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1.  INTRODUCTION AND MOTIVATION* 
 
 Lower and middle-tropospheric observations are 
disproportionately sparse, both temporally and 
geographically, when compared to surface observations.  
The unsubstantial density of observations is likely one of 
the largest limiting factors in numerical weather 
prediction. 
 Atmospheric measurements performed by the 
Tropospheric Airborne Meteorological Data Reporting 
(TAMDAR) sensor of humidity, pressure, temperature, 
winds aloft, icing, and turbulence, along with the 
corresponding location, time, and altitude from built-in 
GPS are relayed via satellite in real-time to a ground-
based network operations center.   
 Since December 2004, the TAMDAR sensors have 
been operating on a fleet of 63 Saab 340s operated by 
Mesaba Airlines in the Great Lakes region as a part of 
the NASA-sponsored Great Lakes Fleet Experiment 
(GLFE).  Equipage of sensors on additional aircraft 
across the continental US and Alaska is currently 
underway.  More than 800 soundings are generated 
from 400 flights to 75 regional airports during a 24-h 
period.  Upon completion of the 2008 installation, more 
than 5000 daily sounding will be produced. 
 A study of the impact of the TAMDAR data on 
mesoscale NWP is conducted using a mesoscale model, 
which employs various assimilation techniques and the 
available TAMDAR data.  The first study reconducts the 
sensitivity experiment from Jacobs et al. (2007) using 
RAOB observations as verification instead of the North 
American Regional Reanalysis (NARR).  The motivation 
for changing the verification method is two-fold.  First, 
there was an inherent  incestuous relationship between 
the NARR and the models being tested in that the 
forecast model employs boundary conditions provided 
by the same code which assimilates observations for 
construction of the NARR.  This lead to a significantly 
better correlation, including the control runs, between the 
forecast output and the NARR (truth).  An example of 
this improved correlation is shown in Fig. 1, where the 
forecasted RH is verified against NARR (r=0.75) and a 
RAOB (r=0.56).  There are likely many reasons for such 
aliasing, and to avoid them, RAOB data was considered 
truth in this study.  Secondly, ongoing studies at 
NOAA/ERSL/GSD use RAOBs to evaluate forecast skill 
of the Rapid Update Cycle (RUC; Benjamin et al. 2007).  
For interest in comparing forecast skill of RUC, WRF and 
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MM5, we are implementing this more consistent 
methodology.   
 As in the original study, six parallel 12-h simulations, 
where the three experimental (control) runs include 
(withhold) TAMDAR data, are performed, with one of the 
three pair of experimental and control simulations having 
36 σ-levels, while the other two pair of experimental and 
control simulations have 48 σ-levels.  One of the 48-σ-
level pairs has a single domain of 10-km grid spacing, 
while the other two pair have a 36-km outer domain 
which feeds a 12-km inner domain. 
 The objectives of this study are to (i) optimize 
impacts that TAMDAR data may have on the forecast 
system by increasing the horizontal distribution of 
vertical atmospheric profiles during initialization, and (ii) 
to isolate the effects of data assimilation at a higher 
horizontal and vertical resolution with respect to 
temperature and relative humidity forecast variables. 
 

0 20 40 60 80 100

0

20

40

60

80

100

Correlation of Forecasted RH to RAOB and NARR
6-h FCST from 18 UTC valid 00 UTC

RAOB
NARR

y = -1.1653 + 0.59637x   R= 0.56218 

y = -3.4277 + 0.73345x   R= 0.75127 

Verified RH (%)

F
o

re
c
a

s
te

d
 R

H
 (

%
)

 
Fig. 1.  Forecasted RH verification correlation using NARR 
(dashed) and a RAOB (solid). 
 
2.  METHODOLOGY AND MODEL CONFIGURATION 
 
 Following the methodology of the previous study, 
there are six parallel model runs in this study (Table 1).  
The AirDat-standard run (AD) features an outer domain 
of 36-km grid spacing and a two-way nested 12-km inner 
domain.  The AD run has 36 σ-levels and assimilates the 
TAMDAR data.  The AirNot-standard run (AN) has an 
identical model configuration except AN does not include 
TAMDAR data.  The AirDat-2 (AD2) and AirNot-2 (AN2) 
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runs have an identical nested-domain structure to both 
the AD and AN runs; however, 12 additional σ-levels 
have been added in both AD2 and AN2 for a total of 48 
levels.  As in AD and AN, the only difference between 
AD2 and AN2 is that AD2 assimilates TAMDAR data, 
while AN2 does not.  The majority of the additional σ-
levels for AD2 and AN2 are added in the lowest 3 km, or 
between the 1000 and 700-hPa pressure-levels.  This 
spacing was chosen to best utilize the observation 
density provided by the TAMDAR data.  The final two 
parallel simulations are the AirDat-10 (AD10) and the 
AirNot-10 (AN10).  These two runs have only one 
domain of 10-km grid spacing.  This domain has the 
same latitude and longitude dimensions as the outer 
domain of the previously discussed runs.  Both the AD10 
and AN10 runs have 48 σ-levels, which are identically 
spaced to those in the AD2 and AN2 runs. 
 

 
 
Table 1.  The six different parallel model runs in this study 
 
 There are multiple angles to this study.  First, 
comparisons are drawn between the like-runs (e.g., AD 
to AN, AD2 to AN2, etc.) to ascertain any TAMDAR-
related impacts.  Additionally, comparisons are drawn 
between AD, AD2, and AD10, with the AN runs as 
controls, to quantify the effects of increased vertical 
resolution on the utilization of TAMDAR data.  Finally, 
comparisons are drawn between the AD and AD2 runs 
to the AD10 run to quantify any change in forecast skill 
as a function of finer horizontal radial influence during 
the observation assimilation stage.  Part of the 
motivation for this test stems from the tendency for dry 
air that is observed from airplanes that circumnavigate 
convective systems to reduce the moisture analysis by 
having a nudging radius much larger than the distance of 
the plane from the storm.  The hypothesized solution 
simply requires a finer outer mesh to allow for a reduced 
radius of influence. 
 The study covers the entire month of May 2006.  The 
MM5 simulations were initialized at 1800 UTC for all 
model runs.  All simulations were initialized with identical 
analysis fields provided by the NCAR/AirDat RT-FDDA-
MM5.  The NCAR/AirDat RT-FDDA system is built 
around the Fifth Generation of the Penn State/National 
Center for Atmospheric Research (PSU/NCAR) 
Mesoscale Model (MM5, Dudhia 1993; Grell et al. 1994).  
The outer domain of the RT-FDDA-MM5 has a 100 x 97 
grid spacing of 36 km, and is centered over the Great 
Lakes region (Fig. 2).  A continuous data ingestion 
system using Newtonian relaxation is utilized during an 
analysis period to generate balanced 4-D analyses.  This 
method greatly reduces the time and errors associated 
with typical model spin-up (Stauffer and Seaman 1994; 
Cram et al. 2001; and Liu et al. 2002).  The 

NCAR/AirDat RT-FDDA is run on a 3-h cycle with cycle 
times occurring at 23Z, 2Z, 5Z, 8Z, 11Z, 14Z, 17Z, and 
20Z.  For this study, the 1-h output from the 1700 UTC 
RT-FDDA cycle, valid 1800 UTC, were used as first-
guess fields.  These files include 1 hour of additional 
4DDA nudging; however, they do not include TAMDAR 
data (i.e., AIRNOT cycles).  After the first-guess field is 
generated, it is then passed through a 3DVAR-style 
technique to assimilate additional observations and 
construct the analysis from which each MM5 simulation 
is initialized.  All of the additional observations are 
identical for all runs with the exception of the TAMDAR 
data, which is only assimilated by the AD runs using this 
3DVAR approach.  Ongoing studies at AirDat (presented 
in section 4) and NCAR suggest that significant 
improvements in forecast skill are realized when using a 
true 4DVAR assimilation technique; however, for 
consistency with Jacobs et al. (2007), 3DVAR is 
employed. 
 

 
 
Fig. 2.  The Lambert conformal grid for the outer domain of all 
the simulations. 
 
 The MM5 was employed as a means to ascertain 
optimal combinations and settings for various ingestion, 
weighting, resolution, and parameterization options.  
Extensive testing of various parameterizations has been 
performed to optimize the impact of TAMDAR data 
(Jacobs and Liu 2006; Jacobs et al. 2006).  Those 
studies suggest that the Kain-Fritsch (KF) cumulus 
parameterization (CP) is better suited for 20 to 30-km 
grid spacing, while the Grell CP is better suited for 10-
km spacing, and are consistent with findings from Kain 
and Fritsch (1993).  Kain-Fritsch, which generates more 
convection, may be acceptable if only using the 36-km 
domain, but when that domain is used as boundary 
conditions for a finer nested domain such as 12-km, too 
much convective feedback may occur.  Additionally, 
some CP schemes are better for summer and tropical 
convection, and some are better for winter mid-latitude 
convection.  Grell tends to handle thunderstorms much 
better, while KF handles winter frontal systems better 
(Mahoney and Lackmann 2005).  Based on these 
findings, as well as the season of the study, the Grell 
cumulus parameterization was chosen for its handling of 
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convective precipitation at smaller grid scales.  The MRF 
planetary boundary layer scheme, as well as the Mixed-
phase (Reisner-1) microphysics were also chosen to be 
consistent with the analysis field generation methods.  
All simulations were integrated for 12 hours; however, 
only the forecast-hour 6 (i.e., 0000 UTC for the 1800 
UTC run) was used for verification purposes.  The 
original Jacobs et al. (2007) study also compared 0600 
UTC runs, but those are not included here, as the largest 
TAMDAR-related impact is expected between 1400 and 
1800 UTC based on flight times. 
 To verify the forecast output, model-generated 
soundings were produced at three locations: 
Minneapolis/St. Paul, MN (KMPX; 44.8489 N, 93.5656 
W; Elev: 946'), Detroit/Pontiac, MI (KDTX; 42.6997 N, 
83.4717 W; Elev: 1072'), and Green Bay, WI (KGRB; 
44.4983 N, 88.1114 W; Elev: 682').  The motivation for 
choosing the locations of KMPX and KDTX was based 
on data density.  Both airport locations are regional hubs 
for Mesaba Airlines.  It is assumed that the largest 
possible data-density-related impacts will be realized in 
the vicinity of these hubs.  KGRB was also included as a 
3rd non-hub location because it is located between the 
other two, and quite often is in line with direct flight paths 
between KMPX and KDTX.   
 In Jacobs et al. (2007), the model-generated 
soundings were compared to soundings taken from the 
North American Regional Reanalysis (NARR), which 
was obtained from NCDC’s NOMADS1 archive (Kalnay 
et al. 1990; Mesinger et al. 2006).  The NARR/Regional 
Climate Data Assimilation System (R-CDAS) is an 
extension of the NCEP Global Reanalysis (GR), which is 
run over the CONUS. The NARR uses the high 
resolution NCEP Eta Model (32km/45 layer) together 
with the Regional Data Assimilation System (RDAS).  
For this study, the model-generated soundings were 
compared to RAOB observations.  The RH value is 
obtained from the RAOB temperature and dewpoint 
using the calculation outlined in Bolton (1980). 
 The forecast bias is simply defined as the 6-hour 
forecast value (X) minus the observed value (θ).  In the 
case of the 1800 UTC simulations, differences are 
calculated at 0000 UTC.  The forecast RMS error is 
defined as 
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where n is the number of compared values.  Since there 
is one run a day, for this case it is equal to the number of 
days.  A percent reduction in error is seen as a 
percentage increase in forecast skill.  This percent 
improvement is defined as 
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where simulation α is compared to simulation β, and 
appears contextually below as α versus β (Brooks and 
Doswell 1996). 
 
3. SENSITIVITY TO σ -LEVEL DENSITY AND 
HORIZONTAL GRID SPACING 
 
 It should be noted that all of the plots below 
correspond to the 0000 UTC comparison.  The 0000 
UTC time historically shows a larger difference because 
(i) there are more flights between 1400 and 2200 UTC, 
and (ii) the lower-troposphere is less stable.  The figures 
presented here are plotted from the average statistics 
derived from the three locations of verification.  There is 
noticeably less divergence between the model runs at 
the KDTX location.  This could possibly be related to 
fewer flights, as well as less thermal variability from 
Great Lakes-enhanced boundary layer moisture content.  
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Fig. 3.  Vertical profile of 6-h temperature RMS error verified 
against 00 UTC RAOBs for May 2006.  Average of the three 
locations KMPX, KDTX, KGRB. 
 
 The 6-h temperature forecast error shown in Fig. 3 
appears to be greater in magnitude above 300 hPa; 
however, it is assumed to be unrelated to the TAMDAR 
data and grid variations since similar trends are seen for 
all simulations.  Divergence between the simulations 
begins to occur around 400 hPa.  Between 400 and 800 
hPa, the error in the runs diverge further, but in general, 
the error magnitude does not change.  The AN/AD and 
AN2/AD2 runs have an average error around 1.4 K, 
while the AN10/AD10 runs have errors around 1 K.  It is 
evident from these differences that a finer outer grid 
during the data assimilation phase improves the forecast 
skill.  Below 900 hPa, the error increases, but appears to 
increase at more than twice the rate in the 4 runs with 
larger grid spacing.  It is assumed that this is likely from 
the large variability of the surface temperature.  Similar 
trends are also seen above 200 hPa, which could either 
be from RAOB drift or boundary conditions.  Below 650
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Fig.  4.  Vertical profile of 6-h temperature RMS error difference (AirNot-AirDat) as a function of TAMDAR impact (A), and as a 
function of model resolution (B). 
  
hPa, both AD2 and AD10 show a noticeable decrease in 
error over AN and AN2, as well as even the AD run. 
 The method for quantifying forecast skill is given by 
(2).  The improvement as a function of TAMDAR data for 
temperature is shown in Fig. 4A.  Minor positive impact 
is seen for the AD run over the AN run (black dashed), 
while the largest improvement noted is between AD10 
and AN10.  The positive impact of TAMDAR data in the 
AD2 run over the AN2 was not as significant, but closer 
to the AD10 improvement, which suggests vertical 
resolution plays a role in forecast skill with respect to 
TAMDAR assimilation.  The largest reduction in error, 
approximately 0.2 K, occurs near the 850 hPa level.  As 
in most TAMDAR impact studies, this is typical and 
expected. 
 The improvement in temperature forecast skill as a 
function of grid spacing and vertical resolution is shown 
in Fig. 4B.  It is evident that the increase in vertical 
resolution between AN and AN2 made only a very slight 
positive contribution.  Whereas, the increase in 
horizontal resolution results in significant improvement.  
In both cases, the TAMDAR-included runs (blue) show 
greater forecast skill, which suggests that observation-
specific assimilation protocol is dependent on model 
resolution, and likely increases as a function of data 
density.  The increase in skill, which peaks for both near 
850 hPa, is likely a function of the additional σ-levels 
being evenly spaced between the previous lower and 
middle-tropospheric levels. 
 A vertical profile of the 6-h relative humidity forecast 
error (%), averaged for the entire month of May 2006, is 
shown in Fig. 5.  All simulations follow a similar trend 
above 200 hPa.  Between 200 and 500 hPa, significant 
divergence between the two 10-km  simulations and the 
other runs appears.  The error in both AD10 and AN10 
ranges from 15 to 20% above 500 hPa, and improves to 
10 to 15% below 800 hPa.  The decrease in error seen  
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Fig. 5.  Vertical profile of 6-h relative humidity RMS error 
verified against 00 UTC RAOBs for May 2006.  Average of the 
three locations KMPX, KDTX, KGRB. 
 
around the 700 hPa level for the TAMDAR-excluded 
runs was somewhat expected, as that is a mandatory 
level, and typically has a large amount of observations.  
Interestingly, at that same level, the TAMDAR-included 
runs show an increase in error, albeit less than the 
respective control runs.  One possible explanation for 
this is the interaction of the TAMDAR observations with 
the non-TAMDAR observations during the weighting 
phase of the assimilation step.  AD10, and to a lesser 
degree AN10, outperform the other runs throughout the 
profile.  The lowest error (8.5%) was recorded by the 
AD10 run on the 900 hPa level, which was the same 
level for the AN10 run lowest error of 10.1%.  The errors

A B 
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Fig.  6.  Vertical profile of 6-h relative humidity RMS error difference (AirNot-AirDat) as a function of TAMDAR impact (A), and as a 
function of model resolution (B). 

at 850 hPa, where the largest TAMDAR impact is 
typically seen, are 11.3 and 12.4% for the AD10 and 
AN10 runs, respectively.  The lowest errors seen in the 
AD2 and AN2 runs were also on the 900-hPa level, and 
are 11.2 and 14.0%, respectively.   
 The most notable improvement as a function of 
TAMDAR data appears to be linked to the utilization of 
RH observations in the AD10 simulation (Fig. 6A).  A 
reduction in error (> 2%) is seen between AD10 and 
AN10, which reaches a maximum of 2.8% at the 850 
hPa level.  The other two comparisons show similar 
trends, but to a lesser magnitude.  There is a second 
peak reduction in error between the 550 and 450 hPa 
levels.  This is likely caused by the increased skill of the 
model around the 700 hPa level, as a function of non-
TAMDAR observation density.   
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Fig. 7.  Vertical profile of 6-h wind RMS error verified against 00 
UTC RAOBs for May 2006.  Average of the three locations 
KMPX, KDTX, KGRB. 

 A similar trend of slight improvement between AN/AD 
and AN2/AD2 is seen for RH (Fig. 6B).  As seen with 
temperature, the same decrease in horizontal grid 
spacing produced significant differences between the 
other simulations.  The improvement in forecast skill 
from the addition of TAMDAR on the 850 hPa level was 
on the order of 10-12% for both the AD and AD2 runs.  
The improvement in forecast skill from the addition of 
TAMDAR in the AD10 run on the 850 hPa level was 
20%.  The RH forecast skill as a function of grid spacing 
increased 28.7% from the AD2 to AD10 run. 
 The vertical profile of the 6-h wind forecast error (m 
s-1) is shown in Fig. 7.  An increase in the wind error is 
seen near the top of the profile.  Since all of the 
simulations align while showing identical trends in this 
region, it is assumed that this bias is either MM5 code-
related or a function of the boundary conditions.  The 
important focus of the study deals with the differences 
between the runs, more than the error magnitude, within 
the lower and middle troposphere.  The AD10 simulation 
clearly outperforms the other runs throughout the vertical 
profile.  The error from 1000 to 400 hPa is steady around 
4 m s-1.  The addition of TAMDAR data decreased the 
error by about 0.27 m s-1 on the 850 hPa level (Fig. 8A).  
Improvements of approximately 0.1 m s-1 are seen for 
most of the lower and middle troposphere.  The error 
difference with respect to model resolution largely 
favored the 10-km runs between 450 and 850 hPa (Fig. 
8B). 
 
4.  RECENT MODEL TESTING 
 
 Recently, AirDat has been running several different 
models and various configurations of those models to 
test parameterizations and assimilation methods.  Some 
very initial testing suggests that the 3DVAR WRF-ARW, 
using identical data for initialization, has an edge over 
the 3DVAR MM5 counterpart.  Some quick comparisons 
were done for the 12-h forecasted 850-hPa fields against
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Fig.  8.  Vertical profile of 6-h wind RMS error difference (AirNot-AirDat) as a function of TAMDAR impact (A), and as a function of 
model resolution (B). 
 
the operational GDAS analysis, as NARR was not 
available at the time.  Not surprisingly, the 4DVAR MM5 
(RT-FDDA) performed the best with an explained 
variance of 83% (Fig. 9), 8% better than 3DVAR WRF 
(Fig. 10) and 17% better than the nearly-identically 
configured 3DVAR MM5 (Fig. 11).   
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Fig. 9.  850-hPa RH verification against operational GDAS for 
4DVAR (RT-FDDA) MM5 valid 00 UTC 11 Jan 2008. 
 
 The comparisons between WRF-ARW and MM5 
suggest that the WRF-ARW has a slight edge outside of 
the data assimilation.  However, this is just for one case, 
and several months of monitoring need to be completed 
before this can be considered a trend.  The  comparison 
between the 4DVAR MM5 (RT-FDDA) suggests that this 
assimilation method is significantly better.  Again, 

months of testing are needed to quantify the trend.  It 
should be mentioned that all of these runs include 
TAMDAR data, and the 4DVAR assimilation method 
assimilates all available observations in this style, not 
just TAMDAR.  AirDat will also be adding a 4DVAR 
version of WRF in the near future.  Additional results will 
be presented at the conference. 
 
5.  CONCLUSIONS 

 
 The degree of forecast skill improvement presented 
here is seen as a best-case result with the current level 
of model optimization and data quality because the 
verification locations are Mesaba Airlines hubs, which 
naturally hosts the greatest density of observations.  It is 
assumed that additional regions surrounding (and 
downstream) of future fleet hubs will likely realize similar 
improvements 
 Results suggest that the addition of TAMDAR data 
improves all three experimental simulations for key 
model variables, albeit to various degrees.  In general, 
increasing the number of σ-levels from 36 to 48 results 
in better utilization of the higher resolution TAMDAR 
data. 
 The most notable improvements, when increasing 
the number of model σ-levels, were found to occur in the 
vicinity of 850 hPa.  This peak is likely a result of the 
balance between the increase in TAMDAR observations 
and the increase in expected model error (i.e., seen in 
the control runs) when approaching the surface layer 
from the middle-troposphere. 
 Changing the outer domain grid spacing from 36 km 
to 10 km reduces the bias and error for both the 
experimental (AD10) and the control (AN10); however, 
the magnitude of reduction is greater in AD10.  This is 
likely because all of the non-TAMDAR observations 
assimilated into the first-guess fields of both runs 
improved the respective analysis fields.  The additional 
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reduction in error magnitude seen in AD10 is attributed 
to the TAMDAR data (the only difference between AD10 
and AN10). 
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Fig. 10.  850-hPa RH verification against operational GDAS for 
3DVAR WRF-ARW valid 00 UTC 11 Jan 2008. 
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Fig. 11.  850-hPa RH verification against operational GDAS for 
3DVAR MM5 valid 00 UTC 11 Jan 2008. 
 
 There are a few possibilities that may have 
influenced this outcome since the observations are only 
assimilated into the outermost grid.  With a larger grid 
spacing, the error statistics of observations which are 
interpolated to identical (i, j, k) grid space can negatively 
influence the impact of redundant observations.  The 
probability of this occurrence is reduced when 
assimilating data into a finer horizontal grid because the 
frequency of interpolating to identical (i, j, k)-space is 
reduced.  The former appears to be a less problematic 
choice when using a background error-covariance matrix 
based on a larger grid in conjunction with TAMDAR data, 

which posses greater variability in wind-field errors when 
compared to the lower mass-field errors.  Further cost 
function analysis is required to avoid pitfalls outlined by 
Xie et al. (2002).   
 In the original Jacobs et al. (2007) study, statistics 
from the non-10 km runs were obtained from the inner 
nested 12-km grid.  It was later discovered that the 
nestdown step in the model was further forcing the inner 
grid towards boundary conditions, which were obtained 
from the same code as that which assimilates the 
NARR.  The previous method of NARR verification was 
subject to a bias favoring the models in general (i.e., the 
controls as well), but even more for the nested inner 
grids.  Verification in this study takes place on the 36 km 
grid, and is likely the reason for the difference in results 
for the model-to-model skill delta.  The overall magnitude 
of the model forecast error is much larger because 
RAOBs were used for verification.  This was done for 
reasons outlined in section 1.  Additionally, some of the 
forecast skill success of the 10-km simulations is likely a 
function of the Grell CP scheme, which is better suited 
for this grid size versus the larger 36-km spacing (Grell 
1993).   
 With respect to temperature from TAMDAR, the 
largest improvements were seen between AD10 and 
AN10.  The additional σ-levels made a notable 
difference; however, reducing the grid size from 36 to 10 
km, along with the additional σ-levels, had the largest 
impact.  This is partially because the control (AN10) also 
had less error.   
 With respect to relative humidity from TAMDAR, the 
largest improvements were also seen between AD10 
and AN10.  This suggests that increasing the horizontal 
resolution is just as important, if not more important, than 
increasing the vertical resolution, and is consistent with 
the understanding that RH is extremely variable in both 
(x, y) as well as (z).  Overall, maximum improvements 
from TAMDAR were found to be between 20-25% for RH 
and T, and around 10% for winds.  Greater gains are 
expected for 4DVAR assimilation methods, but for 
consistency purposes, 3DVAR was employed in this 
study. 
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