
3.3   SOURCE INVERSION IN CITIES USING THE COLLECTOR FOOTPRINT METHODOLOGY 
 
 

Dragan Zajic and Michael J. Brown 
Los Alamos National Laboratory, Los Alamos, NM 

 
 
1. Introduction 

Source inversion modeling in urban areas has received 
a lot of attention recently due to its application in 
homeland security chemical, biological, and radiological 
air monitoring networks, as well as in identifying the 
potential industrial pollution sources in rapidly 
expanding urban areas. The goal of source inversion 
modeling is to find efficient methods to estimate the 
location, strength and number of pollution sources  
using sensor network measurements and known 
meteorological conditions.  In this paper, we describe a 
relatively fast method for doing source inversion in cities 
where the effects of buildings on transport and 
dispersion are explicitly modeled.  
 
2. Background 

In recent years, a popular approach for performing 
source inversion and estimating the probability 
distributions of source parameter values has been 
Bayesian inference in combination with Markov Chain 
Monte Carlo (MCMC, e.g., Keats et al., 2006; Chow et 
al., 2006; Yee, 2007; Senocak et al., 2007). The 
probability distribution is obtained by running a 
dispersion model with a series of guesses for the source 
location and source strength and based on agreement 
or disagreement with the sensor measurements the new 
source parameters are either accepted or rejected 
based on comparison with the results from the previous 
set of source parameters. The new source parameters 
are accepted if it gives better agreement (i.e., has a 
lower cost function) than the previous set of source 
parameters, but with a certain probability they may also 
be accepted even if it gives worse agreement. The 
MCMC approach provides the methodology for 
choosing the new source parameters based on the old 
parameters. 

Other optimization methods have been used for 
source characterization. For example, Thompson et. al. 
(2006) used simulated annealing with a Gaussian plume 
model to estimate source location and strength in a 
desert area as one way of finding new oil and gas 
reserves. They also tested the model’s performance for 
different cost functions as well as its sensitivity to 
randomly introduced noise and offsets to the 
concentration data. Another recently used stochastic 
search approach for these types of problems is genetic 
algorithms (Allen and Haupt, 2007; Allen et al., 2007). 
They used this method to estimate locations and 
strengths of multiple sources. This approach is very 

useful for estimation of pollution emission from multiple 
industrial facilities in urban areas. The disadvantage of 
these optimization methods as compared to the 
Bayesian/MCMC approach is that it only provides a 
single solution instead of a probability distribution. 

All of these approaches require a large number of 
runs of the forward dispersion model during the search 
for the best source parameters.  This can be impractical 
for fast response applications that require quick results. 
The Gaussian plume model is very useful for these 
approaches since it is fast, but it is not very accurate in 
urban areas since it does not account for the presence 
of buildings. Computational fluid dynamics (CFD) 
models can be used that give more details about the 
flow and concentration fields, but they are 
computationally expensive and therefore not practical 
for fast response applications. One way to reduce 
computational time is to run CFD models in advance 
and create a “look-up” database for different wind 
directions and source locations and retrieve these 
values during the inverse model’s calculations. 

The different optimization methods for finding the 
source parameters are computationally expensive since 
they require many transport and dispersion calculations 
to be performed. In urban environments, the use of CFD 
modeling to account for effects of the buildings on the 
flow field will result in the need for massively parallel 
computer platforms to accomplish source inversion.  In 
the next section, we describe an approach which is 
much faster, but still accounts for the effects of 
buildings. The approach uses the collector footprint 
concept in which the number of plume calculations is 
equal to the number of concentration sensors and the 
dispersion model is a fast-running empirical-diagnostic 
code.  We also discuss using simulated annealing with 
the footprint approach in order to find the optimal 
solution for problems where there is large uncertainty in 
the measurements.   

 
3. Source Inversion Method for Releases in Cities 

3.1. Transport and dispersion model 

The Quick Urban & Industrial Complex (QUIC) 
dispersion modeling system is used for the fast 
computation of the three dimensional flow and 
concentration fields around buildings. It consists of three 
basic components: the QUIC-URB model (Pardyjak and 
Brown, 2002 & 2003) that calculates 3D wind fields 
based on Röckle (1990) by determining flow regimes 
from building-spacing logic, using empirically-obtained 
building-flow parameterizations and imposing mass 
conservation, the QUIC-PLUME Lagrangian random-
walk model that computes turbulence parameters and 
concentration fields (Williams et al 2004), and the QUIC-
GUI graphical user interface that was developed to 
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facilitate user input and visualization of results. Later 
additions to the modeling system include the QUIC 
Pressure Solver that enables calculations of the 
pressure field (Gowardhan et al., 2006a), a sensor siting 
tool for optimum placement of sensors within a given 
area, and dense gas dispersion capabilities (Williams et 
al., 2004).  The code has been shown to perform fairly 
well when tested against urban tracer data and wind-
tunnel building experiments (e.g., Gowardhan et al., 
2006b; Pol et al., 2006).   
 
3.2. Detector footprint approach 

The source inversion code is based on the concept of 
using detector footprints – a region upwind of each 
detector in which a release of a certain size would be 
detected by the detector – in order to quickly determine 
regions where the release might have occurred. The 
number of plume dispersion calculations that need to be 
solved in this approach is equal to the number of 
detectors.  This technique has been implemented into 
an operational tool called the Biological Agent Event 
Reconstruction Tool (BERT) for homeland security 
applications (see Linger et al., 2005). 
 The concept of the detector footprint is illustrated in 
Fig. 1. Figure 1a shows the detector and its upwind 
footprint which in this example is the area where a 
release between 5 and 10 g would cause the measured 
values of dosage (or concentration) at the detector 
within a factor of two. If the measured concentration at a 
second detector is below the sensitivity of the sensor, 
i.e., the threshold detection limit, then its footprint can 
be used to eliminate certain areas as potential source 
locations. This is illustrated in Fig. 1b where the so-
called null footprint is formed using the detector 
threshold value. When more than one sensor detects 
the agent, then the potential source area is defined by 
the intersection of footprints (see Fig. 1c).   

Footprints are computed for different release 
amounts (e.g., 1.25 to 2.5 g, 2.5 to 5 g, 5 to 10 g, and so 
on) and intersections of footprints from hit detectors and 
elimination of areas from null footprints are calculated to 
determine potential source areas for a range of release 
mass quantities. If the footprints from the hit detectors 
do not overlap, then a lower bound on the release 
amount can be determined.   If the null footprints 
completely overlap the hit footprints, then an upper 
bound on the release amount can be estimated.   

The detector footprints are computed by simply 
specifying the source location at the detector location, 
by reversing the wind field, and solving for the source 
strength field Q by inputting the concentration (or 
dosage) measured at the collector into the plume 
dispersion model.  Note that one can equivalently 
release an amount Q at the detector location and then 
create the footprints from the concentration contours 
that agree with the detector measurement – this is often 
easier to implement in an existing dispersion model.  
One can show that this is possible through use of the 
Gaussian plume model equations, that is, a release of 
an amount Q from location (x1, y1) results in a 
concentration at location (x2, y2) that is equivalent to 
the concentration at (x1, y1) from a release Q at location 

(x2, y2) by simply reversing the wind direction (Fig. 2).  
More information on the collector footprint approach can 
be found in Brown et al. (2007).    

The ratio between the lower and upper bound of 
each footprint (two in the example shown above) can be 
interpreted as an estimate of the uncertainty in the 
measurements or in the plume dispersion model fidelity.  
For complex building configurations or for cases where 
the sensors are known to contain large uncertainty, a 
larger ratio should be used.  As compared to many 
approaches that calculate a single best source location 
(x,y), the footprint method computes an area where the 
release might have been possible.  The approach 
enables fast estimation of the area where the airborne 
contaminant might have come from which could be 
useful for emergency responders and clean-up efforts.  

The approach does have a downside in that it 
doesn’t always find a solution, either owing to 
uncertainties in the measured concentrations or errors 
in the dispersion model.  The optimization methods 
mentioned in Section 2 do not have this problem.  We 
have combined an optimization method using simulated 
annealing with the detector footprint approach to get 
around this problem. Simulated annealing gives the 
values of the location and the strength of the source 
using the footprints by minimizing a cost function based 
on the difference between modeled and measured 
concentrations.  
 
3.3. Simulated annealing  

Simulated annealing (SA) is a stochastic optimization 
method based on analogy with annealing process in 
materials (Kirkpatrick et al., 1983). The advantage of SA 
when compared to some “classical” optimization 
methods is its success in finding global minimum, thus 
avoiding ending up in a local minimum. 

For source inversion applications, the first step in 
the SA method is to compute concentration fields for 
sources at each of the collector sites using reversed 
winds. The SA routine then randomly picks a source 
location and strength and new concentration fields are 
obtained by linear scaling of the already calculated field 
at each collector site. The cost function is defined as: 
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Where summation is performed over all N sensors, CiM 
is measured concentration at sensor i and CiC is 
concentration at proposed location when the model is 
run in inverse mode with source at location of sensor i 
for proposed value of source strength. 

The SA algorithm iteratively randomly picks the 
possible solutions and if the new guess is better i.e. has 
the lower cost function it is accepted. In a case the new 
guess is worse then previous value it is not necessarily 
rejected. It is accepted when the following expression is 
satisfied: 
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where r is the random number from  interval [0,1], CFn 
and CFn-1  are values of cost functions at nth and (n-1)th 
steps and T is the synthetic temperature. This possibility 
of acceptance of a worse solution gives the SA method 
the ability to search a wider solution space and avoid 
getting stuck in a local minimum of a cost function. The 
cost function is a measure of the goodness of the 
proposed solution and its definition can have influence 
on efficiency of the search algorithm. The name 
“temperature” for parameter T comes from analogy with 
statistical mechanics and which decrease reduces the 
probability of worse proposals to be accepted in later 
stages of calculation. 
 
3.4. Implementation 

The original dispersion model employed within the 
BERT source inversion model used a segmented 
Gaussian plume model, while in this work we employ 
the QUIC dispersion modeling system which is more 
appropriate within dense urban areas due to its ability to 
resolve buildings and estimate complex flow and 
dispersion patterns occurring within cities.  The footprint 
for each sensor was obtained by running the QUIC-
PLUME model after reversing the flow field obtained by 
QUIC-URB and placing the source at the sensor 
locations. Only one calculation at each detector location 
is required.  When a footprint for a different source 
strength is needed, the previously calculated 
concentration field is scaled accordingly. The footprint 
for each detector is obtained by going through each grid 
element in the computed concentration field and 
checking if the concentration is within the given range. If 
the footprint is calculated using the factor of 2 range in 
the release amount, then a given point belongs to the 
footprint if the concentration at that point is within the 
factor of 2 of the sensor measurement. The grid element 
that belongs to all the hit detector’s footprints and is not 
within a null footprint is a potential source location. If 
none of the grid elements satisfy these conditions then 
the solution does not exist for the tested source strength 
and a calculation with a new value is attempted. 
 
4. Results 

4.1. Footprint Approach 

In order to evaluate the ability of the described methods 
to estimate source parameters, calculations were 
performed using the QUIC model to create synthetic 
detector measurements for a mock city consisting of a 
small group of buildings (see Fig. 3). The first set of runs 
had no noise introduced, i.e., the resulting 
concentrations from the forward runs were used as 
measurement data for the mock sensors. In the second 
set of runs, Gaussian noise was added to the detector 
measurements since real sensor measurements contain 
errors due to inaccuracy or poor performance of the 
measurement device and because the dispersion model 
does not perfectly represent real-world dispersion. 

Assuming that the source height is the same as the 
height of the sensors (1m), the concentration field from 
one horizontal plane is used in our analyses. This 

simplification is reasonable since it is very probable that 
in a real event the release could be at street level either 
due to a traffic accident or an intentional release. Also, it 
is important to mention that we assume existence of 
only one source. 
 In the evaluation case presented here, the release 
is continuous with a source strength of 100 g/s and 
location (xs, ys, zs)=(29m, 15m, 1m).  Figure 4 shows 
the simulated plume and the “measurements” computed 
at each detector. Since the two left-most detectors 
measure very low concentrations, we first obtained 
results using the other four sensors. Figure 5 shows the 
upwind footprints for the four detectors, which depict the 
regions where a release of 85-170 g would result in a 
detector measurement to within a factor of two.  The 
intersection of the four footprints is where a single 
release could have occurred that would have resulted in 
the measurements at all four detectors. Figure 6 shows 
the number of footprints that intersect at each given 
location (grid element) in the domain for a source 
strength in the range of 85-170 g/s. The two dark red 
regions indicate the most probable locations of the 
source and one of them is exactly at the source location. 
Also, the correct value of source strength 100 g/s is 
within the range of source strength that would cause 
given concentration measurements. 
 When we used the footprints from all six sensors 
we were not able to obtain results using the factor of 2 
as the level of uncertainty, i.e., there was no grid 
element that belonged to all six footprints. Using a factor 
of 3, we obtained the results presented in Fig. 7.  The 
location is two gird elements (4m) from the correct 
solution and the exact source strength was not within 
the estimated source strength interval, but very close. 
The corresponding footprints used to obtain the solution 
in this case are given in Fig. 8.  The likely reason for the 
difficulty with finding a solution for this six detector case 
is due to the stochastic uncertainty in the very low 
concentrations at two of the detectors.  The random-
walk model produces mean concentrations in the “tails” 
that are not statistically converged.  This behavior is 
similar to real sensors which often have less accuracy at 
very low concentrations.  This suggests that source 
inversion models should consider an option to throw-out 
measurements near detector threshold.   

Performance of the footprint approach was tested 
with introduction of noise to the synthetic data. The 
introduced noise had a Gaussian distribution with zero 
mean and standard deviation of 10%, 20% and 50% of 
the “measured” concentration values at each given 
detector. For the 10% noise case, when we use 4 
sensors and a factor of 2 as the level of uncertainty the 
results are almost identical to the case without noise. In 
the case of 20% noise, the estimated location of the 
source is missed by one grid element (2m) in many 
cases. Also, in a small number of cases the model was 
not able to give solutions. Introduction of 50% noise 
caused inability of model to find solution in most of the 
cases indicating that at least one of the detectors had a 
greater than two difference from the original model-
produced measurement value. When we used a factor 
of 3 to obtain footprints for all six detectors for 10% and 



20% noise, the solution is obtained in most of the runs 
and results are identical to the case without noise, i.e., 
the source location and range of possible source 
strengths is the same.  For largest noise (50%) the 
model was not able to find the solution in most of the 
cases even when the factor of 3 uncertainty is used. 
 
4.2. Footprint Approach with Simulated Annealing 

Figure 9 represents the source location at every 
thousandth step as the simulated annealing method 
iteratively searches for the optimal solution for the case 
of 6 detectors. The solution obtained using the 
simulated annealing optimization algorithm for the no-
noise case was: location (28.97, 11.74), source strength 
64.21 g/s.  The solution obtained by SA is shown in Fig. 
7 and is denoted by the white triangle. Thus, the 
location was estimated pretty well, while the source 
strength was within a factor of 2. It is important to point 
out here that since this is the stochastic method each 
run of SA algorithm will give slightly different though 
very close results (for example location (29.35, 10.82) 
and source strength 64.10 g/s). 
 In the case of simulated annealing calculations, 
noise with standard deviation of 10% and 20% does not 
cause significant changes in the results, while 50% 
standard deviation gives much larger span of solutions 
for different runs especially with respect to source 
strength which in a number of runs changed between 30 
and 70 g/s. 
  
5. Conclusions 

In this work we presented two approaches for fast 
estimation of the source location and strength in cities 
using detector measurements. Both approaches, 
detector footprint and detector footprint with simulated 
annealing, gave similar and satisfactory results for a 
synthetically-created data set.  The location was 
estimated very precisely with and without introduced 
Gaussian noise on top of the detector measurements 
(for standard deviations of noise distribution 10% and 
20% of measured values). Larger noise (50%) 
introduced more uncertainty and in many cases the 
collector footprint approach was not able to find a 
solution unless the uncertainty factor was increased. 
Further work will have the goal of testing the model 
using real data measured during different field 
campaigns within urban areas and implementing the null 
footprint scheme.  
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Figure 1. Illustration of the collector footprint methodology: (a) detector and its footprint showing where a release of 5 
to 10 g would result in the measured dosage to within a factor of 2, (b) detectors that read zero dosage can be used 
to create null footprints and thus eliminate certain areas as possible source locations, (c) overlap region is the area 
from which a release of 5 to 10 g would cause both detectors to measure respective dosages or concentrations within 
a factor of 2 (from Brown et. al. 2007). 
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Figure 2. During the ‘forward run’ source is at (x1, y1) and sensor measures Cforw (x2, y2). During the ‘inverse run’ the 
wind field is inverted and the source is at (x2, y2). For the same source strength during the inverse run, the 
concentration Cinv(x1, y1) is equal to Cforw(x2, y2), i.e.  Cinv(x1, y1) = Cforw(x2, y2).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The mock city consisting of 13 buildings used to illustrate the inversion methodology.  Streamlines from the 
QUIC-URB model are overlaid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Plume obtained using the QUIC model for continuous source from location (xs, ys, zs)=(29m, 15m, 1m) and 
source strength Qs=100 g/s. Diamond represents the location of the source while black dots indicate sensor locations 
with values of “measured” concentrations.  These “measurements” will be used to test the source inversion model. 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
Figure 5. The upwind footprints (red) of the four sensors used to obtain the potential source locations. The green 
symbol X indicates the sensor used to create the corresponding footprint.  The intersection of the four footprints 
represents where a release could potentially occur.    

 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
Figure 6. The computational domain where color of the grid element indicates how many footprints intersect at each 
given point (grid element) for release rates within the range 85-170 g/s. Footprints were obtained for 4 sensors using 
a factor of 2 uncertainty. Circles denote sensor locations, the diamond is the source location and the dark red grid 
cells represent where all collector footprints intersect, i.e., potential release locations. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. The intersection of  all six footprints for release rates within range 32-96 g/s. Circles denote sensor 
locations, the diamond is the source location and dark red grid cells represent where all six collector footprints 
intersect, i.e., the potential source locations. These results were obtained using a factor of 3 uncertainty, as a factor 
of 2 did not give solutions. The triangle symbol indicates the estimated source location using simulated annealing.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. The footprints (using a factor of 3 uncertainty) for all six sensors for the solution given in Fig. 7.  The green 
symbol X indicates the sensor used to create the corresponding footprint. 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. The simulated annealing search for the source location (every thousandth step). 
 
 
 
 
 
 
 
 


