussian (truncated) distribution (which can be sampled from

directly):

p(Qk) ∝ exp

(
−Qk

( N∑

J=1

[ Ns∑

r=1
r 6=k

Qrf
J
r (θ2) − dJ

]
fJ

k (θ2)

)

−1

2
Q2

k

N∑

J=1

fJ
k (θ2)

)[
(1 − γ)δ(Qk)

+γI(0,Q∗)(Qk)
/
Q∗
]
, (30)

where for simplicity of notation we have defined

fJ
k (θ2) ≡

∫ min(trJ ,Tk
e )

Tk
b

C∗(xs,k , ts|xrJ , trJ ) dts. (31)

Following the update of Qk for iteration (t + 1) in accor-

dance to Eq. (29), the second part of this iteration involves

updating the nonlinear source parameters collected in θ2 from

θ2(t) to θ2(t+1). To accomplish this part of the iteration,

the emission rate parameters are assumed to be fixed at

θ1 = θ1(t+1). For the updating of these parameters, it is

no longer possible to use a Gibbs sampler because the result-

ing univariate full conditional distribution of these parameters

cannot be sampled from directly. In view of this, we need

to perform a M-H step to update these parameters with an

appropriately selected proposal distribution. Towards this ob-

jective, we sample each of the nonlinear parameters (locations,

activation times, and deactivation times of the various sources)

using a M-H step with proposal distribution T (θ2
′

l |θ2l ) given

as follows:

θ2
′

l |θ2l ∼ N(θ2l , β
2
l )

=
1

√
2πβ2

l

exp

(
− [θ2

′

l − θ2l ]2

2β2
l

)
, (32)

(l = 1, 2, . . . , 5Ns) for valid θ2
′

l (e.g., if the prior information

encoded in the prior distribution requires the parameter to

lie in a certain interval, then a proposal for this parameter

that lies outside this interval is rejected). In Eq. (32), θ2l
(l = 1, 2, . . . , 5Ns) denotes the l-th component of θ2. The

proposal distribution here provides a candidate θ2
′

l that is a

11The symbol “∼” is used to denote “is distributed as”.

perturbation of the current value of θ2l , which is obtained by

drawing from a Gaussian distribution with variance β2
l . Each

βl determines the scale of the proposal steps for the nonlinear

parameter θ2l , and this scale needs to be carefully selected in

order to ensure an appropriate acceptance probability for the

proposed (propagation) move. We use proposal distributions

that are mixtures of seven Gaussian distributions centered on

θ2l , each with the form given by Eq. (32). However, each

Gaussian distribution of this mixture has a different standard

deviation β, with the standard deviations chosen in such a

manner as to cover (usually) several orders of magnitude.

Equations (29) and (32) completely specify one iteration

involving the sampling of a new candidate source distribution

model θNs
for fixed Ns (propagation move). In order to en-

sure that the Markov chain is reversible, the Gibbs and M-H

samplers of Eqs. (29) and (32) are used systematically to up-

date each parameter in θ1 and θ2, respectively, in the forward

direction for even iterations and in the reverse direction for

odd iterations. More specifically, for odd iterations, the pro-

cedure for updating θ1 in Eq. (29) is applied backwards in the

order k = Ns, Ns − 1, . . . , 1 (and, similarly, for the update of

θ2 for odd iterations).

The propagation move described here only involved the up-

date of θNs
for a fixed number of sources Ns. In order to move

between configurations involving different numbers of sources,

we need to use a reversible-jump MCMC procedure that allows

updates between states of different dimensions in the hypoth-

esis space (e.g., such as those associated with the creation of

a new source or the annihilation of an existing source in the

source distribution model).

4.2. Creation and annihilation moves

A reversible-jump MCMC sampling algorithm (which we

use to accomodate between-model moves such as, for ex-

ample, a change in the number of sources) was first intro-

duced by Green (1995) in the context of the development of

a methodology for addressing the model selection problem.

The reversible-jump MCMC algorithm is very appealing in

that it can be considered to be a natural generalization of

the standard MCMC algorithm, with the generalization allow-

ing not only moves in a parameter space of fixed dimension,

but also “jumps” between model spaces MNs
of different di-

mensions (viz., involving different numbers of sources Ns).

More specifically, suppose a dimension-changing (or, between-

model) move of type m is proposed, and the new state Θ′ is

generated by a deterministic invertible function g(Θ,v), where

v is a random vector with distribution f(v) [so, v ∼ f(v)].

In other words, g is an operator that maps state Θ and

the random vector v into the new state Θ′. Green (1995)

demonstrated that the acceptance probability of this proposed

between-model move m has the following form:

α(Θ,Θ′) = min

{
1,

p(Θ′|D, I)rm′ (Θ′)

p(Θ|D, I)rm(Θ)f(v)

∣∣∣∣
∂g(Θ,v)

∂(Θ,v)

∣∣∣∣

}
, (33)

where m′ denotes the reverse move to m and rm(Θ) denotes

the probability of choosing a move of type m in the state

Θ. The final term in the ratio of Eq. (33) is the Jacobian

which results from the change in variables associated with the

dimension-changing move.

We consider two types of dimension-changing moves:

namely, a creation move that results in the addition of a

single new source to the current source distribution, and an

9



annihilation move that results in the removal of a single ex-

isting source from the current source distribution. To be

more specific, a creation operator C generates a between-

model move from (Ns, θNs
) ∈ R

1+6Ns in model MNs
to

(Ns + 1, θNs+1) ∈ R
1+6Ns+6 in model MNs+1, so Θ′ =

(Ns+1, θNs+1) ≡ C(Θ) = C
(
(Ns, θNs

)
)
. Similarly, the reverse

move, associated with the annihilation operator C†, results in

an existing source being deleted: so, Θ′ = (Ns − 1, θNs−1) ≡
C†(Θ) = C†

(
(Ns, θNs

)
)

where (Ns − 1, θNs−1) ∈ R
1+6Ns−6.

To move from model MNs
to MNs+1 using the creation

operator C, we propose the generation of a new source at a

location xs,Ns+1 with source strength QNs+1, emitting ma-

terial between the activation and deactivation times TNs+1
b

and TNs+1
e , respectively. The “coordinates” of the new

source are generated by drawing random samples from some

proposal density which we choose to be the prior density

for each coordinate: so, from Eqs. (16) to (19) we sample

xs,Ns+1 ∼ p(xs,Ns+1|I), QNs+1 ∼ p(QNs+1|I), TNs+1
b ∼

p(TNs+1
b |I), and TNs+1

e ∼ p(TNs+1
e |TNs+1

b , I). Now, let

us assemble the parameters describing the new source as

ψ = (xs,Ns+1, T
Ns+1
b , TNs+1

e , QNs+1), so θNs+1 = C
(
θNs

)
=(

θNs
, ψ
)

for random vector ψ ∈ R6 whose components are

sampled as described above.

Suppose that at any iteration, we propose a creation move

with probability pC , with the reverse (annihilation) move hav-

ing the probability pC† . The proposal probability for the

creation move is then12

qC(Θ,Θ′) = pCp(xs,Ns+1|I)p(TNs+1
b |I)

×p(TNs+1
e |TNs+1

b , I)p(QNs+1|I)

= pC
1

V(D)

1

T ∗

1
(
T ∗ − TNs+1

b

) p(QNs+1|I). (34)

The probability qC† (Θ′,Θ) for the reverse (annihilation) move

is equal to the probability of choosing this move (pC† ) times

the probability of picking a particular source from the Ns + 1

available sources for annihilation, so13

qC† (Θ′,Θ) = pC†

1

Ns + 1
. (35)

In view of Eq. (22), the ratio of posterior distributions in

Eq. (33) for Θ′ = C(Θ) has the following form:

p(Θ′|D, I)
p(Θ|D, I) = exp

(
−1

2

(
χ2(Θ′) − χ2(Θ)

))

×p(Ns + 1|I)
p(Ns|I)

1

V(D)

1

T ∗

1
(
T ∗ − TNs+1

b

)

×p(QNs+1|I). (36)

Finally, if we substitute Eqs. (34), (35), and (36) in Eq. (33),

and note that for the creation operator C the Jacobian term in

Eq. (33) is simply unity, the acceptance probability α(Θ,Θ′)

for the creation move Θ′ = C(Θ) is given by

α(Θ,Θ′) = min

{
1,
p(Ns + 1|I)
p(Ns|I)

pC†

pC

1

Ns + 1

× exp

(
−1

2

(
χ2(Θ′) − χ2(Θ)

))}

. (37)

12This term should be identified with rm(Θ)f(v) in Eq. (33).
13This term is identified with rm′(Θ′) in Eq. (33).

As demonstrated by Green (1995), a sufficient condition to

ensure reversibility of the trans-dimensional Markov chain is

for the acceptance ratio for the reverse move to be given by the

reciprocal of that for the forward move. In the present context,

the condition of detailed balance required for Markov chain re-

versibility implies that the acceptance probability, associated

with the annihilation move Θ′ = C†(Θ) for the removal of

a source (from a source distribution containing Ns sources),

must have the following form:

α(Θ,Θ′) = min

{

1,
p(Ns − 1|I)
p(Ns|I)

pC

pC†

Ns

× exp

(
−1

2

(
χ2(Θ′) − χ2(Θ)

))}
. (38)

It only remains now to specify the probabilities pC and pC†

for creation and annihilation moves, respectively. Of course,

with probabilities specified for the creation and annihilation

moves, the probability pP for the remaining propagation move

(source parameters updated for a hypothesis space of fixed di-

mension) is determined as pP = 1 − pC − pC† . Furthermore,

it is useful to allow the probabilities pC and pC† to depend

on the number of sources Ns in the current state. To indi-

cate explicitly this dependence on Ns, we will augment the

notation and express the probability of a creation and anni-

hilation move as pNs
C and pNs

C† , respectively. For Ns = 1,

pNs

C† = 0 because at least one source must be responsible for

the concentration measured by an array of sensors. Also, for

Ns = N∗
s , pNs

C = 0 for otherwise the preassigned maximum

number of sources that may be responsible for the measured

concentration will be exceeded. For all other cases, the prob-

abilities for creation and annihilation moves will be specified

as follows:

pNs
C =

1

2
min

{
1,
p(Ns + 1|I)
p(Ns|I)

}
,

pNs+1

C† =
1

2
min

{
1,

p(Ns|I)
p(Ns + 1|I)

}
. (39)

Finally, it should be noted that with the dependence of pC and

pC† on Ns as in Eq. (39), the ratios of these two probabilities

in Eqs. (37) and (38) need to be interpreted as follows: namely,

pC†

/
pC → pNs+1

C†

/
pNs
C in Eq. (37) and pC

/
pC† → pNs−1

C

/
pNs

C†

in Eq. (38).

4.3. Parallel tempering and Metropolis-coupled MCMC

To overcome problems associated with a Markov chain

that is slowly mixing in the hypothesis space and which

can cause the chain to be stuck in a local minimum, we

have implemented a form of parallel tempering to obtain

a Metropolis-coupled MCMC algorithm that improves the

speed at which the hypothesis space is explored. The

Metropolis-coupled MCMC algorithm has been described by

Geyer (1991) and is based on the idea of using a series

of transition densities T1(Θ′|Θ), . . . , Tr(Θ′|Θ) with corre-

sponding (unnormalized) invariant (stationary) distributions

p1(Θ|D, I), . . . , pr(Θ|D, I). In our current application of Me-

tropolis-coupled MCMC, we run r Markov chains in parallel

to give samples Θ
(t)
[i]

(i = 1, 2, . . . , r), where chain i has the

stationary distribution given by

pi(Θ|D, I) = p(Θ|I)pλi(D|Θ, I), i = 1, 2, . . . , r, (40)
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where λi ∈ [0, 1] (i = 1, 2, . . . , r) is an increasing sequence

(viz., λi < λj for i < j) with λ1 = 0 and λr = 1.

The parameter λi in Eq. (40) is interpreted as a temper-

ing parameter. This parameter is used to raise the likelihood

function to the λi power to give a modified posterior pro-

portional to p(Θ|I)pλi(D|Θ, I). It is noted that λr = 1 is

associated with the desired target posterior probability dis-

tribution [cf. Eq. (22)] that we want to sample from. The

other simulations correspond to a “ladder” of modified poste-

rior distributions indexed by i. As the tempering parameter

increases from zero to one, the effects of the concentration

data are introduced slowly through the “softened” likelihood

function pλi(D|Θ, I) [λi ∈ [0, 1) for i = 1, 2, . . . , r − 1]. In

particular, λi < 1 implies that the corresponding modified

posterior distribution is broader (or flatter) than the actual

posterior distribution, allowing the states to move more freely

in the hypothesis space.

Let us denote the state of the i-th Markov chain at iteration

t by Θ
(t)
[i]

(i = 1, 2, . . . , r). In this form of Metropolis-coupled

MCMC using parallel tempering, the r Markov chains are run

simultaneously and at each iteration there is a prescribed prob-

ability (or, equivalently, on average every Niter iterations) that

a pair of adjacent chains (say, i and i+1 with i = 1, 2, . . . , r−1)

is randomly selected, and a proposal is made to swap the

states of these two chains. More specifically, if at iteration

t, a proposed swapping operation between chains i and i+1 is

accepted, then we swap the states of the chains Θ
(t)
[i]

→ Θ
(t)
[i+1]

and Θ
(t)
[i+1]

→ Θ
(t)
[i]

with an acceptance probability for this

swap given by

αswap = min




1,
pi(Θ

(t)
[i+1]

|D, I)pi+1(Θ
(t)
[i]

|D, I)

pi(Θ
(t)
[i]

|D, I)pi+1(Θ
(t)
[i+1]

|D, I)




 . (41)

This swap enables the exchange of information across the pop-

ulation of r parallel simulations. More specifically, this allows

the chain associated with the desired target posterior distri-

bution (viz., that corresponding to λr = 1) to sample from

remote regions of the posterior distribution, which in turn fa-

cilitates chain mobility in the hypothesis space and ensures

a more reliable relaxation of the chain into the (potentially

exponentially tiny) regions of this space where the posterior

probability mass is concentrated. We apply the Metropolis-

coupled MCMC algorithm described here with r = 21. The

tempering parameters λi used on this ladder of parallel simu-

lations are uniformly spaced between 0 and 1.

5. TESTS WITH SYNTHETIC CONCENTRATION DATA

In this section, we present the results of the application

of our proposed algorithm for multiple source reconstruction

for two cases: namely, case 1 involves two unknown contin-

uous sources and case 2 involves two unknown instantaneous

sources. In each of these cases, simulated concentration data

will be generated and the Bayesian inference scheme described

above will be applied to determine the number of unknown

sources and for each of these sources to reconstruct the un-

known source parameters.

We consider the simulation of concentration data sets cor-

responding to dispersion over a level and unobstructed terrain.

Owing to the horizontal homogeneity of the terrain, the mean

wind flow and turbulence statistics will be assumed to be hor-

izontally homogeneous and stationary. Given the short times

and distances over which we will be modeling dispersion, this

assumption is quite acceptable (and, indeed, at these distances

the dispersion is assumed to occur entirely within the atmo-

spheric surface layer). To simulate the concentration seen by

the array of sensors, we use the forward-time LS model given

by Eq. (3) with the drift coefficient vector a corresponding to

Thomson’s (1987) well-mixed three-dimensional forward LS

model for Gaussian turbulence (viz., the background atmo-

spheric velocity is assumed to be described by a multivariate

Gaussian probability density function). The choice of the

Kolmogorov constant C0 = 4.8 is used for our simulations,

the latter value having been obtained by calibrating the LS

model against concentration data measured during a bench-

mark field experiment Project Prairie Grass (Wilson et al,

2001). We consider dispersion in a neutral wall shear layer,

with the wind flow statistics required by the LS model pre-

scribed in accordance with well-known surface-layer relations

based on Monin-Obukhov theory (Stull, 1988).

For the two examples used to test the Bayesian inference

algorithm for multiple source reconstruction, the concentra-

tion measured by a particular sensor in the array will result

from the superposition of two or more partially overlapping

plumes (or, clouds) produced by continuously-emitting (or,

instantaneous) sources. It is noted that for multiple instanta-

neous point sources T k
e → T k

b , whereas for multiple continuous

point sources T k
b → −∞ and T k

e → ∞ [for k = 1, 2, . . . , Ns;

cf. Eqs. (10) and (11)]. In consequence, for a source distribu-

tion model consisting of multiple instantaneous point sources,

the only relevant parameters are the source location xs,k, the

release mass Qk, and the release time T k
b = T k

e ≡ T k
s for

each source (k = 1, 2, . . . , Ns); whereas, for a source distri-

bution model consisting of multiple continuous point sources,

the only relevant parameters are the source location xs,k and

the emission rate Qk for each source (k = 1, 2, . . . , Ns). Fi-

nally, for the simulations, it is assumed that all the sources

are emitting at ground level (z = 0) and that this is known

a priori (viz., this knowledge is considered to be part of the

background information I). As a result, the unknown loca-

tion parameters for each source are its alongwind (xs) and

crosswind (ys) positions, only.

5.1. Example 1: two unknown continuous sources

For the first example, we synthesized artificial concentra-

tion data for the case of two continuously-emitting sources

which were located upwind of an array consisting of 42 de-

tectors arranged as shown in Fig. 2. Each detector was

placed at a height of 1.5 m above ground level. The two

ground level continuously-emitting sources were located at

(xs, ys) = (−50, 0) m and at (−250, 0) m and each source had

an emission rate of Q ≡ qs = 1.0 g s−1. The flow statistics

for the neutrally-stratified atmospheric surface layer (through

which the dispersion occurred) require the specification of two

surface layer parameters: friction velocity u∗ = 0.25 m s−1

and aerodynamic roughness length z0 = 0.015 m. The concen-

tration data generated using the forward-time LS model (with

these flow statistics as input) were embedded within white and

normally distributed noise with a standard deviation equal to

10% of the true concentration amplitude.

We applied our proposed algorithm for multiple source re-

construction to the simulated concentration data. We perform

Metropolis-coupled MCMC sampling with r = 21 chains with

11
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Figure 2: Two point sources located upwind of an array of

42 concentration detectors arranged as shown. A solid dot

denotes a source and a solid square denotes a detector.

swaps between these chains attempted at every Niter = 25

iterations on average. The proposed algorithm randomly ini-

tializes all unknown parameters (source location, emission

rate) in accordance to the prescribed prior distributions for

these parameters [cf. Eqs. (16) and (17)] with Q∗ = 100 g s−1

and D = [−2000,−25] m × [−500, 500] m providing the prior

bounds on the emission rate qs and on the source location

(xs,ys), respectively. The initial number of sources was ran-

domly assigned in accordance to the prior distribution for Ns

given by Eq. (15), where N∗
s = 4 (maximum allowable number

of sources) and the hyperparameter p∗ = 1/3 is chosen so that

the expected number of sources is 1 (hence, the prior distri-

bution favors the wrong choice for the number of sources).14

14From Eq. (15), the expected number of sources 〈Ns〉 = (N∗
s −

1)p∗, so with N∗
s = 4 the choice p∗ = 1/3 gives 〈Ns〉 = 1.
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Figure 3: Instantaneous estimates of Ns for the first 500 post

burn-in iterations of the reversible jump MCMC sampler (top)

and the posterior probability distribution for the number of

sources (bottom) estimated using the 50,000 post burn-in sam-

ples.

We have chosen the hyperparameter γ = 1.0 [cf. Eq. (16)] in

the prior distribution for the emission rate (implying that no

source in the source distribution model can be turned off).

For this example, the MCMC algorithm was run for 100,000

iterations, with the first 50,000 iterations corresponding (con-

servatively) to the burn-in with the result that these samples

were discarded in the subsequent analysis. The remaining

50,000 post burn-in samples were used for the posterior infer-

ence.

Figure 3 (top) displays changes in Ns (number of sources)

as a function of the iteration number for the first 500 post

burn-in iterations of the reversible-jump MCMC sampler.

Note the dimension-changing moves involving creation of a

new source (e.g., transitions from Ns = 2 to Ns = 3 or from

Ns = 3 to Ns = 4) or annihilation of an existing source

(e.g., transitions from Ns = 4 to Ns = 3 or from Ns = 3

to Ns = 2). Interestingly, after convergence of the Markov

chain to the stationary distribution, moves across models from

Ns = 2 to Ns = 1 (and, vice-versa) do not occur. Indeed,

Fig. 3 (bottom) which exhibits the probability distribution,

p(Ns) ≡ p(Ns|D, I), for the number of sources estimated from

the 50,000 post burn-in samples, shows that the hypothesis

Ns = 1 source is excluded. The simulations settle in a dis-

tribution which favors equally (approximately or better) the

hypotheses Ns = 2 or 3, with a smaller probability for Ns = 4.
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Figure 4: Histograms of the alongwind location xs (top panel),

crosswind location ys (middle panel), and emission rate qs
(bottom panel) obtained from the post burn-in samples of

source distribution models with Ns = 2 (viz., from the sam-

ples of source distribution models having exactly two source

atoms). The vertical lines in each panel mark the true values

for the source parameters.

Figure 4 exhibits histograms of the alongwind location

xs (top panel), crosswind location ys (middle panel), and

emission rate qs (bottom panel). These histograms were con-

structed from the subset of post burn-in samples consisting of

two source objects (i.e., samples with Ns = 2). The bimodal-

ity of the histogram of xs with mode locations at xs ≈ −50 m

and xs ≈ −250 m indicates that the alongwind positions of

the two sources have been correctly identified. Because both

sources are located at ys = 0 m and have an emission rate

qs = 1 g s−1, the single mode in the histograms at ys ≈ 0 m
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Figure 5: Histograms of the alongwind location xs (top panel),

crosswind location ys (middle panel), and emission rate qs
(bottom panel) obtained from the post burn-in samples of

source distribution models with Ns = 3 (viz., from the sam-

ples of source distribution models having exactly three source

atoms). The vertical lines in each panel mark the true values

for the source parameters.
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Figure 6: Histograms of the alongwind location xs (top panel),

crosswind location ys (middle panel), and emission rate qs
(bottom panel) obtained from post burn-in samples of source

distribution models with Ns = 4 (viz., from the samples of

source distribution models having exactly four source atoms).

The vertical lines in each panel mark the true values for the

source parameters.

and qs ≈ 1.0 g s−1 indicates that these source parameters

have been correctly inferred for the two sources.

Figures 5 and 6 display histograms of the alongwind loca-

tion xs (top panel), crosswind location ys (middle panel), and

emission rate qs (bottom panel). These histograms were ob-

tained, respectively, from the subset of post burn-in source dis-

tribution model samples consisting of exactly three (Ns = 3)

Table 1: The posterior mean, posterior standard deviation

(Std Dev.), and lower and upper bounds of the 95% HPD

interval of the parameters xs,k (m), ys,k (m) and qs,k (g s−1)

for k = 1, 2 calculated from the totality of samples for each of

the two identified clusters in Figs. 4, 5 and 6 for Ns = 2, 3, and

4, respectively. These are the parameters that characterize the

two source atoms (k = 1, 2) associated with the two clusters

of samples.

Mean Std Dev. 95% HPD

k = 1

xs −254 11 (−276,−234)

ys −0.13 0.37 (−0.85, 0.58)

qs 1.04 0.05 (0.95, 1.14)

k = 2

xs −50 0.2 (−50.5,−49.6)

ys −0.00195 0.036 (−0.07, 0.07)

qs 1.02 0.01 (0.99, 1.05)

and four (Ns = 4) source atoms. Note from both these fig-

ures that there really only exists two modes in the histograms

of xs, and it is seen that these modes correspond to the cor-

rect alongwind locations of the two sources. Furthermore, the

extra source atom in the histograms in Fig. 5 and the two

extra source atoms in the histograms of Fig. 6 are randomly

distributed in D (viz., are not concentrated into a significant

cluster or clusters of points). Interestingly, these extra source

atoms have emission rates associated with the mode in the his-

togram of qs at ≈ 0 g s−1 (viz., corresponding to “dim” source

atoms). The mode in the histogram of qs at ≈ 1.0 g s−1 is

associated with the modes in the histogram of xs at ≈ −250 m

and ≈ −50 m and the mode in the histogram of ys at ≈ 0 m.

Hence, even the source reconstruction based on samples of

source distribution models with Ns = 3 or Ns = 4 only give

two main clusters of points in D located at the true positions

of the two sources. These two main clusters in the histogram

of xs are associated with the modes in the histogram of ys

and qs at ≈ 0 m and ≈ 1.0 g s−1, respectively (corresponding

as such to the true crosswind positions and emission rates of

the two sources).

From Figs. 4, 5, and 6 corresponding to the case Ns = 2, 3

and 4, respectively, we see that there exists two clusters along

xs in which the samples are concentrated. These two clusters

are associated with two source atoms. We have gathered all

samples of source distribution models for Ns = 2, 3, and 4 for

each of these two clusters and plotted histograms of the pa-

rameters
{
xs, ys, qs

}
for each detected source atom in Figs. 7

and 8. The posterior mean, posterior standard deviation, and

lower and upper bounds for the 95% HPD interval of the pa-

rameters for each detected source object were calculated from

the samples for Ns = 2, 3, and 4 contained in each of the

two identified clusters and the results are summarized in Ta-

ble 1.15 From this information, we see that the two source

15It should be stressed that labels used for the source atoms
in Table 1 [e.g., source atom 1 is identified to be the source

at (xs, ys) = (−250, 0) m, whereas source atom 2 is the source
at (xs, ys) = (−50, 0) m] are completely arbitrary here because
the posterior probability distribution of the source parameters
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Figure 7: Histograms for the three parameters, namely along-

wind location xs (top left frame), crosswind wind location ys

(top right frame), and emission rate qs (bottom left frame)

that characterize source atom 1. The solid vertical line indi-

cates the true value of the parameter and the dashed vertical

line corresponds to the best estimate of the parameter ob-

tained as the posterior mean of the associated marginal pos-

terior distribution.

objects have been characterized to a reasonable accuracy.

5.2. Example 2: two unknown instantaneous sources

For our second example, we synthesized artificial concen-

tration data using a forward-time LS model for the case of

two instantaneous sources which were located upwind of an

array consisting of 42 detectors arranged as shown in Fig. 2.

This example is exactly the same as Example 1, except for

the fact that the two continuous ground-level sources have

been replaced with two instantaneous ground-level sources at

(xs, ys) = (−50, 0) m and at (−250, 0) m. These two sources

instantaneously released qs = 1 g and 5 g of material at re-

lease times of Ts = 10 s and 2 s relative to an arbitrary time

origin, respectively. The synthetic concentration-time data

generated using the forward-time LS model were corrupted

with white and normally distributed noise with a standard

deviation equal to 10% of the true concentration amplitude.

We applied our proposed algorithm for multiple source re-

construction to this simulated concentration-time data set.

The Metropolis-coupled reversible-jump MCMC algorithm

used the same parameters as described previously for Example

1, with the following exceptions. The intermittency factor, γ,

in Eq. (16) which is defined as the probability that the source

is turned on (viz., Qk > 0) is chosen to be 0.2, rather than 1.0

used in Example 1. This choice allows for the hypothesis that

any given source in the domain can be turned off (Qk = 0)

with a finite probability (= 1− γ) [viz., the given source does

not release any material into the atmosphere and, hence, does

not contribute to the concentration signal measured by the

[cf. Eq. (22)] is invariant under a reordering (relabelling) of the

identifiers used for each source atom. This degeneracy simply
corresponds to different (but equivalent) identifications of what is
meant by source atom 1, source atom 2, etc.
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Figure 8: Histograms for the three parameters, namely along-

wind location xs (top left frame), crosswind wind location ys

(top right frame), and emission rate qs (bottom left frame)

that characterize source atom 2. The solid vertical line indi-

cates the true value of the parameter and the dashed vertical

line corresponds to the best estimate of the parameter ob-

tained as the posterior mean of the associated marginal pos-

terior distribution.
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Figure 9: The posterior probability distribution for the num-

ber of sources estimated using the 50,000 post burn-in samples.

array of detectors]. Furthermore, for this example, the upper

bounds for the release mass Q∗ and release time T ∗ used in

the definition of the prior uniform distributions for these two

quantities [cf. Eqs. (16) and (18)] were chosen to be 100 g and

25 s, respectively. As in Example 1, the MCMC algorithm was

run for 100,000 iterations, with the first 50,000 iterations cor-

responding to the burn-in with the result that these samples

were discarded from the subsequent analysis. The remaining

50,000 post burn-in samples were used for the posterior infer-

ence, the results of which will be presented below.

Figure 9 displays the probability distribution for the num-

ber of sources p(Ns) ≡ p(Ns|D, I) for this example. The
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Figure 10: Histograms of the alongwind location xs (top

panel), crosswind location ys (second panel), release time Ts

(third panel), and release mass qs (bottom panel) obtained

from all the post burn-in samples of source distribution models

extracted for Example 2. The vertical lines indicate the true

values of the parameters for the two instantaneous sources.
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Figure 11: Histograms for the four parameters, namely along-

wind location xs (top left frame), crosswind wind location ys

(top right frame), release time Ts (bottom left frame), and

release mass qs (bottom right frame) that characterize source

atom 1. The solid vertical line indicates the true value of the

parameter and the dashed vertical line corresponds to the best

estimate of the parameter obtained as the posterior mean of

the associated marginal posterior distribution.

algorithm predicts the correct number of sources in this case

(namely, Ns = 2) with a probability greater than about 0.98.

The information embodied in the concentration data was suf-

ficient to move the simulations towards a source distribution

model having the correct number of sources. Interestingly,

we found that for the prior specification of release mass with

γ = 0.2, many of the samples for more complex models involv-
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Figure 12: Histograms for the four parameters, namely along-

wind location xs (top left frame), crosswind wind location ys

(top right frame), release time Ts (bottom left frame), and

release mass qs (bottom right frame) that characterize source

atom 2. The solid vertical line indicates the true value of the

parameter and the dashed vertical line corresponds to the best

estimate of the parameter obtained as the posterior mean of

the associated marginal posterior distribution.

ing Ns > 2 sources had the additional sources turned off (viz.,

Qk = 0). We note that for samples involving Ns sources, but

with Nd of these sources turned off, the source model here

is considered to have Ns − Nd sources, and not Ns sources

(owing to the fact that sources that are turned off do not con-

tribute to the model concentration seen at the detectors). In

consequence, some of the samples associated with the mode of

p(Ns) ≡ p(Ns|D, I) in Fig. 9 at Ns = 2 actually corresponds

to more complex models involving more than 2 sources, but

with the additional sources turned off.

Figure 10 displays histograms of the source parameters

{xs, ys, Ts, qs} constructed from all post burn-in samples of

source distribution models extracted for Example 2. We note

that Fig. 10 demonstrates that the samples drawn from the

posterior disribution tend to cluster into two regions along xs

and Ts, which can be identified with two source atoms located

at two different alongwind positions, with two distinct release

times. Note that in the histogram of qs, there are three dis-

tinct clusters. Two of these clusters correspond to two source

atoms having two different release masses. The third cluster

corresponds to a source atom with zero release mass. This

cluster is associated with the additional source atoms in the

samples of source distribution models having Ns = 3 or 4

source atoms, but with the additional source atoms “turned

off” (viz., these sources did not release any mass, and hence

did not contribute to the concentration measured by the de-

tectors of the array).

Figures 11 and 12 exhibit histograms of the source param-

eters
{
xs, ys, Ts, qs

}
for the two detected source atoms in this

example. Table 2 summarizes the recovered source parameters

for each of these two sources in terms of the posterior mean,

posterior standard deviation, and lower and upper bounds for

the 95% HPD interval of the source parameters extracted from

the marginal posterior distributions for the various parame-
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Table 2: The posterior mean, posterior standard deviation

(Std Dev.), and lower and upper bounds of the 95% HPD

interval of the parameters xs,k (m), ys,k (m), T k
s (s) [measured

relative to an arbitrary time origin], and qs,k (g) for k = 1, 2

calculated from samples of source distribution models with

Ns = 2 (the latter corresponding to the most probable number

of sources as inferred from Fig. 9).

Mean Std Dev. 95% HPD

k = 1

xs −250.3 0.4 (−251.0,−249.5)

ys 0.071 0.25 (−0.55, 0.43)

Ts 1.93 0.12 (1.69, 2.15)

qs 4.99 0.04 (4.91, 5.06)

k = 2

xs −50.0 0.17 (−50.3,−49.7)

ys −0.012 0.056 (−0.12, 0.095)

Ts 10.0 0.055 (9.9, 10.1)

qs 1.00 0.013 (0.98, 1.03)

ters. The results shown here suggest that in this example the

multiple source reconstruction algorithm was very effective in

the sense that the correct number of sources was estimated,

and for each of these sources the parameters characterising

each source were recovered with very good accuracy.

6. CONCLUSIONS

In this paper, we have presented a Bayesian inference ap-

proach for multiple source reconstruction from a limited num-

ber of noisy concentration data obtained from an array of

sensors for the case where the number of sources is unknown

a priori. In this approach, we use a model that relates the

source distribution to the concentration data (source-receptor

relationship), and then apply Bayesian probability theory to

formulate the posterior density function for the source param-

eters including the number of sources. The evaluation of the

posterior density function and of its features of interest re-

quires a numerical procedure. To this end, the computational

algorithm required here is implemented using a Metropolis-

coupled reversible-jump Markov chain Monte Carlo method to

draw samples from the posterior density function. We showed

how to design creation and annihilation moves that allow the

Markov chain to jump between hypothesis spaces correspond-

ing to different numbers of sources in the source distribution.

The algorithm can be applied to problems involving a large

number of source parameters (viz., for problems with Ns ex-

pected to be very large) implying that the method can be

used for the reconstruction of volume (or area) sources with

arbitrary a priori unknown geometry.16

16The source reconstruction technology described in this paper,
which uses Bayesian probability theory and concentration sensor
observations to answer the questions “How many discrete sources

are present? and “Given that there are Ns discrete sources, what
are the best estimates of the locations, emission rates, release

times, etc. of each source?”, can be viewed as a particular real-
ization of the scientific method and a quantitative formulation of
Occam’s razor. The methodology presented here utilizes the full

The new methodology has been sucessfully applied to

simulated concentration data corresponding to continuously-

emitting and instantaneous sources. It is shown that the

proposed method performs well: the number of sources is

correctly identified using the procedure, and the parameters

(e.g., location, emission rate, release time) that character-

ize each identified source are reliably estimated. In addition,

the methodology provides a rigorous determination of the un-

certainty (e.g., standard deviation, credible intervals) in the

inference of the source parameters, hence extending the po-

tential of the methodology as a tool for quantitative source

reconstruction.
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Matthes, J., L. Gröll, L. and H. B. Keller, 2005: Source

localization by spatially distributed electronic noses for ad-

vection and diffusion. IEEE Trans Signal Processing, 53,

1711–1719.

Nodop, K., R. Connolly, and F. Girardi, 1998: The field

campaigns of the European Tracer Experiment (ETEX):

overview and results. Atmos. Environ., 32, 4095–4108.

Rao, K. S., 2005: Uncertainty analysis in atmospheric disper-

sion modeling. Pure Appl. Geophys., 162, 1893–1917.

Robertson, L. and J. Langner, 1998: Source function estimate

by means of variational data assimilation applied to the

ETEX-I tracer experiment. Atmos. Environ., 32, 4219–

4225.

Seibert, P. and A. Stohl, 1999: Inverse modeling of the ETEX-

1 release with a Lagrangian particle model. Third GLO-

REAM Workshop, Ischia, Italy, 10 pp.

Shea, D. A. and S. A. Lister, 2003: The BioWatch pro-

gram: detection of bioterrorism. Congressional Re-

search Service Report Number RL 32152. Available at

http://www.fas.org/sgp/crs/terror/RL32152.html.

Skiba, Y. N., 2003: On a method of detecting the industrial

plants which violate prescribed emission rates. Ecological

Modelling, 159, 125–132.

Stull, R. B., 1988: An Introduction to Boundary Layer Me-

teorology, Kluwer Academic Publishers, Dordrecht, The

Netherlands, 666 pp.

Taylor, G. I., 1921: Diffusion by continuous movements. Proc.

London Math. Soc., Ser. 2, 20, 196–211.

Thomson, D. J., 1987: Criteria for the selection of stochastic

models of particle trajectories in turbulent flows. J. Fluid

Mech., 180, 529–556.

Thomson, L. C., B. Hirst, G. Gibson, S. Gillespie, P. Jonathan,

K. D. Skeldon, and M. J. Padgett, 2006: An improved al-

gorithm for locating a gas source using inverse methods.

Atmos. Environ., 41, 1128–1134.

Van der Vink, G. E. and J. Park, 1994: Nuclear test ban mon-

itoring: new requirements, new resources. Science, 263,

634–635.

Wilson, J. D. and W. K. N. Shum, 1992 A re-examination

of the integrated horizontal flux method for estimating

volatilization from circular plots. Agric. Forest Meteorol.,

57, 281–295.

Wilson, J. D., T. K. Flesch, and L. A. Harper, 2001: Micro-

meteorological methods for estimating surface exchange

with a disturbed windflow. Agricultural and Forest Me-

teorology, 107, 207–225.

Yee, E., 2007: Probabilistic inference: an application to the

inverse problem of source function estimation. The Techni-

cal Cooperation Program (TTCP), Chemical and Biological

Defence Group, Technical Panel 9 Annual Meeting, De-

fence Science and Technology Organization, Melbourne,

Australia, 31 January – 4 February, 2005.

Yee, E., 2006: A Bayesian approach for reconstruction of the

characteristics of a localized pollutant source from a small

number of concentration measurements obtained by spa-

tially distributed “electronic noses”. Russian-Canadian

Workshop on Modeling of Atmospheric Dispersion of

Weapon Agents, Karpov Institute of Physical Chemistry,

Moscow, Russia.

Yee E., 2007: Bayesian probabilistic approach for inverse

source determination from limited and noisy chemical or bi-

ological sensor concentration measurements. Chemical and

Biological Sensing VIII (Augustus W. Fountain III, ed.),

Proc of SPIE, Vol. 6554, 65540W, doi:10.1117/12.721630,

12 pp.

Yee, E., F.-S. Lien, A. Keats, K. J. Hseih, and R. D’Amours,

2006: Validation of Bayesian inference for emission source

distribution reconstruction using the Joint Urban 2003 and

European Tracer Experiments. CWE2006: Proceedings

of the Fourth International Symposium on Computational

Wind Engineering, 4, 837–840.

Yee, E., F.-S. Lien, A. Keats, and R. D’Amours, 2007:

Bayesian inversion of concentration data: source recon-

struction in the adjoint representation of atmospheric dif-

fusion. J. Wind Eng. Ind. Aerodyn., accepted for publica-

tion.

17


