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1. INTRODUCTION 
 

In the event of a contaminant release, 
atmospheric transport and dispersion (AT&D) 
models would be used to predict the path of the 
contaminant plume.  If monitored contaminant 
concentration data are available, various 
assimilation techniques can be applied to 
incorporate the data into the transport and 
dispersion model, and thus, more accurately 
predict the plume path.  We refer to this as the 
forward assimilation problem. 

The AT&D models can also be combined 
with other techniques to estimate unknown source 
characteristics or to retrieve meteorological data, 
the backward assimilation problem.  Recovering 
such data is equally important for AT&D 
prediction. 

Both the back-calculation techniques and 
the forward assimilation methods rely on obtaining 
sufficient concentration data monitored by either a 
stationary or a mobile sensor network. In addition, 
how much data is required is an open question.  
To be useful, the sensor network must be sited 
strategically or should be evolvable to follow the 
plume of contaminant.   

A second critical issue for AT&D is 
determining accurate local meteorological data. A 
relatively small error in wind direction can produce 
a large error the concentration field since the 
transport could be in the wrong direction (Peltier et 
al. 2008). Even when the wind direction is known, 
local effects can lead to large errors (Krysta et al. 
2006). Therefore, our assimilation methods 
emphasize using field monitored concentration 
data to infer the correct wind data.  Note that there 
is only one-way coupling between the AT&D 
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concentration tendency equation and the wind 
field evolution equations.  Although the wind field 
forces the dispersion equations, the 
concentrations have no impact on the wind field.  
Thus, a resourceful method is required to infer the 
wind field from the concentration field.  This work 
uses a genetic algorithm (GA) for that purpose. 

This paper discusses the requirements for 
developing a sensor network for dispersion 
assimilation and assesses data needs for defining 
the plume and for back-calculating source 
characteristics and meteorological data. Concepts 
from information theory are used to delineate the 
minimum requirements for the backward 
assimilation process. 

Section 2 discusses the data requirements 
for the forward assimilation problem while section 
3 treats the back-calculation for source 
characterization. A discussion of the data 
requirements in the presence of noise appears in 
section 4.  Section 5 summarizes and discusses 
the results. 
 
2. DATA REQUIREMENTS FOR FORWARD 
ASSIMILATION 
 

For the forward problem, we wish to 
assimilate chemical, biological, radiological, or 
nuclear (CBRN) concentrations into a simple wind 
model that then forces a transport and dispersion 
model to forecast contaminant concentration. 
There is a long history of assimilating monitored 
data into meteorological models (Daley 1991, 
Kalnay 2003).  In most cases, the goal is to 
assimilate data observations into the model fields 
so that the analyzed field is consistent with the 
model physics. Most methods work with observed 
quantities that are either the same fields as those 
being predicted or ones that can be readily 
transformed into the predicted quantities. For the 
CBRN problem, however, the observed quantity is 
concentration, but the wind field must be modeled 
to predict a concentration closer to that observed.  
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Therefore, it requires inverting a full transport and 
dispersion model to relate wind field to 
concentration.  Thus, using concentration data to 
assimilate the wind field is a complex problem. 
The goal here is to use concentration data to infer 
a time varying wind field and to use that field to 
predict the subsequent transport and dispersion. 

A basic example of assimilating 
concentration data into a dispersion model is a 
continuous release modeled with a Gaussian puff 
dispersion model in a meandering flow field. Not 
only does it vary smoothly in time and space, but it 
also represents an important realizable state of the 
atmosphere. It is well documented that 
meandering wind conditions are common during 
nocturnal stable boundary layer conditions (Hanna 
1983, Mahrt 1999, among others).  It is also 
analogous to vertical plume meandering observed 
in unstable direct numerical simulations in the 
convective boundary layer (Liu and Leung 2005). 

We choose to evaluate concentration 
assimilation methods in a varying wind field in the 
context of an identical twin experiment; that is, the 
monitored concentration data is “created” using 
the same transport and dispersion model that will 
be used for each assimilation step (Daley 1991).  
Such an approach has the advantage that we 
generate a “truth” that can be used for comparing 
our results without the need to consider sensor 
errors, model errors, or background noise at this 
initial stage of technique development. 

We concentrate on an instantaneous 
release of contaminant in a neutrally buoyant 
atmosphere, which can be modeled with a 
Gaussian puff equation: 
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where:  Cr is the concentration at receptor r,  

(xr, yr, zr) are the Cartesian coordinates 
downwind of the puff,  
Q is the emission rate,  
∆t is the length of time of the release itself,  
t is the elapsed time since the release,  
U is the wind speed,  
He is the effective height of the puff 
centerline, and  
(σx, σy, σz) are the standard deviations of 
the concentration distribution in the x-, y-, 
and z-directions, respectively.  

The standard deviations of the model are 
computed according to Beychok (1994): 
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where: x is the downwind distance in km, and 

I, J, and K are coefficients determined by 
Pasquill stability class for both σx, and  σz 
and can be found in Beychok (1994). 
The puff transport and dispersion occurs 

in a sinusoidally varying wind field with a constant 
wind speed of 5 ms  and direction, θ, defined as: 1−

 

0 sin(2 )tθ θ πω=                           (3) 
 
where:  is the maximum amplitude (set at 20°), 0θ

ω is the oscillation frequency (set at 
1/600 s ), and 1−

t is the time variable, measured from the 
time of release. 
For an instantaneous release, it is 

equivalent to view this sinusoidal wind variation as 
either varying in time (the entire field with a single 
wind that varies in time) or in space (meandering 
concentration field, as would be the case where 
local terrain affected flow).  The goal is to use our 
inversion routine to recover this time series of wind 
direction from concentration measurements. Then 
we will determine whether this process can be 
accomplished in a data-sparse situation.  

The static approach to this problem uses 
the spatially varying wind field to produce a 
meandering concentration field, as would be the 
case where local terrain affects the flow.  In this 
case a fit to the Lagrangian evolution of the plume 
concentration field is accomplished in a single GA 
solution.  We presume that the entire field is 
available a priori and seek to find the wind 
direction at each time.  In this case, the wind 
speed is held constant. 

To solve the problem, it is posed as one in 
optimization. We construct a cost function that 
compares the log normal monitored concentration 
with those predicted by the current guess at the 
correct wind direction. The cost function is 
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where:  Cr is the concentration as predicted by the 
dispersion model given by (1),  
Rr is the observation data value at 
receptor r,  
TR is the total number of receptors,  
a and ε are constants. 

Because the concentration data is log-normally 
distributed, taking the natural logarithm allows for 
a more meaningful comparison between the 
forecast and observation values. The value of the 
normalization scale factor, a, is determined by 
taking the sum of every concentration value, Rr, 
over the entire domain and over all time steps and 
dividing one by that total. To avoid taking the 
natural logarithm of 0, a small ε ( ) is 
added to the aCr and aRr quantities.  

131 10−×

The problem is solved using a continuous 
parameter genetic algorithm (Haupt and Haupt 
2004, Haupt et al. 2006). The GA is elitist and 
retains the best candidate solution. 

The first experiment uses all of the sensor 
data in the 41x41 grid and sampled the plume 
every four time steps (80s).   Figure 1b  illustrates 
the resulting plume.  The plots are nearly 
indistinguishable from the sampled data in Figure 
1a. The GA match to the actual wind direction is 
indicated in Figure 2.  Except for the two initial 
time steps, the wind direction found by the GA and 
the truth are nearly identical.  The lack of 
agreement at the initial time reflects the fact that 
the plume at that time had not yet produced any 
concentrations – i.e., the problem at that time is ill-
posed. The second calculation overshoots to push 
the computed wind direction toward the exact 
solution.  Figure 3 shows the GA convergence.  
The cost function continues to decrease, indicating 
that we could continue to iterate the GA to get 
increasingly more accurate solutions.    

What if we do not have such a dense 
sensor network?  Figure 4a shows the results of 
sampling one in four of the sensors (an 11x11 
grid), every 500m. Although the plume is coarse, it 
accurately reproduces the location of the plume 
when compared to Figure 1a. The extremely 
coarse network in Figure 4b shows the limitations 
of the model when sampling every eight points on 
a 6x6 grid (1000m).  Even in this data starved 
situation, however, the basic shape of the plume is 
captured. 

 

(a) 

(b) 
Figure 1. Static Assimilation of a meandering plume.  

a) truth and b) GA computed plume. 
 
 

 Figure 2.  GA match to the actual wind direction. 
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Figure 3. Convergence of GA solution. 

 
 

 
(a) 

 
 

   (b) 
 

Figure 4. GA computed plume when the spatial 
sampling is a) 1:4 and b) 1:8. 

 
 

3. DATA REQUIREMENTS FOR BACK-
CALCULATING SOURCE INFORMATION 

 
3.1 Problem Formulation 
 
 The second related problem in the 
accurate prediction of a dispersed contaminant is 
the characterization of the source, or the backward 
problem. What if our field sensors detect 
significant levels of a contaminant but we don’t 
know where it was emitted or the strength of the 
source? Emergency managers want to be able to 
predict the transport and dispersion of the 
contaminant, but they need good estimates of the 
input parameters to make that prediction. At times 
they may not even have access to site specific 
meteorological data, which is essential for 
accurate predictions.  
 The solution to the source and wind 
characterization problem requires a robust 
optimization method such as a genetic algorithm 
(GA). The method presented here uses a GA to 
find the combination of two dimensional source 
location, source strength, time of release, surface 
wind direction, and surface wind speed that best 
matches the monitored receptor data with the 
forecast concentration data. This approach is also 
validated with an identical twin experiment. 

 This study builds on our previous work.  
Haupt (2005) first demonstrated that a GA-coupled 
model was capable of back-calculating source 
strength for several sources given data from a 
single field monitor (source apportionment).  The 
model relied on a forward computation of 
dispersed contaminant from a Gaussian plume 
model. This model was demonstrated to work well 
for a circular source configuration and for the 
actual source/receptor configuration from Logan, 
UT (Haupt 2005).  This model was further 
validated using Monte Carlo statistical techniques 
and in the presence of noisy observations by 
Haupt, et al. (2006).  Allen et al. (2006) extended 
their analysis with a more sophisticated dispersion 
model, SCIPUFF. With this method they correctly 
identified time of release, source location, and 
strength contributions from multiple sources for 
configurations with moderate amounts of white 
noise.  Allen et al. (2007) reconfigured the genetic 
algorithm model to directly identify four 
parameters: source location, source strength, and 
wind direction. When noise was incorporated into 
this scheme, the results were excellent for grid 
sizes 8 x 8 and larger.  The model was further 
enhanced (Haupt et al. 2007) and more 
meteorological variables were added to the back-
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calculation (Long 2007, Long et al. 2008a, Haupt 
et al. 2008). 

The Gaussian puff model is the same one 
used in the meandering plume forward 
assimilation problem above (1). The simulated 
source release is located at the center of a 16,000 
m by 16,000 m equally spaced grid. The receptors 
are located at the intersections and corners of the 
grid. The release location is  the center of the grid 
to allow assessing model skill with any wind 
direction. Note, however, that means that if we 
knew the wind direction a priori, we would only rely 
on about one-quarter of the sensors. Since we 
wish to assess how much data is necessary, we 
consider seven different grid spacings (Table 1). 
Based on a 16,000 m by 16,000 m domain size 
and a wind speed transporting the puff at 5 m s-1, 
the best time intervals are 6, 12, 18, 24, and 30 
minutes following the release. The height of 
release is 10 m above the surface. We assume 
Pasquill stability class D (neutral). Figure 5 shows 
the progression of the puff at the five times for two 
different wind directions considered here: 180°and 
225°. 

Table 1. Seven different grid sizes and 
corresponding grid-spacing studied. 

Grid 
Size 

Grid-
spacing 

2x2 8000 m 
4x4 4000 m 
6x6 2667 m 
8x8 2000 m 
16x16 1000 m 
32x32 500 m 
64x64 250 m 

 
A population of 1200 chromosomes is 

initialized with random values. The cost function 
measures how close each forecast concentration 
as predicted by (1) is to the observed 
concentration and uses the same cost function 
(summed over all five time steps) as used for the 
forward assimilation (4).  

The GA is generally good at finding the 
correct solution basin: so by coupling it with a 
gradient descent method, we are able to further 
optimize the solution. Such a combination of 
algorithms is known as a hybrid GA. The best 
candidate solution found by the GA after 100 
iterations is used as the first guess for a Nelder-
Mead downhill simplex algorithm (Nelder and 
Mead 1965), which performs a local search to find 
the minimum of that basin. The GA searches the 

 
Figure 5. Evolution of the puff in time for (a) 180° 
wind direction and (b)  225° wind direction on a 
16 16 grid. The source is located is the center of 
the domain, between receptors 8 and 9. 

×

 
solution space of each parameter according to the 
bounds dictated in Table 2: however, the Nelder-
Mead simplex algorithm used here does not allow 
setting bounds. As a result, parameters such as 
source strength can become negative despite the 
physical impossibility. 
 

Table 2. Searchable solution space for the GA 

Parameter Minimum 
Value 

Maximum 
Value 

Location (x,y) - 8000 m + 8000 m 

Source Strength 0 Kg s-1 5 Kg s-1 

Time of Release -300 s + 300 s 

Wind Direction 0 ° 360 ° 

Wind Speed 0 m s-1 20 m s-1 
 
Hereafter, a solution generated by the GA 

or the Nelder-Mead downhill simplex algorithm is 
said to be within tolerance when it meets the 
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criteria given by Table 3. As shown there, this 
study seeks to retrieve six parameters: source 
strength, source location (x,y), time of release, 
wind speed, and wind direction. The first set of 
runs is conducted without noise.  The model is run 
ten times for both wind directions for each of the 
grid size/grid-spacing configurations described in 
Table 1.  

 
Table 3. Tolerances for an acceptable solution 

Parameter Tolerance 

Location (x,y) ± 10 m 

Source Strength ± 0.05 Kg s-1 

Time of Release ± 5 s 

Wind Direction ± 0.1 ° 

Wind Speed ± 0.05 m s-1 

 
 

3.2 Results in a Noiseless Environment 
 
The first set of runs assume that the data 

are error free. Later additive and multiplicative 
noise will be  incorporated into the model in order 
to simulate errors. Table 4 (see end of paper) 
displays the results for the 180° wind direction 
case.  We see that even with a 4x4 grid, the GA 
coupled with the Nelder-Mead optimization 
characterizes each parameter well with the only 
exception being the location, which is found to be 
20 m south of the true source. The model 
characterizes the source within tolerance for the 
6x6 grid sizes and larger for the 180° wind 
direction.  Recall that if we knew the wind 
direction, these grids would require less that one-
quarter the number of sensors used. 

In the 225° wind direction case (see Table 
5 at the end of the paper), the model is able to 
identify nearly every parameter in the 4x4 grid 
also. The only exception is that the wind direction 
is found to be slightly larger than 225°. As with the 
180° wind direction, the model characterizes the 
source within tolerance for grid sizes 6x6 and 
larger for the 225° wind direction. 

Because we are using an identical twin 
experiment, skill scores can be used to quantify 
the closeness of each solution to the known 
answers. The skill score is evaluated using five 
component equations, one to quantify the 
accuracy of each parameter (i.e. source strength, 
source location, time of release, wind speed, and 
wind direction). The most desirable skill score is 0; 

the least desirable skill score is 1. Skill scores that 
fall below 0.1 correspond to meeting the tight 
tolerances defined in Table 3. 

Figure 6 illustrates that the skill scores fall 
below 0.1 at relatively low resolutions. For the 
180° wind direction, the GA finds a very good 
solution and the Nelder-Mead search optimizes 
the solution with the 6x6 grid size and larger 
(Figure 6a). For the 225° wind direction, the GA 
finds a good solution for grid sizes as small as 4x4 
and the Nelder-Mead method is able to refine the 
solution further (Figure 6b). Thus we conclude that 
if we do not know the wind direction, we require at 
least 16 sensors. If wind direction was known, four 
sensors would be sufficient. 

 

Skill Score vs. Resolution for the 180° Wind Direction
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Skill Score vs. Resolution for the 225° Wind Direction
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(b) 

Figure 6. Skill score versus resolution for (a) 180° 
and (b) 225° wind direction. 

 
3.3 Results with Noisy Data 
 

Observed concentration data are likely to 
be fraught with uncertainty. Many chemical 
sensors currently in use display a rectangular bar-
shaped readout for the concentration that provides 
only an order of magnitude precision (Robins, et 
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al. 2005). Errors in observations can also result 
from uncertainty in the meteorological data as well 
as from the chaotic nature inherent in turbulent 
flow as discussed in Haupt et al. (2006). In order 
to simulate a more realistic environment, we 
corrupt the observation data with both additive and 
multiplicative noise at six signal-to-noise ratios 
(SNRs): 100, 10, 5, 2, 1, and 0.1. The two 
validations presented previously were run without 
noise, that is at an SNR of infinity. The signal and 
the noise are of equal magnitudes for an SNR of 
1. For an SNR of 0.1, the noise is ten times 
greater than the signal and at this point we expect 
the model to fail. The complete results for both 
additive and multiplicative noise can be found in 
Long (2007).  

Gaussian additive noise has a mean of 
zero. For this study, we’ve used a clipped 
Gaussian additive noise: that is, concentrations 
below 0 are set to 0. Figure 7 plots the skill score 
for additive noise at every grid size for the 180° 
wind direction. Results were quite similar for the 
225° wind direction (Long 2007). Again, skill score 
values of 0.1 or lower correspond to good results 
whereas skill score values of 0.2 or greater 
indicate less accurate solutions. The results for 
SNR of 100, 10, and 5 are very similar to the 
model results without noise. When the noise 
reaches 50% of the signal (SNR = 2), many of the 
solutions found by the hybrid GA are outside the 
domain and the model begins to fail. At an SNR of 
1 and 0.1, solutions are often unphysical and the 
model fails. Figure 7 also illustrates that 2x2 grid 
sizes are too small to produce good solutions and 
the model fails for that resolution. Again, these 
conclusions assume that wind direction is 
unknown. 

We also considered the impact of 
multiplicative noise. The multiplicative noise is a 
clipped Gaussian with a mean of 1. Figure 8 plots 
the skill score as computed by the GA for 
multiplicative noise for each grid size for the 180° 
wind direction. Again, the results for SNR of 100, 
10, and 5 are very similar to the model results 
without noise. When the noise approaches the 
same magnitude as the signal (SNR = 2), many of 
the solutions are outside the domain and the 
model begins to fail. Again the model is 
unsuccessful at SNR of 1 and 0.1 and for 2x2 grid 
sizes at all noise levels. Model behavior is similar 
for both additive and multiplicative noise, which 
demonstrates consistent performance. As before, 
the behavior in the presence of multiplicative noise 
was quite similar for a wind direction of 225° (Long 
2007). 

 
Figure 7. Skill score plot with additive noise, wind 

direction = 180°. 

 
Figure 8. Skill score plot with multiplicative noise, 

wind direction = 180°. 

 
 
4. DATA REQUIREMENTS IN A NOISY 

ENVIRONMENT 
 

In order to quantify how many receptors 
are necessary to obtain a good solution for this full 
problem of solving for both meteorological and 
source variables, we examine heuristic methods 
for developing information measures. This work is 
inspired by the field of information theory (IT) 
initiated by Shannon (1948). The goal is to define 
an information measure that quantifies the amount 
of independent information in a data analysis. In 
this case, it means that we want to define how fine 
the grid resolution must be for a given amount of 
noise in the data in order for our method to obtain 
a sufficiently close solution. We do that by defining 
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two correlations:  2

1, +ttr   is the squared correlation 
between the noiseless concentration field with the 
one at the next time step (where t is the time step) 
and  2

, nccr +  is the squared correlation between the 
concentration field with and without noise, both 
averaged over all time steps.  Both correlations 
are functions of grid resolution and signal to noise 
ratio and are determined from the model runs that 
produced Figures 7 and 8 plus similar plots for the 
225° wind direction case. We define an 
information measure, FIT, as: 

                                 

( ) ( )2 2
, 1 ,1 t t c c nFIT r r

α β
γ+ +

⎡ ⎤= − ≥⎢ ⎥⎣ ⎦
              (5) 

 
where α  and β are powers to be determined and γ 
is the threshold value to be fit such that the 
quantity yielded produces a successful solution.  
The first factor is designed to measure the amount 
of information that can be extracted from the puff 
transport and dispersion and the second factor is 
designed to measure the degree to which the 
pattern remains uncontaminated by noise. 

FIT generates a binary matrix that is a 
function of grid resolution and signal to noise ratio.  
It is then compared with the successful model 
configurations matrix, SUS. Successful 
configurations are defined as those grid size/noise 
combinations where the ten run median value of 
every parameter is found within the strict 
tolerances defined in Table 3. The successful 
configurations for the 180° wind direction are 
indicated in Table 4 (see end of paper). A similar 
table is constructed for the 225° wind direction (not 
presented here).  
 By minimizing the difference between the 
FIT and SUS, we are able to determine the values 
of α, β, and γ that will guarantee a model setup 
that produces solutions within the strict tolerances 
defined previously. Thus, we are able to determine 
the minimum number of receptors needed to 
obtain a solution within tolerance in a specified 
noise environment. 

Note that the fit to the parameters is not 
unique here.  We wish to optimize the two powers 
and the threshold value so that the number of 
matches is maximized.  There are ranges of 
values of  α, β, and γ that meet this goal.  When 
jointly considering both wind directions, a possible 
solution was computed with a GA to be α=0.1, 
β=4, and γ=0.85.  This means that the squared 
correlation between the concentration field with 
and without noise is a critical factor in determining 

how many receptors are necessary.  In a 
noiseless or low noise environment, a 6×6 grid is 
sufficient to back-calculate all wind and source 
variables.  When the noise is within a factor of two 
of the signal, the GA can no longer distinguish the 
source and meteorological parameters accurately. 
This analysis provides guidance for configuring a 
receptor grid to provide enough data for this GA-
based model to back-calculate source and 
meteorological parameters.  It is problem 
dependent, however, and should be further 
developed for other configurations. 
 
 
5. CONCLUSIONS 

 
   We have assessed using a GA to 
assimilate data into an AT&D model that predicts 
concentration. The goal is to infer meteorological 
data in the context of both a forward assimilation 
problem and a problem of back-calculating the 
model input parameters.  In both cases, the GA 
has successfully computed the required 
parameters. In both cases, we considered whether 
the algorithm could still perform well when fewer 
sensor observations were available. In general, 
the algorithm works well even when only two or 
three sensors are impacted by the concentration.  
That observation implies, however, that the 
sensors must be strategically sited to be able to 
intercept the concentration plume.  Several 
methods could be used to facilitate such a 
process.  First, one could optimize sensor siting if 
the likely meteorological conditions are known a 
priori.  Since that is unlikely, one could use 
historical climate data to estimate the most 
probable wind conditions and use that information 
to guide sensor siting.  The most useful approach, 
though, would be to have an evolvable sensor 
network available, perhaps mounted on 
Unmanned Aerial Vehicles (UAVs). In other work 
(not shown here) we have developed methods to 
guide a single UAV with a mounted CBRN sensor 
through a concentration plume so that it makes 
optimal use of available concentration data for the 
back-calculation problem.  

We have also considered the impact of 
including either additive or multiplicative noise on 
the ability of the back-calculation GA model to 
invert for the AT&D input parameters. Such noise 
simulates errors due to model error, monitoring 
error, and the inherent error due to the stochastic 
nature of turbulence. The model is robust and can 
withstand additive and multiplicative signal-to-
noise ratios of 100, 10, and 5. Success drops 
significantly as the noise reaches about 50% of 
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the signal (SNR=2). Further cases (not shown) 
confirm that this result is not sensitive to wind 
direction or cost function metric. 

These results have been validated using 
an identical twin experimental approach to 
construct the synthetic data.  Such data are ideal 
for developing and testing purposes.  We plan to 
further test our model with field test data and are 
currently testing the model with CFD-produced 
data.  We are additionally in the process of 
upgrading the model by replacing the Gaussian 
puff equation with a more sophisticated dispersion 
model (Long et al. 2008b). Finally, we are also 
evaluating the impact of more realistic sensor 
models, including thresholds and saturation values 
(Rodriguez et al 2008). 

In closing, the implications of this work are 
that when planning a sensor network, it is 
imperative to consider the physics of the situation 
if one expects the resulting data to be useful. It is 
never adequate to assume a constant known wind 
and simple dispersion characteristics. Therefore, 
groups planning how to design or evolve such 
networks must work closely with transport and 
dispersion modelers to assess the problem.  As 
future networks become mounted on Unmanned 
Aerial Vehicles (UAVs), further research will be 
needed to coordinate the control of evolvable 
sensor networks in a simulated setting.  We 
suspect that such considerations extend beyond 
this single problem and that the control of 
evolvable networks often depends on the physics 
of the situation. 
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Table 4. Six parameter results for the 180° wind direction – ten run average. 

Grid 
Size 

Found θ       (°) 
Strength 
(Kg s-1) 

(x,y)  
(m,m) 

Release 
Time (s) 

Speed  
(m s-1) 

Cost 
Function 

        
Actual Solution 180.00 1.00 (0,0) 0 5.0 1.0e-3 
        
GA Alone 2x2 179.12 2.94 (120,-730) 172 7.6 2.0e-1 
Hybrid GA 2x2 178.10 5.05 (290,-760) 184 7.9 1.0e-1 
        
GA Alone 4x4 179.69 1.30 (40,-40) 26 5.2 4.1e-3 
Hybrid GA 4x4 180.00 1.00 (0,-20) 0 5.0 2.0e-9 
        
GA Alone 6x6 179.91 1.69 (10,80) 28 5.0 2.2e-3 
Hybrid GA 6x6 180.00 1.00 (0,0) 0 5.0 3.2e-9 
        
GA Alone 8x8 179.18 1.90 (80,170) 39 5.0 6.0e-3 
Hybrid GA 8x8 180.00 1.00 (0,0) 0 5.0 3.1e-9 
        
GA Alone 16x16 179.96 1.35 (0,40) 13 5.0 1.6e-3 
Hybrid GA 16x16 180.00 1.00 (0,0) 0 5.0 3.4e-9 
        
GA Alone 32x32 180.07 1.39 (-10,40) 13 5.0 1.8e-3 
Hybrid GA 32x32 180.00 1.00 (0,0) 0 5.0 3.6e-8 
        
GA Alone 64x64 179.96 1.45 (0,80) 18 5.0 2.1e-3 
Hybrid GA 64x64 180.00 1.00 (0,0) 0 5.0 3.0e-9 

Table 5. Six parameter results for the 225° wind direction – ten run average. 

 Grid 
Size 

Found 
θ (°) 

Strength 
(Kg s-1) 

(x,y) 
(m,m) 

Release 
Time (s) 

Speed  
(m s-1) 

Cost 
Function 

        
Actual Solution 225.00 1.00 (0,0) 0 5.0 1.0e-3 
        
GA Alone 2x2 225.92 4.42 (-3340,-3070) -83 8.6 7.3e-4 
Hybrid GA 2x2 225.81 4.76 (-3290,-3040) -81 8.6 5.5e-10 
        
GA Alone 4x4 224.68 1.30 (80,-40) -2 5.0 9.6e-4 
Hybrid GA 4x4 225.02 1.00 (0,0) 0 5.0 1.1e-7 
        
GA Alone 6x6 225.50 1.43 (90,180) 17 4.9 2.8e-3 
Hybrid GA 6x6 225.00 1.00 (0,0) 0 5.0 1.2e-9 
        
GA Alone 8x8 225.25 1.71 (70,120) 36 5.0 4.1e-3 
Hybrid GA 8x8 225.00 1.00 (0,0) 0 5.0 2.0e-9 
        
GA Alone 16x16 225.16 1.46 (60,80) 17 5.0 2.9e-3 
Hybrid GA 16x16 225.00 1.00 (0,0) 0 5.0 3.5e-9 
        
GA Alone 32x32 225.01 1.46 (60,70) 20 5.0 2.8e-3 

Hybrid GA 32x32 225.00 1.00 (0,0) 0 5.0 2.6e-9 
        
GA Alone 64x64 224.91 1.61 (90,80) 27 5.0 3.7e-3 
Hybrid GA 64x64 225.00 1.00 (0,0) 0 5.0 3.3e-9 
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Table 4. Success Table: Check  marks ‘ ’ indicate model configurations where the 
solutions were found within tolerance. 

 No 
Noise  Additive Noise Multiplicative Noise 

SNR Inf 100 10 5 2 1 0.1 100 10 5 2 1 0.1 
2x2              
4x4              
6x6              
8x8            
16x16            
32x32            
64x64            
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