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1.  INTRODUCTION
1
 

 

Efforts to reduce the size of large data streams such 

as radar or satellite observations are essential in 

operational meteorology. These sources are 

computationally expensive to assimilate and may 

contain observations with spatially correlated error 

(Bergman and Bonner, 1976; Liu and Rabier 2002; 

Ochotta et al. 2005). The high-volume data may also be 

redundant or at a resolution higher than that of the 

analysis grid itself. As a result, a systematic reduction 

of data not only improves analysis efficiency but can 

also potentially increase analysis quality. Here, the term 

‘redundant’ refers to observations that provide little in 

the way of information with respect to an analysis. For 

example, observations may be unnecessary in the 

presence of a good first guess field or in regions of 

quiescent or relatively nondescript conditions. We 

present continuing work from a NASA funded project 

designed to examine data thinning via the application of 

automated Intelligent Data Thinning (IDT, 

Ramachandran 2005) and Density Adjusted Data 

Thinning (DADT) algorithms, both developed at the 

University of Alabama in Huntsville (UAH). The 

algorithms are designed to retain information-dense 

regions of a data set while removing unnecessary data. 

Information-rich data targeted for retention are within 

regions of high spatial variance. 

The goal of this work is to adapt these tools for 

operational meteorological applications.  The IDT 

algorithm is applied to uniformly-gridded synthetic data 

and evaluated using traditional data assimilation 

approaches. Results from sensitivity tests are presented 

and optimal thinning strategies are discussed for some 

simple synthetic scenarios. The DADT is applied to 

                                                 
1
 Corresponding author address: Florida Institute of 
Technology, 150 W University Boulevard Melbourne, FL 

32901. E-mail: msplitt@fit.edu. 

real, non-uniformly-gridded satellite observations and 

examined for observation retention and analysis impact. 

 

2.  DATA THINNING  

 

The evaluation of the thinning algorithms is two-

fold and involves 1.) observation retention issues and 

2.) an indirect measure of the impact as manifest 

through analyses. Each of the analysis approaches used 

here updates a first-guess field with a correction or 

“analysis increment” based on the observations. This 

correction consists of a weighted combination of 

innovations, which are differences between the 

observation and the background field. Because the 

weights depend on the relative error of the observations 

and background field, evaluation is difficult in terms of 

real data because the error characteristics are unknown. 

The synthetic tests circumvent this problem as well as 

provide a truth field for direct evaluation. In terms of 

1.) above, the variance-driven algorithms (IDT and 

DADT) might retain a significant amount of redundant 

information if applied in observation space. As a result, 

both methods are also tested in innovation space.  

In contrast to the IDT algorithm, the sub-sampling 

(SS) approach exhibits no preferential observation 

selection but is straight-forward and computationally 

efficient and thus commonly used in operational 

meteorology. The SS approach often thins observations 

to a specified minimum distance separation and/or 

retains every n
th
 observation. In reality, some 

observation values may be more important as they 

provide more information to a data analysis system. In 

part, this motivates the development of techniques that 

can differentiate between regions of high information 

content and those that contain redundant data.  The IDT 

algorithm was originally developed for applications to 

contiguous data (i.e., no missing values). Obviously this 

is problematic for real data which typically contain 

gaps. As a result, two distinct versions of IDT emerged 



from this work including a global version, IDTG and a 

local version, IDTL.  Neither IDT version is equipped 

to handle non-uniformly-gridded data sets, such as 

satellite observations, so a third DADT algorithm has 

been created for these applications.  Each of these 

techniques is described in the following section.  

 

2.1  IDTG: The Global IDT Algorithm 

A snapshot of the observation (or innovation) 

values can be treated as an image with pixel intensities 

equal to the observation values at the corresponding 

grid points. The problem of finding regions of high 

information content thus translates to identifying 

‘anomalous’ regions in the corresponding image. For a 

multimodal pixel distribution, pixels that form the tails 

of each mode are identified to be most deviant from the 

mean of all the pixels, contribute the most to the 

cumulative variance of the region, and are thus targeted 

for subsampling at a higher retention rate.   

For each mode, the statistics of the pixels that are 

close to the mean are calculated. These sets of pixels 

are referred to as the background regions and are 

thinned for a low rate of data retention. All other image 

regions are considered to be heterogeneous and deemed 

to have high information content and thus are sub-

sampled at a higher retention rate. The IDTG algorithm 

recursively decomposes the image into a tree structure 

with a root node that comprises the complete image. A 

region at level ‘L’ of the tree is identified as 

homogeneous if it passes both statistical similarity tests 

(T-Test and F-Test) by comparing region means and 

variances to the background values. If either of the tests 

fails, the region is decomposed into two sub regions 

defined as level ‘L+1’. The splitting process continues, 

recursively dividing the target regions into smaller sub 

regions. The splitting process terminates when either a 

region is found to be homogeneous or deemed to be too 

small for additional splitting. In the latter case, it is 

considered to be heterogeneous and thus sampled at a 

higher data retention rate. The minimum sub region size 

is currently set to 3-by-3 pixels, however users can set a 

larger size. For regions larger than the minimum, an 

‘optimal’ splitting point along the length (X) or width 

(Y) is determined. This optimal splitting point is 

defined as the location for which the combined 

cumulative variance of the two sub regions is a 

minimum. This approach is similar to the least-squares 

approximation described by Wu (1993). The outcome 

of the recursive decomposition process is a mixture of 

both homogeneous and heterogeneous regions that are 

sub sampled at different retention rates accordingly. 

 

 

2.2.  IDTL: The Local IDT Algorithm 

One challenge for the IDTG algorithm described 

above is calculating the background statistics for a 

multimodal image as it is often difficult to determine 

the number of modes in a probability density function.  

As a result, we have developed a variant of the IDTG 

algorithm which follows a similar recursive process that 

decomposes an image into homogeneous sub regions. 

However, instead of comparing the statistical similarity 

between a sub region and the backgrounds to determine 

whether or not to split the region, a more local approach 

(referred to here as IDTL) is taken whereby two sub 

regions at tree level ‘L+1’, are compared to determine 

whether or not the region at level ‘L’ should be split. 

Splitting occurs for level ‘L’ only if the two sub-regions 

are determined to be statistically different based on the 

T-test and F-test. As previously mentioned, the desired 

outcome of the decomposition process is to partition an 

image into as many homogeneous sub regions as 

possible (thereby removing redundant data). 

 

2.3  DADT:  A Density Adjusted Thinning Algorithm 

 Because satellite data are not on a uniformly-

spaced grid (image), an intelligent data thinning 

algorithm was developed for irregularly-gridded data 

sets.  Although both the uniform-grid based and non-

uniform-grid based algorithms are information retention 

oriented, non-uniform-grid based algorithms cannot 

apply the image decomposition approach employed by 

the former.  The non-uniformly-gridded thinning 

algorithm is referred to here as Density Adjusted Data 

Thinning (DADT).  For this approach, the information 

content that an observation contains is measured by the 

intensity variance of neighboring observations. Each 

observation is evaluated and ranked based on its 

information content and placed in a descending order 

priority queue.  Observations that are at the top of the 

queue and outside the scope of observations in the 

thinned data set, are retained.  The scope of an 

observation is defined by a circular area of radius R. 

Adjusting the parameter R determines the spatial 

pattern and local density of the thinned data set with a 

larger R producing a more uniform field of thinned 

observations.  Like IDT, the DADT is an iterative 

algorithm creating a thinned data set by successively 

adding optimal available sample points from the 

original data set until a desired number of points are 

retained.  The value of R is iteratively decreased by a 

tunable value (∆R). A smaller value of ∆R produces a 

more uniformly thinned set of observations. 
 
 

3.    EXPERIMENTS 

 

 Figure 1 depicts a flow diagram of the experiment 

set-up. As previously reported in Ramachandran et al. 

(2007), the IDTG showed improvement over both a box 

variance (BV) and subsample (SS) thinning approach 

when applied to two-dimensional synthetic data. The 



same data are used in the next section to examine two 

key parameters and their impact on data retention. A 

condition of optimality (i.e., minimum analysis error) is 

then discussed for a 1D analytic function.  The DADT 

is then applied to non-uniformly-gridded satellite data 

in two pseudo-3D applications. 

 

3.1  Synthetic Data: IDTG 

 IDTG consists of several key parameters which 

affect the thinning rate of the observations. The 

sensitivity of IDTG to two of these parameters—the 

confidence interval (CI) and the background—is 

examined here. Figure 2 depicts this parameter space 

for both the observations and innovations with the 

contours representing the number of retained 

observations. The background (y-axis) is defined as the 

percentage of pixels used to create the global mean and 

variance to be used in the statistical similarity tests. The 

thinned data are the same as those used in 

Ramachandran et al. (2007) in which the truth, 

observations, and first-guess field along with their 

errors are known explicitly. The observation errors are 

spatially uncorrelated and the observation-to-

background error variance is 0.25. For a given 

background pixel percentage, as the CI increases the 

number of observations retained decreases–a direct 

result of the increased width of the interval.  In other 

words, when the observations pass the similarity test, 

the region is identified as homogeneous, and the 

splitting process is terminated. However, the gradient is 

not linear with most of the observation reduction at the 

high end of the CI scale (CI > 0.98).  This is especially 

true when fewer pixels are used to compute the 

background statistics. When the number of pixels used 

to estimate the background statistics are increased, for a 

fixed CI, the mean and variance approach that of their 

true global values and, as a consequence, the likelihood 

that a sub region will fail the similarity tests decreases. 

This sensitivity virtually disappears for high CIs 

because most of the observations have already been 

thinned. 

 The innovation CI/background parameter space is 

similar to that derived for the observation thinning. 

However, the innovation isopleths are, for the most 

part, more steeply sloped. More importantly, for a given 

CI/background parameter combination, there are fewer 

observations retained in innovation space. This result is 

expected given that both the observations and 

background are of relatively good quality. For the case 

of a degraded first-guess field, the rate of thinning is 

decreased in innovation space (not shown). Analyses 

are currently underway to identify the parameters that 

minimize both the number of observations retained and 

analysis error. 

 
Fig. 1. Experiment configuration. Thinning algorithms 

include: Box Variance (BV), Intelligent Data Thinning (IDT), 

and sub-sampling (SS). See text for details. 

 

 

 
 

Fig. 2. Number of observations retained (shading) as a 

function of Confidence Interval (%) and pixels used to 

estimate the background statistics (%) for observation 

thinning (top) and innovation thinning (bottom). 

 

3.2  Synthetic Data: The Direct Method 

 Despite comparisons with less sophisticated 

approaches, the optimal observation configuration is 

not clear. Optimal configuration is defined here as the 

observation configuration that minimizes the analysis 

error for a given number of observations. Although this 

error metric may produce considerably different results 

than those obtained via four-dimensional data 

assimilation, it is instructive to determine the 

observation distribution produced by the analysis with 

2D 

BV, IDT, SS       DIRECT 

real     synthetic    synthetic 

3D 

MODIS/AIRS AIRS 

DADT, SS 

real     



the lowest root mean square error (rmse).  An idealized 

truncated 1D Gaussian (Fig. 3) with 35 points 

(observations) is assumed to be the truth field and is 

sampled for the unique combination of five points that 

yields the best analysis. We refer to this thinning 

method as DIRECT (see Fig. 1). To expedite the 

analyses (there are approximately 325K possible unique 

combinations of five observations), a simple successive 

correction algorithm (Barnes, 1964) is applied here. 

There is no first-guess field and the observations are 

assumed to have no error. Figure 3 shows results for 

three different length scales (2∆x, 4∆x and 20∆x, where 
∆x is the analysis grid spacing). The placement of the 

observations depends implicitly on the analysis length 

scale—with the optimal observation locations 

encroaching on the gradient regions as the scale 

decreases. These results indicate that the thinning 

algorithm should depend on not only observation 

density and grid resolution but should also be coupled 

to the implicit scales of the analysis. It is not clear yet 

whether this approach will help guide improvements in 

the IDT and DADT algorithms; however, it does 

provide information regarding how closely the optimal 

retention agrees with the IDT selection. 

 

3.3 Real Data:  AIRS Temperature Assimilation 

 

 Temperature and water vapor profiles are derived 

from the radiances measured by the Atmospheric 

Infrared Sounder (AIRS) instrument and the Advanced 

Microwave Sounding Unit (AMSU) on the Aqua EOS 

platform. Temperature soundings obtained from 

Version 5 of the AIRS retrieval algorithm are used in 

this case study.  Each sounding contains approximately 

54 vertical levels between 1013.25 and 100 hPa.  

Globally, the AIRS Version 4 retrieved profiles—

compared to rawinsondes collocated in time and 

space—exhibit RMS errors of 1 K in 1-km layers for 

temperature and 10-15% RH in 2-km layers for 

moisture (Tobin et al. 2006, Divakarla et al. 2006).  

Although Version 5 profiles have not yet been 

validated, it is expected that the relative validation 

errors will be similar to (or better than) those presented 

for Version 4 (Susskind, personal communication).  

Each AIRS profile contains a specific pressure level 

below which data is of decreased quality.  For this 

study, only the temperature and moisture data above 

this maximum pressure level are used in the analyses.  

Levels below the maximum pressure level were 

designated with a missing data value and not considered 

in the DADT thinning algorithm.  A plot of the 497-hPa 

level of AIRS temperature for 12 March 2005 is shown 

in Figure 4a.  In the figure, gaps in the data represent 

areas where the AIRS data have been removed by the 

AIRS quality indicators. 

 

 

 

 
Fig. 3. Truncated Gaussian (black curve), Barnes analysis 

(orange curve) and optimal observation locations (red circles) 

for analysis length scales of a.) 2∆x, b.) 4∆x, and c.) 20∆x. 
See text for details. 

 

 For the 12 March 2005 case study examined 

herein, the background field for the analysis is an 8-

hour forecast from the Weather Research and Forecast 

(WRF) model (Skamarock et al. 2005) initialized at 00 

UTC by the 40-km resolution North American Model 

(NAM).  A short forecast is used as the background 

instead of an analysis because of the asynoptic time of 

the AIRS overpass (0742 UTC).  The WRF output is 

mapped to the ARPS Data Analysis System (ADAS; 

Brewster 1996) grid. The ADAS domain is nearly 

identical to that of the WRF with the exception of small 

a 

b 

c 



differences in the pressure levels.  The error 

covariances used for the background are standard short-

term forecast errors cited in the ADAS documentation, 

and the error tables used for the AIRS profiles are based 

on estimates cited in validation experiments by Tobin et 

al. (2006). Separate error estimates are used for land 

and water soundings. Three iterations of the ADAS 

Bratseth scheme are performed with horizontal scaling 

factors of 150, 120, and 100 km, respectively.  Based 

on the vertical resolution of the data and the layer-

averages that each AIRS level represents, the vertical 

length scale is set to 750 m for the first two iterations 

and then reduced to 400 m for the final iteration.   

 

3.3.1  Psuedo-3D thinning:  Pressure Levels 

 

 The DADT algorithm was applied to each pressure 

level of the AIRS observations using the methodology 

described in Section 2.3 with R and ∆R values of 10 

and 2 degrees respectively.  This approach is essentially 

a 2D application of the DADT because information 

between vertical levels is not shared.  However, it does 

produce a 3D field of thinned observations that can be 

applied to test both computation time and analysis 

fidelity.  Figure 4b shows the observations that are 

retained by the DADT algorithm at 497 hPa.  Retention 

is highest in the gradient regions over Illinois and 

Indiana and over Florida and the northern Gulf of 

Mexico).  Elsewhere, the retained data are more evenly-

spaced. 

 Both the full and DADT-thinned data were 

assimilated into ADAS as rawinsonde data with the 

errors and scale factors previously described.  The full 

data set contains 2197 54-level profiles (118,638 unique 

pieces of information) and takes 6885 seconds to 

complete an analysis.  The thinned data set,  which 

retains 405 observations per level for a total of 21,870 

unique pieces of information, has a run time of only 

846 seconds—an 88% decrease in run time!  A profile 

of the average analysis increment at each analysis level 

(Fig. 5) indicates that, for the most part, the analysis 

fidelity is preserved for the thinned data.  A systematic 

variation of the R and ∆R parameters, in tandem with 

the analyses, should provide insight regarding the 

algorithm sensitivity. Additionally, a proper coupling of 

the thinning algorithm to the analysis length scale, as 

discussed previously, would also likely improve the 

results shown here. 

 

3.3.2 Pseudo-3D thinning: Pressure and Vertical Levels 

 

 An alternative approach for obtaining a pseudo-3D 

field of AIRS observations is to apply IDTL, 

independently, to both pressure and vertical cross 

sections.  Examples are presented here for which a 

temperature  innovation field  is successively thinned in 

  

 

 
 

Fig. 4.  AIRS temperature data for the 497 hPa level valid at 

0742 UTC 12 March 2005 for the a) full data set and b) 

thinned data. 

 

 

 
 

Fig. 5.  Average analysis increment of full (black) and thin 

(red) analyses for the 12 March 2005 case study. 
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two dimensions by slicing the AIRS data vertically in 

the along-swath and cross-swath directions as well as at 

AIRS pressure levels. Innovations are produced by 

interpolating the NCEP Global Reanalysis temperatures 

to AIRS locations for the 12 March 2005 case study 

(Fig. 6). Innovations are used for this experiment 

because of the large temperature variability of vertical 

atmospheric profiles.  For this experiment, IDTL was 

run on 30 vertical cross-swath sections, 135 along-

swath vertical cross sections, and 54 pressure cross-

sections (a total of 219 independent 2D IDTL 

applications).  An along-swath vertical cross-section, 

delineated by the dashed black line in Fig. 6, is shown 

in Fig. 7.  Superimposed on the figure are the full set of 

innovations and the thinned innovations obtained by 

applying IDTL in: 1.) a single along-swath vertical 

cross-section   (red   boxes)   and    2.)   in   54  pressure 

 

 
 

Fig. 6. 852 hPa temperature innovations (oC, AIRS minus 

NCEP Global Reanalysis) valid 0700 UTC 12 March 2005. 

Black dashed line denotes cross-section shown in Fig. 7. 

 

 

Fig. 7. Vertical along-swath cross-section indicated by the 

dashed black line in Fig. 6. Red boxes denote observations 

retained from 2D thinning in the along-swath cross section 

and the black diamonds represent the thinned data from a 

collection of 54 pressure cross sections. See text for details. 

 

level cross-sections (black diamonds). Clearly, there is 

little overlap in the retained observations indicating that 

the IDTL depends on how the algorithm is applied in 

two-dimensions. There is however, coherence between 

adjacent vertical cross-sections (not shown). At this 

time it is not clear how best to apply three dimensional 

thinning. One possible approach is to combine the 

uniquely retained observations in the various swath 

directions. This will be tested and compared against the 

thinning by pressure level described in the previous 

section for the DADT.  However, the results of this test 

suggest the need for a true 3D version of IDT and 

DADT. 

 

4.  DISCUSSION/FUTURE WORK 

 

For the synthetic data presented, the thinning 

efficiency in innovation space is tied to the quality of 

the background field and observations.  When the first-

guess field is a good approximation of the truth and the 

observation error is small, the IDT (IDTG) removes a 

greater number of observations in innovation space due 

to redundancy. One-dimension simulations using on the 

order of 250K analyses of a truncated Gaussian 

function indicate that, for a given number of 

observations, the optimal observation distribution 

depends on the analysis length scale. 

A test of thinned AIRS L2 thermodynamic profiles 

using a thinning algorithm for non-uniformly-gridded 

data produced an analysis that required significantly 

less computation time yet maintained analysis quality.  

Successive applications of the IDT in two dimensions 

to AIRS temperature profiles suggest that a three-

dimensional version of the IDT is likely necessary – at 

the very least to ensure consistency in the selection of 

observations.  

Using both artificial and real data, we continue to 

test, tune and develop both versions for operational 

applications. Albeit not shown here, the IDTL is also 

being tested on sea surface temperature (SST) from the 

Moderate-resolution Imager Spectroradiometer 

(MODIS).  
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