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1. INTRODUCTION

The Canadian portion of the North
American Lightning Detection Network
(NALDN) has given continuous lightning
detection since 1998 over all of Canada up to the
middle north. This alowed determination for the
first time of a spatially continuous climatology
over thisvast area. Complex patterns of lightning
occurrence were revealed, with strong latitudinal
and seasonal dependency and significant
influences by topography and land-water
boundaries (Burrows et al., 2002; Orvilleet al.,
2002). Lightning is not specifically predicted in
the Canadian numerical weather prediction
mode (GEM) (Coté et al., 1998) yet thereisa
requirement for thunderstorm prediction in
public and aviation forecasts and fire weather
prediction.

Dynamical- statistical models for real-time
lightning prediction have run at the Canadian
Meteorol ogical Centre (CMC) since 2003
(Burrows et al., 2005). Since these models were
developed new predictors from the GEM
convection parameterization schemes became
available, and archived GEM data became
available hourly. New dynamical -statistical
models were devel oped with 2005 data and
began twice-daily prediction in April 2006.
Increased computer capacity allowed for
improvement in model design that enabled
extension of the prediction areato include all of
Canada and the United States except Hawaii, and
extension to year-round predictions. An
important feature of the new modelsisonly a
few days' training data are needed because the
geographical region for training is very large.
This means that model updates can be done
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frequently to keep abreast of changesin the
driving NWP model. Theintent of this paper is
to describe the new models and provide some
preliminary verification.

2. MODELING METHOD

2.1 Predictands and Predictors

The predictors, predictands, calculation
methods, and model design are different from the
original models described in Burrows et al.
(2005). New predictors were added from the
GEM parameterization schemes for deep
convection (Kain and Fritsch, 1993) and shallow
convection (Kuo, 1974), while the number of
environmental predictors was decreased to
include only those deemed to be most important
in the original models. The new basic predictor
set isshown in Table 1. Thefirst columnisa
designated predictor symbol following the CMC
naming convention where possible. All
predictors are available hourly unless otherwise
specified. Datafor lightning predictands came
from lightning flashes detected by the NALDN
and received in Canada. On average more than
96% of detected flashes are cloud-ground. Only
the portion of flashes north of 35°N to the east of
100°W and north of 40°N to the west of 100°W
arereceived in Canada. Flashes per 3-hr were
counted on agrid of 15 km resolution to match
the GEM resolution.

Since the predictand is 3-hr lightning and
most predictors are available hourly it was
decided to use predictor datafor t, tian, teonr teanr
to cover athree-hour interval. When lightning
flash counts were matched with the predictorsit
became evident that rarely does predictand data
coincide exactly with predictor data even if we
were modeling hourly lightning flashes with
hourly predictor data from aforecast of a few
hours. Thisis acommon type of problem
encountered in many environmental spatial
statistical modeling endeavours. The problem is
illustrated with Figure 1. The colored shaded
areas are 3-hr lightning flash count, the black
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PRED DESCRIPTION
Environment:

SH Showalter index of convection (°K)

LI lifted index of convection (°K)

NCP | net convective available potential
energy: (CAPE — convective inhibition
(CIN)) (Joules kg™

BH lifted parcel cloud top, allowing
entrainment (10° ft)

IH precipitable water, surface to top of
atmosphere (mm)

Y precipitable water, 700 hPato top of
atmosphere (mm)

SW severe weather threat index (SWEAT)

PN mean sealevel pressure (hPa)

HE boundary layer helicity (m’s?)

Sl CMC severe storm index (no units)

WW | 700 hPa vertical motion (Pas™)

TH maximum wet bulb potential

temperature (®,,) in lowest 50 hPa (°K)

SHR | wind speed shear, (6=.7161 — 6=.9958)
(kt) where 6 = p/Paurtace , (P=pressure)

DH three-hour change of (500-1000) hPa
layer thickness (dam)

GEM Convection parameterization:

RY deep convection precipitation rate
(ms™)

K6 deep convection maximum updraft
vel ocity (ms?)

K4 deep convection cloud top (m)

U9 deep convection cloud base (M)

DEP deep convection cloud depth (K4 — U9)
(m)

L8 deep convection vertica integral of
cloud-ice mixing fraction (kg/kg)

Rz Shallow convection precipitation rate
(ms™)

PC accumulated 3-hr implicit precipitation
(m)

Table 1. Basic predictors for new lightning
forecast models. First column shows the letter
symbol assigned to a predictor described in
column 2.

contours are maximum updraft velocity triggered
by the Kain- Fritsch degp convection
parameterization in the 12-hr GEM forecast, and
the green contours are the same, triggered in the
15-hr GEM forecast. The overall locations of
GEM convection arein the generd
neighborhood of observed lightning. However

thereareregionsin Fig. 1 where GEM
convection only partialy coincides with the
observed lightning, regions where convection
was triggered near observed lightning but does
not does not coincide with it, regions where
lightning was observed but convection was not
triggered, and regions where convection was
triggered but no lightning was observed. NWP
models are known to resolve meteorol ogical
detailsto about 8Ax, where Ax isthe model grid
spacing. In order to increase the chances of
matching the predictand with meaningful values
of predictors it was decided to smooth the
predictors and to smooth the predictand as well.
A 9 by 9 point smoothing grid was applied at
each of the 4 forecast timesin each 3-hr period
(t, teanr, teonr tianr)- Thisgave a cloud of 324 data
points a every grid point with which to
formulate new predictands and derive new
predictors from the basic set in Table 1. Two
predictands were defined: (1) the fraction of 324
points where lightning was observed, and (2) the
average flash rate for pointswhere lightning was
observed. Thefirst predictand can be called the
“time-area coverage’” and issimilar to
probability, the second predictand isthe “average
flashrate’. They arereferred to below by the
acronyms LCHA and LFLS respectively.

Figure 2 illustrates these predictands.
Consider an area of lightning moving by grid
point (i,j) at forecast timest, tiinr, toonr, teann
where lightning is observed at the red points.
Lightning is observed at red points.. The total
number of pointsis 324, of which 135 arered,
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and applied at forecast timest, tin, teonr Lianr
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Figure 1. Flash count 0000-0300 UTC 14 July 2005 (indicated by colorbar). The 12-hr forecast of GEM
deep convection maximum updraft velocity valid 0000 UTC 14 July 2005 is contoured in black, the 15-hr
forecast valid 0300 UTC 14 July 2005 is contoured in green.

giving atime-area coverage of 135/324, or
0.4167. The flash rate predictand is defined as
the average of total flash countsat red points.
Figure 3 shows the time-area coverage
predictand cal culated for the same grid-point
flash count shown in Fig. 1 with the same GEM
deep convection updraft velocity fields overlain.
Nearly all the GEM forecast convection areasare
now associated with lightning occurrence. The
effect of smoothing the flash count is evident, in
that the area of lightning is spread out. The
majority of GEM forecast deep convection fields
are now covered by positive time-area coverage
values, however maxima and minima do not
coincide, or coincide partially. This shows that
other predictors will be required to build a

successful model to fit this data and the model is
likely to be complex. Figure 4 shows the flash
rate predictand overlain with MSL pressure at
0300 UTC 14 July 2005 to show the synoptic
situation. The positive flash count regions seen
in Fig. 1 are smoothed and spread out. The MSL
pressure shows a general fact found during this
study, namely that the vast majority of lightning
occurs when the MSL pressureisless than 1025
hPa. Physically when MSL pressure is higher
than this the atmospheric dynamics are unlikely
to support convection because deep convective
instability is unlikely and vertical motion will be
primarily downwards, suppressing any
convection that forms.
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ANAL: LCHA (Lightning area-time coverage Index) & E-F Updraft Vel

Figure 3. Thetime-area coverage predictand formed from the flash count datain Fig. 1 (shaded), with the

same GEM Kain-Fritsch deep convection areas overlain.

Smoothing the predictands over the 324 point
data cloud suggested forming new predictors
from statistics of the basic predictors shown in
Table 1. Table 2 shows new predictors formed
from the basic predictors shown in Table 1.
Mean, maximum, (or minimum in some cases)
were calculated over all 324 points and/or over
only those points where a condition istrue, e.g.
the mean Showalter index calculated for those
pointswhereit isnegative.

2.2 Training Data

The area of forecast interest covers all of the
USA and Canada and offshore for a considerable
distance. However theregion wherelightning is
available in Canadais much smaller. Figure 5
shows detection efficiency for lightning on the
NALDN. Lightning detected north of 35°N east
of 100°W, and north of 40°N west of 100°W is

available in Canada (shown as solid black lines
in Fig. 5). Theregion within roughly the 80%
detection efficiency contour for data availablein
Canada was chosen for gathering training data
for dynamical —statigtical lightning prediction
models. Alaskawas not included in the training
data because lightning detected there became
available in Canadain 2006.

Theregion where training data were
available covers alarge geographical region
where several meteorological situations exist on
any given day. Because of thisonly a few days
were needed for training the models. One day per
month was selected from March to September
2005. Dates varied somewhat for models built
from 00 UTC and 12 UTC data due to data
availability. Dates are, for models built from 00
UTC GEM runs: 23 March , 22 April, 20 May, 6
June, 26 July, 26 August, 20 September; and for
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Figure 4. Theflash rate predictand formed from the flash count datain Fig. 1 (shaded), and MSL pressure
(hPa) contours at 0300 UTC 14 July 2005 (solid black lines).

models built from 12 UTC GEM runs: 22 March,
21 April, 19 May, 9 June, 25 July, 26 August, 19
September. These dates were selected because
each had considerable lightning activity.

2.3 Model Production

Toforecast lightning in real time models
covering a 24-hr diurnal period are built from a
training data consisting of archived model output
and predictand data, then the models are applied
in real time with NWP output covering 0-24
hours and 24-48 hours, using the same models
in both periods. Thisisavariation on the time-
offset MOS method put forward in Burrows
(1985). GEM suffers from model spin-up error
for thefirgt few hours, so 1-5 hr forecasts were
not used. 6-18 hr forecasts were used for dl
models. Lightning forecast models valid 0600-
0900, 0900-1200, 1200-1500, and 1500-1800

UTC were built with forecasts with GEM 0000
UTC runs, and models valid 2100-2400, 0000-
0300, 0300-0600, 0600-0900, and 0900-1200
UTC were built with 1200 UTC GEM runs.

The predictands and predictors were
calculated for the geographical region insde
approximately the NALDN 80% detection
efficiency contour in Fig. 5 at all grid points for
the 7 training days using the 15 km GEM grid
space resolution. This resulted in about 766,000
records of matched predictand — predictor data
for training models. Data was eliminated at a
grid point if, over the 324 data point cloud, both
the mean of the Showalter Index was 5°K or
grester, and the mean of MSL pressure was 1025
hPa or greater, since lightning is very unlikely
under these conditions. Thisleft training data
setsranging in size from about 228,000 cases in
the 2100-2400 UTC time period to 168,000 cases



PRED DESCRIPTION
Environmental Predictors:
SH mean , min SH at points where SH < 0 °K;;
fraction of pointswhere SH < (1, 0, -1, -2, -4, -6, -8, -10) °K
LI mean, min L1 over all points;
fraction of pointswhereLI < (2, 1,0, -1, -2, -4, -6, -8) °K
ECP | mean, max ECP at points where ECP > 0 kg™;
fraction of pointswhere ECP > (0, 500, 1000, 1500, 2000, 3000, 4000) Jkg™
BH mean, max BH of points where BH > 0;
fraction of points where BH > (0, 20, 30, 40, 50, 60) * 10° ft
IH mean, max |H over al paints,
fraction of pointswhere IH > (10, 15, 20, 25, 30, 40, 50) mm
Y mean, max 'Y over al paints,
fraction of pointswherelY > (5, 10, 15, 20, 25) mm
SW mean, max SW at points where SW > 0;
fraction of pointswhere SW < 50;
fraction of points where SW > (50, 100, 200, 300, 400)
PN mean, min PN over dl points;
fraction of pointswhere PN < (1020, 1015, 1010, 1005, 1000, 995, 990) hPa
HE mean , max HE at points where HE >0; mean, min at pointswhere HE < 0;
fraction of points where HE < (-100, -200) m’s?
fraction of points where HE > (100, 200, 400, 600) m?s®
TH mean , max TH over all points,
fraction of pointswhere TH > (280, 285, 290, 295) °K
WW mean, min WW at points where WW < 0;
fraction of pointswhere WW < (0, -.25, -.50, -.75, -1.0, -1.5, -2.0, -3.0) Pas™
Sl mean, max at points where Sl > 0;
fraction of pointswhere Sl > (50, 100, 125, 150, 175);
fraction of pointswhere Sl < 50
SHR mean, max SHR over al points;
fraction of pointswhere SHR > (10, 20, 30, 50, 75) kt
DH max, min DH over all points; mean where DH <O0;
fraction of pointsDH < (0, -2, -5, -10, -15) dam;
fraction of pointswhere DH > (0, 2) dam
GEM Convection parameterization:
RY mean, max RY at pointswhereRY > 0;
fraction of pointswhere RY > (0, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0) * 10° ms*
K6 mean, max K6 at pointswhere K6 > 0;
fraction of pointswhere K6 > (5, 10, 15, 20, 25, 30, 35) ms*
K4 mean, max K4 at pointswhere K4 > 0;
fraction of pointswhere K4 > (2000, 4000, 6000, 8000, 10000, 12000, 14000) m
U9 mean, max U9 at points where U9 > 0;
fraction of pointswhere U9 > (500, 1000, 1500, 2000, 2500, 3000) m
DEP mean, max DEP at points where DEP > 0;
fraction of points where DEP > (0, 2000, 4000, 6000, 8000, 10000, 12000, 14000) m
L8 mean, max L8 at points where L8 > 0; fraction of pointswhere L8> (1, 2, 4, 6, 8) kgkg™
Rz mean, max RZ at points where RZ > 0;
fraction of pointswhere RZ > (0, 0.1, 0.2, 0.25, 0.3) * 10° ms*
PC mean, max PC at points where PC> 0; fraction of points where

PC > (0, 0.1, 0.5, 1.0, 5.0, 10.0) mm

Table 2. Predictors derived from the basic predictors shown in Table 1, to be applied to the 324 point
smoothing data cloud at each grid point. “max” stands for maximum, “min” for minimum.




Figure 5. Average lightning detection efficiency (%) for the NALDN for 2006 up to 16 August 2006.
Lightning detected in the region north of the solid black linesis available in Canadian weather offices.

in the 1200-1500 UTC time period. Models were
generated for both predictands for each three-
hour time segment, giving atotal of 16 models.

There are 189 potentia predictorsin Table
2. Toreduce data size for each model generation
run, predictorswith correlation .2 or less with the
predictand in the whol e dataset were eliminated.
Of the surviving predictors, groups of predictors
correlated more than .9 or more with each other
were identified, and only the predictor correlated
highest with the predictand was kept. To check
that predictorsthat might be needed to fit
predictand values greater than the 95 percentile
value were not eliminated, the same data
reduction procedure was repeated for the set of
cases where the predictand value was equal to or
higher than its 95 percentile value. Any
predictors eliminated when the procedure was
applied to the whol e data set were added back in
to thefina predictor set offered to the modeling
algorithm. These procedures reduced the number
of predictorsto lessthan 49 for al models, and
to 30-40 for 11 of the 16 models.

2.3.1 Tree Structured Regression

Models were built with tree structured
regression (Venables and Ripley, 2002), aso
known as CART (Brieman et al., 1984). A
detailed theoretical discussion can be found in
Brieman et a. (1984). A brief heuristic
explanation of how tree-structured regression
works follows, with important concepts in italics.

Essentialy atree-structure is found that
recursgvely partitionsthe training data into
subsets of cases based on threshold predictor
values, thus partitioning the data with a lattice of
intersecting planesin feature space. Thetree
consists of arecursive series of node branches
where the datain each internal nodeis split into
left and right child nodes based on the predictor
value that gives maximum reduction of
predictand error after the split. Node splitting
continues until predictand error cannot be further
reduced or until a user-specified minimum
allowable complexity parameter o isreached. a
can be thought of as atree complexity cost per
terminal node. Terminal nodes are nodes which
are not split further. Then thetree is pruned from



the bottom up by sequentially removing weakest
links (effectively, node branches whose
contribution to predictand error reduction is
least).

The“prediction” assigned to aterminal node
is the mean value of the predictand in cases
residing in the terminal node, although other
definitions are possible. After each newly pruned
structure in the tree sequence is derived its value
o7 isnoted and N-fold cross-validation rel ative
error iscalculated in order to estimate the
relative error that would occur if that tree were
applied to independent data. Relative error is
defined astheratio: error when the predictand is
fit by the tree structure corresponding to o
divided by error when the predictand isfit by its
mean value (i.e. theinitial variance). Cross
validation error is found by ordering the training
data by predictand value, randomly dividing the
ordered training data £ into N subsets of
approximately equal szef;, £, ..., £y,
repeating the same tree growing and pruning
procedure using o for each of the N remainder
datasets £ - £, (n=1,2,..N), calculating the error
of each fit, and averaging the N errors. A
common specification for N is 10. The “ best”
tree structureis one whose relative error isleast
or iswithin one standard error of the minimum
cross-validated relative error.

When the tree is applied to an independent
case, the case will run down the tree according to
its predictor values until it reaches a terminal
node. The set of valuesin the terminal nodes of
the tree is a piecewise-continuous fit of the data.
When atreeislarge thefit to the training data
becomes quasi-continuous. Predictions on
independent data using alarge tree are likely to
be as low or lower in error compared to
predictions by other methods that generate a
continuous fit to the data because error reduction
isoptimal and all relevant predictors are used.

For continuous predictands such as wind
where afully continuous prediction is desired
tree-structured regression can be used to select
relevant predictorsfrom a larger set of potential
predictorsin thetraining data, then amodel
giving continuous prediction can be built with a
second method such as aneural network or
support vector machines. Examples of this
approach can be seen in Burrows (1998),
Faucher at a. (1999), and Walmdley et al.
(1999).

2.2.2 Model Selection
Figure 6 shows atree-structured regression
model for the time-area coverage predictand

(LCHA) for the diurnal period 2100-2400 UTC.
Predictors found for node-splitting decisionsin
Fig. 6 are defined in Table 3.

PRED DESCRIPTION

RYO | maximum RY over al points (ms™)

SH2 mean SH over all points (°K)

K64 | fraction of pointswhere K6 > 20 ms™*

IHO minimum IH over all points (mm)

SW9 mean SW over al points

Y2 fraction of pointswherelY > 10 mm

SR9 mean SHR at points where SHR > 0
(kt)

Table 3. Definitions of predictor acronyms
shown in Fig. 6.

Tree growth was limited for this example by
setting a high complexity parameter value of .01.
228230 casesreside in the training data with an
average predictand value of 0.054 represented in
theinitial internal node. The dataisinitially split
by RY (deep convection rain rate). The direction
of the splits make physical sense. 4124 cases
where the maximum deep convection rain rateis
at least 5.05* 10" ms* (or about 1.8 mm/hr) go
to the right branch while the remainder go to the
left branch. The cases sent right have an average
predictand value of 0.21. These cases are very
near or overlap deep convection triggered in
GEM. The 186806 cases going left arelikely
those where degp convection triggered in GEM
was either weak or too far away to coincide with
observed lightning. Indeed, the second leftmost
split there occurs with Showalter Index, which is
an environment predictor. Following along the
series of rightmost splits, the second rightmost
split sendsto theright 7199 cases where the
fraction of the 324 point smoothing data cloud
with deep convection maximum updraft vel ocity
greater than 20 ms™ is at least.06327. The mean
time-area coverage of these casesis 0.44. The
third rightmost split sends 4477 cases to the right
whose mean SWEAT index over the 324 point
smoothing data cloud is289.9 or greater. The
predictand mean for these casesis 0.54. The
fourth rightmost split sends 2354 casesto the
right whaose fraction of the 324 point smoothing
data cloud with minimum 1Y greater than 10 mm
is0.1003. The mean time-area coverage for these
casesis 0.64.

The cross-validated relative error of thetree
in Fig. 6is.60 but the tree-structured regression
algorithm is capable of reducing therelative




error much lower for this predictand. Thetree
was allowed to grow much larger by setting the
minimum allowable complexity parameter o at
.0001. Figure 7 shows cross-validated error
versus the number of terminal nodes. o is shown
on the bottom horizontal axis. Asthe number of
terminal nodes increases the cross-validated error
decreases sharply at first then therate of
decrease becomes less and is nearly zero when
the complexity parameter of .0001 isreached. If
the tree were allowed to grow larger the cross-
validated error would eventually begin to
increase again as the predictand becomes over-
fitted. The zone of low cross-validated error is
unusually broad in this example, meaning that
several tree structures would suffice asatreeto
use and would deliver comparableresults. (In the
majority of problems this author has worked on
the zone of minimum error isnot broad). The
tree selected had 712 terminal nodes, fit the
training data with relative error .112, and had
cross-validated error of .151.

Figure 8 shows atree-structured regression
model for the three-hour flash rate predictand
(LFLS) for the diurnal period 2100-2400 UTC.
Tree growth was limited for this example by
setting the complexity parameter value to .01.
Predictors found for node-splitting decisions are
defined in Table 4. The deep convection rain rate
predictor RY isalso thefirst predictor chosen for
this predictand. This reiterates the not surprising
view that predictors formed from the GEM deep
convective parameterization scheme are indeed
important for lightning prediction. However, as
shown in Fig.1 the deep convection regions
triggered in GEM do not coincide exactly with
observed convection, thus other information is
needed to quantify lightning flash rate. The
remaining predictorsin Fig. 8 are environmental
predictors known to be important for
thunderstorm production. 228230 casesreside in
theinitial internal node with a 3-hr flash rate of
3.2 averaged over al the cases. A relatively large
group of 221590 cases with RY 6 less than

greater than 41.18 thousand feet were sent right
in the next split. The case-average 3-hr flash rate
for these cases was 8.7, considerably higher than
the 0.95 case-average flash rate of the 185973
cases sent |eft whose BH9 value was less than
41.18 thousand feet. Thetreein Fig. 8 has 6
terminal nodes and a cross-validated relative
error of .55. Reducing the complexity parameter
to .0001 produced a tree with 396 nodes and
cross-validated relative error of .157 which was
used as final model. Its error reduction curve had
the same appearance as Fig.7.

Table 5 shows the resubstitution relative
error, cross-validated relative error, and number
of nodes for the final trees selected for dl 8
three-hour diurnal periods. All trees were built
with the specification a =.0001. Resubstitution
relative error isfound by running all the training
cases down the tree which was devel oped from
them and calculating the error of the tree’ sfit to
the predictand, and is always lower than cross-
validated relative error. Overall thetrees with
lowest error were for the period 0300 UTC to
1200 UTC and the trees with highest error were
for the period 1500 UTC to 2100 UTC.

LCHA LFLS
Period | RSerr | XVer | Nodes | RSerr | XVer | Nodes
0003 | .112 | .143 664 119 | .168 440
0306 | .076 | .106 428 119 | .180 408
0609 | .073 | .104 462 105 | .154 414
0912 | .083 | .120 450 .096 | .136 324
1215 | .088 | .129 433 A21 | 194 295
1518 | .127 | .185 491 118 | .210 288
1821 | .129 | .180 729 139 | 195 448
2124 | 112 | .151 712 JA12 | 157 396

PRED DESCRIPTION

RY6 | fraction of pointswhere RY > 1.0*10°
1
ms

BH9 mean BH for pointswhere BH > 0

THO maximum TH for al points (°K)

IH6 fraction of pointswhereIH > 40 mm

Table 4. Predictor acronymsin Fig. 8.
.03549 goes | eft. Of these cases, 35617 whose
324-point average lifted parcel top (BH9) was

Table 5. Column 1: 3-hr time period (e.g. 0003
is 0000 to 0300 UTC). For the LCHA and LFLS
predictands respectively: columns 2 and 5:
resubstitution relative error (RSerr); columns 3
and 6: cross-validated relative error (XVerr);
columns 4 and 7: number of terminal nodes in
tree.

The importance of predictors chosen to split
internal nodes in thefinal trees were ranked on a
scale of 0-100 by their contribution to reduction
of total error. Table 6 shows thetop 10
predictors for the LCHA tree for the 2100-2400
UTC period. The deep convection rain rate and
fraction of 324 points with updraft vertical
vel ocity greater than 20 ms-1 were thefirs two
predictors, followed by the total column
precipitable water. Table 7 shows the same
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Figure 6. Tree-structured model with complexity parameter o = .01 for the lightning time-area coverage
(LCHA) predictand, valid for 2100-2400 UTC. A circle denotes an internal node, a square denotes a
terminal node. Inside each circle or square, the number of casesin thenode is the lower number, e.g.
n=228230 in the root node; the mean predictand value of these cases is the upper number, e.g. 0.054 in the
root node. Left and right child nodes descend from each internal node and are connected to it with solid
lines. The node-splitting predictor and its value used to split anode is shown below each internal node.
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Figure 7. The cross-validated error versus number of terminal nodes in the sequence of tree structures for
the lightning time-area coverage predictand, valid for 2100-2400 UTC asthe treeis pruned upward from a
complexity parameter of .00010.

PRED DESCRIPTION RANK
RYO maximum RY at points 100.0 PRED DESCRIPTION RANK
where RY >0 RY6 fraction of pointswhere RY 100.0
K64 | fraction of pointswhere K6 > | 37.2 >1.0*10° ms*
20 ms? BH9 | mean BH for pointswhere 50.6
IHO maximum IH 21.0 BH>0
SR9 mean SR where SR>0s" 18.3 IH6 fraction of pointswherelH > | 58.9
DH9 | minimum DH 135 40 mm
SHO minimum SH where SH<0 | 13.1 THO maximum TH 58.5
SW9 | mean SW at points where 12.7 SWO | maximum SW 32.7
SW>0 IHO maximum IH 24.2
SH2 fraction of pointswhere SH < | 11.8 WWO | maximum WW 18.9
0°C U0 maximum U9 17.3
U0 maximum U9 where u9>0 9.9 SHO minimum SH at pointswhere | 14.4
SR4 fraction of pointswhere SR> | 9.7 SH<0°C
20ms* IYO | maximum Y 13.4
Table 6. Top 10 predictorsin tree for LCHA for Table7. Top 10 predictorsintreefor LFLS for
the period 2100-2400 UTC, ranked on a scale of the period 2100-2400 UTC, ranked on a scale of
0-100 according to their contribution to the total 0-100 according to their contribution to the total
reduction of error. reduction of error.
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LCHA PRED | DESCRIPTON
PERIOD

0300 K69 mean K6 at points where

K6>0

0603 K69 ditto

0906 SWO | maximum SW

1209 SW4 | fraction of pointswhere

SW > 300

1512 SW9 | mean SW at points where
SW >0

1815 K69 mean K6 at points where
K6>0

2118 K60 maximum K6

2421 RYO | maximum RY at points
whereRY >0

LFLS PRED | DESCRIPTION

PERIOD

0300 RY9 | mean RY at points where
RY >0

0603 K69 mean K6 at points where
K6>0

0906 SWO | maximum SW

1209 SW4 | fraction of pointswhere
SW > 300

1512 PNO minimum PN

1815 PNO | ditto

2118 CD6 | fraction of pointswith cloud
depth > 10000 ft

2421 RY6 | fraction of pointswhere RY
>1.0*10° ms*

Table 8. Top ranked predictor for LCHA and
LFLSfor all diurnal periods.

anaysis for the LFLS tree for the 2100-2400
UTC period. The top predictors are fraction of
pointswith deep convection rain rate greater than
1.0*10° ms’and lifted parcel cloud top followed
by fraction of pointswith total precipitable water
greater than 40 mm. Table 8 shows the top
ranked predictor for all three hour periods for
LCHA and LFLS. Deep convection predictors
dominatein diurnal times of greater convective
activity while environmental predictors dominate
in diurnal times of less convective activity.

3. VERIFICATION

The models have run inreal time twice daily
since April 2006 and provide predictionsin
three-hour intervals from 6-9 hrsto 45-48 hrs.
Forecasts are available to all Canadian forecast

offices via an internal website. A example of the
forecasts follows.

Figure 9 shows observed 1-hour lightning
flash rates for the entire North American
Lightning Network for 2100 UTC 01 August
2006 to 0000 UTC 02 August 2006. The
observed LCHA predictand for the same period
isshown in Figure 10 for the portion of the
NALDN reportsreceived by Environment
Canada (described above). Figures 11 and 12
show the 9-12 hr forecasts of LCHA and LFLS,
respectively, for the same period. Comparing
these with the observationsin Figs 9 and 10
shows the forecasts worked out well overall,
except for atendency to over forecast LCHA in
the southeastern USA north of the Gulf coast and
south of the large front in mid-continent, and
over the Florida peninsula. However, in the
former region forecast LCHA values were small
and the LFL S values were below .5 flashes per 6
hr. Intensive lightning in the large frontal zone
extending from Texas to Quebec and in the Gulf
coast region iswell forecast in Fig. 12, asarethe
regions of lower lightning activity over western
Canada, the Y ukon, Alaska, and central Quebec.

The LCHA forecast in Fig. 11 includes all
values down to .005, which isonly 1 or 2 points
out of the 324 point data cloud at each grid point.
Thisis very low and may be actually in the noise
range. Even LCHA = .01 isonly about 3 points
out of the 324. This correspondsto an area of
“popcorn towering cumulus’ where an isolated
cumulus cloud grows a bit larger than the others
and produces occasional lightning. Relatively
high values of LCHA represent either
widespread thunderstorm activity or slow
moving systems. Relatively low values of LCHA
represent scattered to isolated thunderstorms, or
possibly very fast moving systems, although the
latter islesslikely. Looking at Figs. 11 and 12 it
isnatural to ask what the LFL'S forecasts are for
various threshold values of LCHA. Figure 13
showsthe LFLS forecast in Fig. 12 for areas
where LCHA >= .01, and Figure 14 shows the
forecast in Fig. 12 for areas where LCHA >=.05.
Isolated areas of lightning seen over thenorth in
Fig. 9 and 10 arelargely filtered out at the
LCHA = .01 level but el sewhere over Canada
and the northern half of the USA the LFLS
forecast filtered by LCHA >= .0l isin overall
good agreement with the observed lightning in
Figs 9 and 10. Over the southern half of the USA
the LFLS forecast filtered by LCHA >= .05isin
generally good agreement with observed
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Figure 8. Tree structured regression model with complexity parameter set at .01 for the three-hour flash
rate predictand valid 2100-2400 UTC. See Fig. 6 for explanation.



Figure 9. Observed 1-hr lightning flashes for a) 2100 UTC 01 August 2006; b) 2200 UTC 01 August 2006;
€) 2300 UTC 01 August 2006; d) 0000 UTC 02 August 2006. Images courtesy of Vaisalalnc.

Figure 10. Observed a) time-area coverage index (LCHA); b) three-hour flash count (LFLS) for 2100 —
2400 UTC 01 August 2006. MSL pressureis overlain. Only the lightning reports received by Environment
Canada are shown.
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Figure 11. 9-12 hour forecast of the time-area coverage index (LCHA) valid for 2100 UTC 01 August
2006 to 0000 UTC 02 August 2006.
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Figure 14. The LFLS forecast filtered by values of LCHA > .05 for the same period as Fig. 12
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lightning there. LFL S forecasts filtered at the
LCHA >=.10levd and LCHA >= .25 level are
not shown here. The LFLS forecast filtered at the
LCHA >= .10 levd forecast theintensive
lightning areas and the Florida peninsula very
well. The LFLS forecast filtered at the LCHA >=
.25 level was found to be too strongly filtered for
all but high flash ratesin most areas, in fact this
proved true on most days. These forecasts are
provided in the suite of forecasts available to
Canadian weather offices.

The forecasts were verified against
observations for the portion of the NALDN
region seen in Environment Canada. Table 9
shows results for July 2006. Total numbers of
forecasts of lightning and no lightning are shown
for periods of relatively large lightning activity
(0000 - 0300 UTC) and relatively little lightning
activity (1200 — 1500 UTC). FLO1, FLO5, FL10,
and FL25 arethe LFLS forecast where LFLS is
set to O where LCHA < .01, .05, .10, and .25
respectively. The LCHA and LFL S forecasts of
lightning have greater accuracy at times of
greater lightning activity and least accuracy at
times of least lightning. The accuracy of
forecasts of no lightning is generally greater than
90%, while the accuracy of forecasts of lightning
is45-50% or higher at diurnal times of greater
lightning activity (2100-0600 UTC) and 30-40%
or higher at times of lesser activity (0900-1800
UTC). Not surprisingly the accuracy of forecasts
of lightning > O decreases for projections greater
than 24 hours. When LFLS forecasts that
lightning will occur arefiltered by successively
greater values of LCHA their overall accuracy
increases, however their number drops
drastically below what is observed. Thusthereis
atrade-off of overall accuracy against number of
forecasts that lightning will occur. For July 2006
the FLO1 forecasts were found to give the
greatest overall accuracy at times of greater
lightning activity, whilethe unfiltered LFLS
forecasts had greatest accuracy for the greatest
number of forecasts at times of least lightning
activity.

Table 10 shows the same verification results
as Table 9 for selected forecasts for the 0000-
0300 UTC and 1200-1500 UTC periods for May,
June, August, and September 2006. The FL10
and FL 25 columns are dropped since the
conclusion from resultsisthe same asfor July.
Conclusionsfor June and August are similar to
July. For May and September, when lightning
activity is diminished, the unfiltered LFLS
forecasts appear to give the best overall accuracy
at all times.

The previous results are for verification of
the predictands with observations cal culated
exactly as the predictands were cal cul ated.
However if the forecasts of the three-hour time-
area coverage index and flash count are verified
against observations of their maximumin the 324
point data cloud the forecasts of lightning to
occur are seen to have better accuracy. Figures
15 and 16 show this for 24 hour forecasts valid
2100-2400 UTC and 0900-1200 UTC,
respectively. The black linesin Figs. 15 and 16
show thefraction correct LCHA and LFLS
forecasts of “any” lightning occurrence (LCHA
> .01 or LFLS> 1 flash per 3 hours) and “sig
(significant)” lightning” (LCHA > .050r LFLS>
5 flashes per 3 hours), where the verifying
observation is calculated from the 324 data point
cloud in the same way as the predictand. Note
that for LCHA and LFL S values less than the
threshold number for any lightning and
significant lightning that the values shown are
the fraction correct for no lightning forecasts.
Thered lines show the same quantities where the
verifying observation is calculated asthe
maximum value in the 324 data point cloud. The
fraction of correct forecasts for LCHA > 1 and
LFLS> 1 isseen to be greater when the
verifying observation is calculated from the
maximum value for both lightning designations.
Theforecastsfor LCHA <.0land LFLS< 1
flash/3-hr are less accurate when the verifying
observation is cal culated from the maximum
value because thereis agreater chance of at least
1 of the 324 points having LCHA > .01 or LFLS
> 1. The above resultsheld true for all other
projection times.

In Figs 15 and 16 the fraction of correct
LFLS forecastsincreases dlightly asLFLS
increases beyond 1 flash/3-hr for forecasts valid
in the 2100-2400 UTC period, but the fraction of
correct LFLS forecasts decreasesas LFLS
increases beyond 1 flash/3-hr for forecasts valid
in the 0900-1200 UTC period.

In general there are too many forecasts that
lightning will occur at both low and high levels
of activity (around 1 flash/3-hr) in afternoon and
evening and in very warm air masses, where
greater convective activity can occur. Evidence
of this can be seen in Fig. 11. Filtering the
forecasts may improve this situation. Fig 17
shows statistics for 12-hr July LFL S forecasts
valid 2100-2400 UTC, where the forecasts are
filtered by LCHA values 0, .01, .05 .10, and .25.
A filter of .25 meansthose LFLS forecasts where
LCHA > .25. Theratio of forecaststo
observations is above 1 for lightning 1-5 fl/3-hr
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and 20-50 flg/3-hr or more for unfiltered LFLS
forecasts. A filtering value between .01 and .05
will reduce the ratio to about 1 for 1-5 fls/3hr
and 20-50 fls/3-hr, and afiltering value near .25
will reduce the ratio to about 1 for forecasts of
50+ flg/3-hr. Thisfiltering would increase
accuracy. Forecasts verified with the maximum
LCHA and LFLS valuesin the 324 data point
cloud, shown in Fig. 18, showed the same results
for low levels of lightning activity and that any
filtering would increase accuracy.

4. REMARKS

New dynamical-statistical models to forecast
lightning in 3-hr intervalsto 48 hrsfor all of
Canada and the United States were devel oped
and haverun inreal time since late April 2006.
Output isavailable to all Canadian forecast
offices. The forecast domain in includes large
areas for which either training data was not
available in Canada, or lightning is not detected.
The forecasts have become widely used for
production of public and aviation forecasters.
The most common usethus far isfor daily
convective assessment by forecasters and for
defining areas of convection in aviation area
forecasts. Many forecasters have remarked that
while regions of strong convective devel opment
are usualy recognized by other methods, these
lightning forecasts often alerted them to areas of
weaker convective devel opment that were
overlooked. Since lightning activity isrelatively
low over most of Canada and the areais huge,
help in forecasting lower lightning activity is
much appreciated by forecasters. The forecasts
should also prove useful eventually in forecast
generation software at CMC. There has been
considerable interest from forest fire weather
forecasters.
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Time Prg LCHA LFLS FLO1 FLO5 FL10 FL25

0300 15| 1952006 2148876 2221526 2490122 2587571 2665316
799461 602591 529941 261345 163896 86151

.93/ .45 91/ .51 .90/ .52 .86/ .54 .85/.60 .84/ .63

27 92/.44 .91/.50 .90/ .51 .86/ .56 .85/.59 .83/.60

39 .92/ .43 .90/ .48 .89/.49 .86/ .54 .85/ .58 .84/ .59

0603 18 .94/ .37 91/ .47 .90/ .48 .87 /.56 .87/.59 .87/.59
30 .93/.37 .90/ .46 .89/ .47 .87/ .55 .87/ .57 .87/ .58

42 .93/.35 .90/ .43 .89/ .44 .87/.50 .87/ .54 .87/ .56

0906 09 .93/.43 91/.44 91/ .47 .90/.50 .90/.50 91/ .47
21 .93/ .41 92/ .42 91/ .45 .90/ .46 .90/ .47 .90/ .47

33 .93/.40 .91/.39 91/ .42 .90/ .44 .90/ .45 .90/ .45

45 .93/.38 .92/.38 .91/.40 .90/ .42 .90/ .43 .90/ .44

1209 12 .93/.39 .93/.41 92/ .44 92/ .44 .92/ .46 .92/ .45
24 .94 /.36 .93/.39 92/ .41 92/ .42 .92/ .43 92/ .44

36 .93/.35 .93/.37 .92/.40 .92/.39 92/ .41 92/ .41

48 .93/.32 .93 /.36 .93/.37 .92/.37 .92/.38 .92/.39

1512 15| 2557675 2611387 2676291 2704390 2710887 2725628
193792 140080 75176 47077 40580 25839

.95/.33 .94/ .31 94/ .34 .93/.36 .93/ 36 .93/.37

27 .95/.32 .94 /.32 .94/.35 .94 /.39 .94 /.40 .93/ .42

39 .95/.29 .94/ .28 .94/.30 .93/.33 .93/.33 .93/.34

1815 18 .93/.37 .92/.35 .92/.36 91/.36 91/.36 91/.35
30 .93/.35 .92/.32 92/.34 91/.36 91/.36 .91/.38

42 .92/.32 .92/.30 92/.31 91/.32 91/.32 91/.34

2118 09 .92/.48 .91/.50 .90/ .53 .87/ .58 .86/ .57 .85/ .57
21 .91/.48 .90/ .49 .89/ .52 .86/.55 .85/ .53 .84/ .51

33 91/ .46 .90/ .47 .89/ .50 .87/ .53 .86/ .51 .85/.50

45 .90/ .46 .89/ .46 .88/.49 .86/ .52 .85/.50 .85/.50

2421 12 .93/.50 .93/.53 .91/ .56 .86/ .61 .85/ .62 .83/.62
24 .92/ .50 .92/ .51 .90/ .56 .86/ .61 .84/ .61 .83/ .61

36 .92/ .48 .92/.49 .90/ .53 .86/.60 .85/.60 .83/ .61

48 91/ .47 91/ .47 .89/ .51 .85/ .57 .84/ .57 .83/.59

Table 9. Fraction of correct forecasts of no lightning and of lightning, respectively, for July 2006. First
number in the first column isthe UTC valid time of the forecast, second number is the projection hours,
e.g. 0300 15isa 15 hour forecast valid 0000 — 0300 UTC. For the 0300 15 and 1512 15 rows, the total
number forecasts of no lightning is the first number shown, the second number shown isthe total number of
forecasts of lightning. FLO1 isthe LFLS forecast where LFLS is set to zero where LCHA < .01. FLO5,

FL10, and FL25 arethe LFLS forecast where LFLS is set to O where LCHA < .05, .10, and .25

respectively.
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Time Proj | LCHA LFLS FLO1 FLO5
May 0300 15 | 2439445 | 2474450 | 2517881 | 2631605
312022 | 277017 | 233586 | 119862
.96/.49 | .96/.50 | .95/.53 | .93/.58
39| .95/.44 | .95/.46 | .94/.48 | .93/.51
1512 15 | 2581816 | 2618407 | 2635884 | 2645667
80894 44303 26826 17043
98/.33 | .98/.35 | .97/.41 | 97/ .41
39| .98/.29 | .98/.29 | .97/.34 | .97/.36

June030015 | .93/.49 | 92/.53 | .91/.55 | .88/.61
39| .93/.46 | .91/.50 | .91/.53 | .88/.58
151215 | .96/.30 | .95/.34 | .95/.41 | .95/.50
39|.96/.28 | .95/.32 | .95/.34 | .95/ .40

August 030015 | .95/.45 | .94/.48 | .93/.50 | .90/.58
39|.94/.34 | .93/.46 | .93/.48 | .90/ .54
151215 | .96/.36 | .95/.35 | .95/.39 | .95/.44
39|.96/.29 | .95/.29 | .95/.32 | .95/.36
September 030015 | .97/.37 | .97/.43 | .97/.45 | .96/ .51
39|.97/.35 | .97/.39 | .96/.41 | .95/ .46
151215 | .98/.24 | .98/.30 | .98/.33 | .98/.38
39|.98/.22 | .98/.26 | .96/.43 | .98/ .34

Table 10. Same as Table 9 for May, June, August, and September 2006, for selected forecasts.
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Figure 15. The fraction of correct LCHA and
LFLS forecasts of “any” lightning and
“significant” lightning (defined above) as LCHA
and LFLFS increase for 12-hr July 2006
forecasts valid 2100-2400 UTC. “max” refers to
using the maximum LCHA and LFLS valuein
the 324 data point cloud for the verifying
observation. Note that for LCHA and LFLS
values | ess than the threshold number for “any”
lightning and “significant” lightning that the
values shown are the fraction correct for no
lightning forecasts.
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Figure 16. The fraction of correct LCHA and
LFLS forecasts of “any” lightning and
“significant” lightning (defined above) as LCHA
and LFLFS increase for 12-hr July 2006
forecasts valid 0900-1200.
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Figure 17. Theratio of forecasts to observations and the fraction correct for any lightning and significant
lightning for 12-hr forecasts valid 2100-2400 UTC July 2006.
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Figure 18. Theratio of forecasts to observations and the fraction correct for any lightning and significant
lightning for 12-hr forecasts valid 2100-2400 UTC July 2006, where the verifying observations of LCHA

snd LFLS are the maximum value in the 324 data point cloud.
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