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1. INTRODUCTION 
 

The Pacific Rainfall Project (PACRAIN) is part 
of the Environmental Verification and Analysis 
Center at the University of Oklahoma.  One of the 
core components of PACRAIN is a comprehensive 
rainfall database (Greene et al. 2008).  The 
database currently spans a period of 1874 to the 
present and contains more than 2 million 
observations from more than 800 sites.  The data 
are compiled from various national agencies as 
well as sources unique to PACRAIN.  Data are 
publicly available online at 
<http://pacrain.evac.ou.edu>. 

The goal of the PACRAIN database is to be a 
starting point for any research requiring tropical 
Pacific rainfall data.  To that end, it presents data 
in a format that is intended to be flexible enough 
for a wide range of applications while being robust 
enough to preserve the information content of a 
variety of rainfall measurement techniques.  Data 
interpretation is minimal because users are in the 
best position to choose the most appropriate 
techniques for their needs.   

PACRAIN is a partner in the Pacific Islands 
Global Climate Observing System (PI-GCOS) 
initiative to expand and enhance climate 
observation networks in the region.  To date, a 
total of 50 tipping bucket rain gauges have been 
sent to Cook Islands, Guam, Kiribati, Niue, 

Samoa, Tonga, Tuvalu, and Vanuatu (see Fig. 1).  

Data collected from these gauges is being sent to 
PACRAIN (see Table 1) for inclusion in the 
PACRAIN database.  Until now, all PACAIN data 
have been daily or monthly accumulations from 
manual-read gauges.  Tipping bucket gauge 
(TBG) data represent a paradigm shift from 
traditional rainfall data, and thus it is necessary to 
examine how these data can be best integrated 
into the PACRAIN database. 
 
 
2. TIPPING BUCKET GAUGES 
 

A tipping bucket gauge works by recording the 
amount of time it takes to accumulate a fixed 
amount of rainfall, e.g. 0.01 inches or 0.254 mm in 
the case of PI-GCOS gauges.  A typical gauge 
contains a mechanism consisting of two small bins 
on a pivot (the “tipping buckets”).  The mechanism 
is positioned underneath a collection funnel so that 
only one bin at a time can receive rainfall.  The 
mechanism is calibrated so that weight of a known 
amount of rainfall will cause it to pivot (a “tip”), 
simultaneously placing the empty bin in position to 
collect rainfall, emptying the full bin, and actuating 
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FIG. 1.  The distribution of PI-GCOS tipping bucket gauges to 
date.  The number in parentheses is the number of gauges 
sent to a particular location. 

 
Site Begins Ends Tips 

Nikao 2007-03-13 2007-06-11 1825 

Hanan 2006-07-05 2006-08-07 814 

Makefu 2005-08-19 2005-11-22 5216 

Afiamalu 2006-01-20 2006-02-10 8150 

Fua’amotu 2005-05-04 2007-08-08 16262 

Funafuti 2007-03-29 2007-12-10 3779 

Port Vila 2005-02-12 2005-12-31 6425 

 
TABLE 1. TBG data received to date.



a switch.  A data logger is connected to the switch 
to record the tips in some fashion; the loggers 
used by PI-GCOS record the time of each tip. 

There are several design limitations of tipping 
bucket gauges that can lead to errors in observed 
rainfall amounts.  The finite response time of both 
the mechanism and the logger can cause 
underestimation during high-intensity events, while 
underestimation at low intensities is possible due 
to evaporation from a partially full bin.  
Underestimation can also occur if the gauge’s 
collection funnel or mechanism is obstructed by 
ice or debris, or if the data logger reaches its 
capacity before the gauge is serviced.  Spurious 
tips will cause overestimation of rainfall amounts.  
At very high rainfall rates it is possible for the 
mechanism to bounce off of its mechanical stop 
during a tip, causing a tip in the other direction—a 
phenomenon known as “double tipping.”  It is also 
possible for the gauge to record a spurious tip if it 
is jostled. 

The nature of TBG data makes it impossible to 
determine the exact temporal distribution of the 
recorded rainfall.   For high rainfall rates, when the 
interval between tips is small, TBG data closely 
approximates the instantaneous rainfall rate.  As 
the interval between tips increases, however, TBG 
data becomes like traditional coarse accumulation 
data; it is known how much rainfall there was 
during a specific time interval, but not exactly 
when within that interval the rainfall occurred.  
Furthermore, with TBG data it is impossible to 
determine periods of no rain. For tip size V and tip 
times ti and ti+1, the observed rainfall rate is V·(ti+1 
– ti)-1; this is asymptotic to zero because V cannot 
be zero.  TBG data are most useful at high rainfall 
rates where temporal ambiguities are minimized. 

 
 

3. RAINFALL DATA MODELS 
  

Unlike other meteorological parameters, 
rainfall is typically expressed as an aggregate 
value over a finite time interval rather than an 
instantaneous value.  This interval is usually not 
explicit in the data, which can lead to ambiguity 
(Klatt et al. 2006).  For example, daily rainfall 
records from the National Climatic Data Center 
(NCDC) give the observation date, which is the 
end of the interval (NCDC 2006).  However, in 
data from New Zealand’s National Institute for 
Water & Atmospheric Research (NIWA), the given 
date is the beginning of the interval (NIWA, 
personal communication).  Even rainfall intensity, 
which itself is an instantaneous value, is often 
expressed in the context of an interval.  For 

example, the Global Precipitation Climatology 
Project monthly data set provides rainfall rates, but 
these are monthly rainfall rates and are thus 
aggregate values (Huffman and Bolvin 2002).  
Although tipping bucket gauges are sensitive to 
rainfall rate, they are actually accumulation 
gauges where sampling is fixed with respect to 
amount (the tip size) rather than time; therefore, 
TBG data are also aggregate values.   

The current PACRAIN data model is based on 
traditional fixed interval observations. Each record 
contains an accumulation and the start time and 
duration of the interval for that accumulation.  By 
making the duration explicit, this model is capable 
of handling data of any resolution.  It also allows 
for the duration to vary from record to record for a 
given site; this is particularly useful for storing data 
from the Schools of the Pacific Climate 
Experiment (Postawko et al. 1994), where 
observations are not always made at the same 
time every day.  Although this model was not 
conceived with TBG data in mind, it is capable of 
storing such data since they are in fact 
accumulations of variable duration.   

An important factor to consider, though, is 
database capacity.  With 50 gauges distributed to 
date, an average rainfall of ~2500 mm·year-1, and 
a tip size of 0.254 mm, the PI-GCOS network has 
the potential to generate almost 500,000 tips per 
year.  With one record per tip, this would increase 
the amount of data being added to the database 
by a factor of six. This would greatly increase the 
data storage requirements and have an adverse 
effect on database performance.  There may be 
an alternate data model appropriate for TBG data 
that would minimize their footprint while still being 
compatible with the existing fixed-interval data. 

One way to compress the TBG data would be 
to aggregate them using a fixed time interval.  
Attempting to preserve the character of high-
intensity events by choosing a small interval would 
result in data redundancy for low-intensity events, 
and might increase the total number of records.  
Choosing an interval is thus a tradeoff between 
losing information content or increasing data size.  
Even if a suitable interval could be chosen, 
aggregating TBG data using any fixed interval is 
problematic.  Given tip size V, tip time t, and fixed 
interval boundary T such that T < t, how should V 
be apportioned between the two intervals bounded 
by T?  The fraction of V that occurred before or 
after T cannot be determined, so any method to 
apportion it will be arbitrary and will introduce 
random errors into the data.  It is PACRAIN policy 
to present data “as-is” as much as possible, so 
anything that will decrease information content 



while introducing random errors can be ruled out a 
priori. 

Sansom (1992) describes a rainfall data model 
which he calls “breakpoint representation”.  This 
was motivated by efforts to digitize pluviographs 
from automatic siphon gauges, and has the 
advantages of preserving information content 
while reducing redundancy.  As Sansom 
observed, rainfall events are a series of transitions 
from one steady rainfall rate to another.  Thus, a 
rainfall event can be fully characterized by a 
sequence of data pairs that denote a rainfall rate 
and its duration.  For TBG data, then, it is only 
necessary to store changes in rainfall rate.  Given 
tip times ti, ti+1, and ti+2 such that ti+1 - ti  = ti+2 - ti+1, it 
is not necessary to store both interval (ti, ti+1) and 
(ti+1, ti+2) because the rainfall rate is the same.  
This results in a 2:1 compression ratio without 
losing any information about the rainfall event.  
This is a powerful concept that can be applied to 
traditional fixed-interval data as well as TBG data.  
If the entire PACRAIN database used a breakpoint 
representation it might result in a significant 
reduction in storage requirements. 

Fixed-interval data have many applications, so 
fixed-interval accumulation data presented as 
breakpoint data should ideally be convertible back 
to their original representation without loss of 
information.   While a breakpoint representation 
preserves the information of data with respect to 
rainfall intensity, in eliminating redundancies it 
eliminates some of the fixed-interval information of 
the data.   Consider consecutive daily records, all 
having the same amount A.  These records could 
be collapsed into a single breakpoint with an 
intensity of A·day-1 and a duration of T days.  
When trying to convert the breakpoint data to daily 
rainfall, there is no way to determine which days 
contain which fraction of the amount T·A.  Even if 
it was known that the breakpoint was derived from 
daily data, it could not be assumed that the 
breakpoint was the result of T equal daily values.  
A breakpoint might describe T equal daily 
amounts, but it might also describe, for example, a 
T-day accumulation due to missed observations.  
Therefore, if breakpoint representation is used 
there needs to be additional information stored to 
preserve the character of the original data. 

Run length encoding (RLE) is a lossless data 
compression scheme (Salomon 2006) that can be 
combined with breakpoint representation to 
preserve the original non-breakpoint information.  
The basic concept of RLE is that repetitive data 
values can be replaced with a single value and a 
count of how many times that value is repeated.  
The addition of a repetition count would allow 

breakpoint data to be transformed back into its 
original format, fixed-interval or otherwise.  A 
breakpoint of duration T and repetition count n can 
be resolved into fixed-interval accumulations of 
duration T·n-1.  Continuing with the example from 
above, if T = n it is known that the breakpoint 
represents n daily observations of amount A.  

RLE can reduce the size of a data set by 
eliminating redundant records, but its 
implementation requires additional data to be 
stored.  If the number of duplicate records is small, 
RLE may actually increase the overall data 
storage requirement.  In order to implement RLE 
with the PACRAIN database, a 4 byte integer (the 
repletion count) would need to be added to every 
68 byte record.  For RLE to be cost-effective, it 
must reduce the total number of records by at 
least 6%.   

A preliminary analysis shows that RLE would 
reduce the total size of TBG data received to date 
by less than 2%.  However, if RLE were applied to 
the rest of the PACRAIN data it would reduce the 
number of records by 32%.  The discrepancy 
between the benefit of RLE for TBG data and for 
fixed-interval data is not surprising.  For a TBG 
record to be a duplicate it has to have the same 
duration as a preceding record; given a precision 
of 0.5 s, the odds of this are small.  For fixed 
interval data, on the other hand, it is common to 
have periods of no rain that can be collapsed into 
a single record.  The size reduction for fixed-
interval data makes RLE cost-effective given the 
current ratio of TBG data to fixed interval data.  
However, as the proportion of TBG data increases 
over time RLE will become less cost-effective.    
 
 
4. OTHER ISSUES 
 

Aside from choosing the best data model, 
there are some miscellaneous issues that need to 
be resolved before TBG data can be added to the 
PACRAIN database.  The first is the temporal 
resolution of the TBG data.  The database can 
currently handle time stamps down to a precision 
of 1 second, but the PI-GCOS data loggers have a 
precision of 0.5 seconds.  The database 
management system (DBMS), PostgreSQL, can 
handle time data of that precision, but 
modifications need to be made to the supporting 
applications that handle data ingest and retrieval.  
A minor modification of the data format used for 
online access is also necessary. 

The data logger records the start time and 
stop time of a service cycle as well as the time of 
each tip event.  When the logger is serviced using 



a PC or a portable device its internal clock is set to 
the system time of that PC or device.  Thus, it is 
possible for the logger times to be inconsistent 
from one cycle to the next.  Inconsistencies will not 
always be obvious, but there is one instance so far 
where the start time for one cycle is earlier than 
the stop time for the previous cycle by a few 
minutes.  Problems like this can be noted in the 
database by a footnote attached to the affected 
records. 

The end of a service cycle needs to be 
handled differently than a normal tip event.  It 
cannot be assumed that no rain fell during the 
interval from the last tip time to the logger stop 
time; it is possible that there was rainfall, just not 
enough to cause an additional tip.  Thus, this 
period has an unknown rainfall amount in the 
range [0, 0.254) mm.  These incomplete tips will 
need to be denoted with a special value in the 
database. 
 
 
5. CONCLUSIONS 

 
Work continues to determine the optimum 

data model for integrating TBG data with existing 
PACRAIN data.  The current version of the 
database is capable of storing data from the PI-
GCOS tipping bucket gauge network, although the 
potentially large volume of new data might be 
overwhelming.  Sansom’s breakpoint model, which 
is very similar to the existing PACRAIN model, is 
promising, but it needs to be combined with a 
repetition count.  A breakpoint model with a 
repetition count would greatly reduce the required 
number of traditional fixed-interval records in the 
database.  However, if the TBG data received to 
date are representative, the repetition count will 
actually increase the storage requirements for 
TBG data because the number of redundant 
records is very small.  Once the data model is 
finalized, several issues specific to the PI-GCOS 
data can be addressed, and the data can finally be 
added to the database. 
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