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1. INTRODUCTION 
 

America’s National Strategy for Homeland 
Security states that one of the nation’s goals is to 
respond to and recover from harmful incidents that 
occur (Homeland Security Office 2007). Such incidents 
include an intentional release of hazardous chemical, 
biological, nuclear, or radioactive (CBNR) material into 
the atmosphere. It is important to be able to predict the 
transport and dispersion of these materials. However, 
sometimes there is inadequate source information to 
perform those predictions; therefore it becomes 
necessary to characterize the source of an airborne 
contaminant from remote measurements of the resulting 
concentration field. The characterization of a source 
involves back-calculating the source location and 
emission rate. There has been extensive work back-
calculating source characteristics, for example, 
Thompson et al (2007) and Rao (2007).  Some previous 
work that uses genetic algorithms (GA’s) to optimize 
source characteristics include the work done by Allen 
(2006, 2007), Haupt (2005), Haupt et. al. (2006, 2007a, 
2007b, 2007c), and Long et. al. (2007).  

 
In addition to characterizing the source some 

of these efforts include back-calculating meteorological 
variables, such as wind speed, wind direction, and 
stability. Several of the previous papers include adding 
noise to the data to simulate errors in the sensor data, 
input parameters, and the inherent atmospheric 
turbulence.  

 
The goal of the present study is to perform a 

sensitivity analysis to add an element of realism to the 
likely sensor constraints. It is done using an identical 
twin approach with a Gaussian Puff model, which then 
optimizes a solution by means of a GA, and finally finds 
the global minimum with the Nelder-Mead downhill 
simplex algorithm (NMDS). The sensitivity analysis is 
needed because some of the sensors are often limited 
in terms of saturation and detection levels. These are 
taken into account because they make the observations 
non-Gaussian, which means that the GA must be aware 
of the levels so that it can model the observed data 
instead of the ideal Gaussian. 
 
 
 
 
*Corresponding author address: Luna M. Rodriguez, 
Department of Meteorology, The Pennsylvania State 
University, University Park, PA 16802; lmr257@psu.edu  
 
 
 
 

2. PROCEDURES  
 

The Gaussian puff model (1) is used to determine 
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concentration observations over five time steps and five 
grid sizes on a 16 km2 domain (Table 1), where Cr is the 
concentration at receptor r, (xr, yr, zr) are the Cartesian 
coordinates downwind of the puff, Q is the emission rate 
of the source, ∆t is the length of time of the release 
itself, U is the wind speed, He is the effective height of 
the puff centerline, and (σx, σy, σz) are the dispersion 
coefficients that are computed from Beychok (1994).  
 

Table 1. Characteristics of grids evaluated on a constant 
16 km2 domain 

 
Data is created by first applying (1) to generate 

concentration at grid points then clipping the data to 
simulate detection and saturation of the levels. A 
Pasquill stability class D is used in this study and Figure 
1 shows how the concentration strength varies over 5 
time steps for a 16X16 receptor grid. This concentration 
data is then clipped to simulate saturation and detection 
levels of the sensors.   

 
The detection level is determined with respect 

to the maximum concentration strength value and any 
data under that level is set to zero. The detection levels 
are simulated by imposing a minimum level to our data, 
i.e., for a 1X10-16 cutoff, anything smaller than 1X10-16 of 
the maximum concentration is changed to 0 and 
similarly for the 1X10-12, 1X10-8, 1X10-4 kg m-3 cases.  

 
Saturation level for this study means that any 

value over a determined percent of the maximum 
concentration strength is changed to that particular 
value. For a saturation level of 100% of the maximum 

GRID SIZE NUMBER OF 
GRID POINTS 

SPACING 
BETWEEN 

GRID POINTS 
(KM) 

2X2 4 16.00 
4X4 16 5.33 
6X6 36 3.20 
8X8 64 2.29 

16X16 256 1.07 



concentration strength, 1 kg m-3 is used as the cutoff 
value. For saturation of 50% of the maximum 
concentration strength 0.5 kg m-3 is the cutoff so 
anything above this value is set equal to 0.5 kg m-3, 
likewise for 1% (0.1 kg m-3) and 0.1% (0.01 kg m-3). 
Examples of the detection and saturation cutoff levels 
are given in Figure 2 where the maximum concentration 
in this illustration is 1 kg m-3. After the data is clipped it 
serves as our “true” observations.  

 
The GA begins with a random population of 

“guesses” to the variables that fall within the criteria 
described in Table 2. These are then compared to our 
“true” observations by means of a cost function (2).  
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Where, Cr is the concentration as predicted by the 
dispersion model given by (1), Rr is the observation data 
value at receptor r, TR is the total number of receptors, 
a and ε are constants added to avoid logarithms of zero. 
  

Table 2. Variable Thresholds used to populate the GA 

 
GAs work by evaluating an initial population via the 

cost function then selecting the best ranking individuals 
to reproduce, forming a new generation through the GA 
operators of crossover and mutation. These are then in 
turn evaluated and the process iteration. We use a 
population of 40 chromosomes, 640 iterations, and a 
mutation rate of 0.32.The mean and standard deviations 
of 10 Monte Carlo runs of the median of 10 runs for 
each saturation level were evaluated for each detection 
level and grid size. The true solutions for all of these 
cases is a solution strength of 1 kg/s, a location of (0,0), 
and a wind direction of 180°. 
 
 
3. RESULTS 

 
Figures 3-6 show the mean values of the 10 

Monte Carlo runs, each figure with a different saturation 
level as a constant while varying the detection levels 
across the abscissa and the differencing grid sizes 
indicated by the colored lines. In the figures each 
parameter (wind direction, source strength, & x,y 
location) is plotted separately. For the wind direction we 
are seeking a value of 180°, for the concentration 

strength a value of 1 kg/s, and for the source release a 
location of 0,0 meters.  

 
Figures 3 and 4 show that the GA retrieves the 

correct source characteristics for all the detection levels 
using the 8X8 and 16X16 grid. The other grid sizes did 
not perform as well and were inconsistent. When 
lowering the saturation level, Figures 5 and 6, every grid 
size smaller than a 16X16 becomes highly unreliable. 
Thresholding the data too severely eliminates so much 
information that retrieval quality goes down significantly, 
thus, more dynamic range in sensors lends to more 
accurate inversion for the variables. This dynamic range 
produces the most impact if it extends to the maximum 
concentration as is illustrated in Figure 7. In this figure 
the detection level is 1X10-16 and the saturation levels 
vary along the abscissa with the differing grid sizes 
indicated by the colored lines. In agreement with 
Figures 3-6, Figure 7 shows that the larger grid sizes, 
8X8 and 16X16, are successful in retrieving the correct 
parameter values up to the 50% saturation level. The 
smaller grid sizes are less reliable after the 50% cutoff 
and none of the grid sizes are able to correctly identify 
all of the parameters for the lowest saturation levels.  

 
4. CONCLUSION 
 

The hybrid GA method used here (with NMDS) 
is successful in back-calculating source characteristics 
and wind direction with data that has been thresholded 
forming a clipped Gaussian. These thresholds simulate 
saturation and detection levels in sensors and if applied 
too severely they eliminate so much information that 
retrieval quality degrades significantly. The inversion is 
most successful if the sensor can detect the maximum 
concentrations, which means that the most effective 
sensors have this characteristic.  

 
The next step in this project is to retrieve 

source and meteorological data using a time-dependent 
computational fluid dynamics large eddy simulation to 
create synthetic data. Such data inherently includes 
time-dependent behavior unique to each contaminant 
episode rather than the ensemble average predicted by 
the transport and dispersion model used in previous 
studies. Then a realistic sensor configuration will be 
considered as well as varying stability classes. Finally, 
we expect to use this model to back-calculate source 
characteristics and meteorological parameters with real 
field data observations  
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FIGURE

 

Figure 1. Concentration pattern over 5 time steps on a 16X16 receptor grid. The panel on the left shows the 
concentration for with a 180° wind direction and the panel on the right for a 225° wind direction. 

a)  b)  

Figure 2. Data fit to a Gaussian. The maximum concentration normalized to 1 kg m-3. Panel a indicates the 
threshold detection levels of 1X10-16, 1X10-12, 1X10-8, and 1X10-4. Panel b shows the saturation levels, set as a 
percentage of the full (100%, 50%, 1%, 0.1%). 
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Figure 1. Results for all grid sizes and detection levels of the saturation level that at 100% of the maximum 
concentration strength value. Panel a shows the mean value of θ (wind direction, 180°), panel b indicates source 
strength (1 kg/s), and panels  c and d show the location (0, 0) (in m) for x and y respectfully. All of these results 
are of 10 Monte Carlo runs of the median value of 10 individual runs. 
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Figure 2. Results for all grid sizes and detection levels of the saturation level that at 50% of the maximum 
concentration strength value. Panel a shows the mean value of θ (wind direction, 180°), panel b indicates source 
strength (1 kg/s), and panels c and d show the location (0, 0) (in m) for x and y respectfully. All of these results 
are of 10 Monte Carlo runs of the median value of 10 individual runs. 
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Figure 3. Results for all grid sizes and detection levels of the saturation level that at 1% of the maximum 
concentration strength value. Panel a shows the mean value of θ (wind direction, 180°), panel b indicates source 
strength (1 kg/s), and panels c and d show the location (0, 0) (in m) for x and y respectfully. All of these results 
are of 10 Monte Carlo runs of the median value of 10 individual runs. 
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Figure 4. Results for all grid sizes and detection levels of the saturation level that at 0.1% of the maximum 
concentration strength value. Panel a shows the mean value of θ (wind direction, 180°), panel b indicates source 
strength (1 kg/s), and panels c and d show the location (0, 0) (in m) for x and y respectfully. All of these results 
are of 10 Monte Carlo runs of the median value of 10 individual runs. 
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Figure 7. Results for all grid sizes and saturation levels of the detection level that at 1X10-16 of the maximum 
concentration strength value. Panel a shows the mean value of θ (wind direction, 180°), panel b indicates source 
strength (1 kg/s), and panels c and d show the location (0, 0) (in m) for x and y respectfully. All of these results 
are of 10 Monte Carlo runs of the median value of 10 individual runs. 


