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1. ABSTRACT

It is often easy to see when an atmospheric model
disagrees with data. It is usually much harder to locate
the ultimate sources of model error.

It is particularly difficult to diagnose errors in a
model’s structure, that is, errors in the functional form
of the model equations. One technique that may help
is parameter estimation or calibration, that is, the opti-
mization of model parameter values. Typically, calibra-
tion is used solely to improve the fit between a model
and observational data. In the process, however, cali-
bration may cover up structural model errors.

In a quite opposite application, calibration may be
used to uncover the ways in which a model is wrong.
The basic idea is to separately optimize model parame-
ters to two different data sets, and then identify param-
eter values that differ between the two optimizations.
When no single value of a particular parameter fits both
datasets, then there must exist a related structural error.

The calibration method that we use produces an en-
tire multi-variate distribution of parameter values. It may
prove useful for a wide range of parameterizations. We
apply the method to a parameterization of boundary
layer clouds, uncover the presence of a structural model
error, revise the model structure, and obtain improved
results.

2. INTRODUCTION

Parameterization packages for shallow clouds un-
avoidably contain undetermined parameters. They con-
trol, at a minimum, eddy diffusivity and microphysics.
Furthermore, these parameters cannot be derived the-
oretically from first principles. Rather, they must be es-
timated or calibrated, that is, fitted directly or indirectly
to data (Jackson et al. 2003, 2004; Carrió et al. 2006).

This process of calibration has a somewhat sordid
reputation in the parameterization community. Although
every cloud parameterization is calibrated at least infor-
mally as a stand-alone single-column model, the cal-
ibration of cloud parameterizations is little discussed
in the literature (see, however, Emanuel and Z̆iković-
Rothman 1999). The reputation of calibration suffers
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because one often suspects that calibration has been
used to mask structural model errors. A structural er-
ror is a type of model deficiency in which there is a
mis-specification of a term’s functional form, not merely
a mis-specification of a parameter value. This paper
argues that the evil here is not calibration per se, but
rather model structural error; calibration should not be
marginalized, but rather exploited to detect structural er-
ror.

Two common symptoms of structural error are un-
derfitting and overfitting (Geman et al. 1992; Moody
1994; Wilks 1995).

Underfitting occurs when a model’s structure is not
rich enough to capture true variability in a dataset. In
such situations, calibration can distinguish true struc-
tural errors from merely poor parameter values. For
instance, it may occur that no single set of parameter
values yields a good fit for all cases (e.g. stratocumu-
lus, cumulus, etc.) in the dataset, even though good
parameter values can be obtained for each case sepa-
rately. Differences in the parameter values in the sepa-
rate calibrations can provide clues about the source of
structural error. In these situations, calibration does not
hide errors, but exposes them.

Overfitting occurs when too many parameters are fit-
ted using too few data. Overfitting may hide structural
errors because it may introduce compensating errors
between terms. This occurs when, in the process of
fitting a model to a limited dataset, parameter values
are inadvertently chosen such that one term cancels
structural errors in another. If the structural errors per-
sist undetected, then the overfitted model is unlikely to
match other, different datasets. However, a means to
mitigate overfitting is cross-validation against indepen-
dent datasets.

This paper applies an ensemble parameter esti-
mation technique to a single-column model (SCM) for
boundary layer clouds and turbulence. Our two main
goals are to (1) detect structural model errors in the
SCM; and (2) improve the SCM’s fit over a broad range
of cloud regimes.

The structure of this paper is as follows. In sec-
tion 3, we outline the SCM that we calibrate. In sec-
tion 4, we describe our ensemble-based parameter es-
timation framework. In section 5, we discuss the initial
parameter estimation experiments and the model defi-
ciencies revealed by them. In section 6, we propose
empirical model modifications and test them with refer-
ence large-eddy simulation (LES) datasets. In section
7, we cross-validate these modifications using indepen-



dent datasets. A fuller description of this research is
contained in Golaz et al. (2007).

3. DESCRIPTION OF SCM

Our SCM simulates boundary layer clouds and is
fully described in Golaz et al. (2002a). Briefly, the
SCM is a higher-order turbulence closure model that
uses a multi-variate probability density function (PDF) to
close higher-order turbulence and buoyancy terms. The
multi-variate PDF represents the horizontal subgrid-
scale variability of vertical velocity, temperature, and to-
tal moisture. A functional form of the PDF is specified,
and for each vertical level and time step, moments for
that functional form are predicted (such as mean, stan-
dard deviation, etc.), thus allowing the PDF to vary with
height and time. The underlying functional form of the
PDF is a mixture of two trivariate Gaussians. The shape
was determined empirically from both aircraft measure-
ments and LES data by Larson et al. (2002) with further
modifications by Larson and Golaz (2005).

4. ENSEMBLE-BASED PARAMETER ESTI-
MATION FRAMEWORK

A number of factors guided our choice of parameter
estimation algorithm:

1. Our single-column model is computationally inex-
pensive compared to three-dimensional models,
and the number of parameters we want to estimate
is moderate. Therefore, the efficiency of the pa-
rameter estimation algorithm is not an urgent con-
cern.

2. We wish to use a uniform prior parameter distri-
bution, so as to allow the algorithm the freedom
to yield the aberrant parameter values that signal
model error.

3. We desire a parameter estimation algorithm that
is easy to use, even for individual scientists who
have expertise in cloud parameterization but not in
parameter estimation.

4. Our source of “data” is LES output that is based
on observed cases. Using LES output as data
has two advantages: the LES model can be set
up identically to the SCM, and the LES generates
difficult-to-observe fields such as higher-order mo-
ments, liquid water, and cloud fraction. Our goal is
limited to emulating LES output, not observational
data. Therefore, we treat the LES data as perfect
input. Improving the agreement between LES and
observations is a separate project that is beyond
our scope.

Our parameter estimation algorithm for a single en-
semble member is as follows. Before beginning the
parameter estimation procedure, we select the SCM

and LES output fields (e.g. liquid water) that we wish
to match. Then we decide which SCM parameters to
calibrate, and we choose initial values for these param-
eters. Then we perform the following steps (see Fig. 1
for a flowchart): we run the SCM and evaluate the mis-
match between the SCM and LES using a cost function.
If the mismatch falls below a predetermined threshold,
the algorithm stops. Otherwise, the optimizer chooses
a new set of parameter values and the procedure is re-
peated until convergence. The optimization algorithm
that we use is the downhill simplex method (Press et al.
1992). The same procedure is repeated for each en-
semble member but with different initial parameter val-
ues. Our parameter estimation algorithm allows com-
plete flexibility in the choice of field(s) to be optimized
and parameter(s) to be estimated.

Central to the parameter estimation algorithm is the
choice of the cost function, J . When errors in the data
are assumed to be Gaussian, the cost function takes
the generic form:

J(m) =
N�
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where N is the number of observations sets. For each
set, there are M observations represented by the vector
dobs. g(m) is the corresponding vector of model predic-
tions obtained with the model parameter set m. C−1 is
the inverse of the covariance matrix. We simplify it by
keeping only its diagonal elements.

In our application, g(m) is obtained from the SCM
output (denoted by gSCM(m)) and dobs from the LES
“observations” (dLES). gSCM(m) and dLES can com-
prise any combination of variables produced by both the
SCM and the LES. They could include mean profiles,
such as liquid water potential temperature θ̄l, total wa-
ter mixing ratio q̄t, cloud fraction, or cloud water mixing
ratio q̄c. They could also include any one of the vertical
turbulence moments, such as w′2 or w′3. The observa-
tions can include an arbitrary number of LES cases (for
example cumulus or stratocumulus).

The minimization of J proceeds on a N -dimensional
surface, where N is the number of parameters that we
wish to estimate. Because of the complexity and di-
mensionality of J , the topology likely consists of a large
number of local valleys and floors where the minimiza-
tion may stop. A given function J may possess many
comparably good minima. For this reason, we choose
to perform an ensemble of minimizations.

Each ensemble member starts from a slightly differ-
ent initial condition and therefore yields a different op-
timized parameter set. This ensemble approach would
be wasteful if the model structure were perfect and the
topology of cost function simple: then each ensemble
member would produce identical results. Instead, the
complexity of the SCM allows different parameter sets
to yield similar cost function values.

Our approach to parameter estimation can be cast
as an approximation to a Bayesian stochastic inver-
sion with a uniform prior parameter distribution (Jack-



son et al. 2004). Each ensemble member of optimized
parameter values does not represent a random draw
from the correct posterior distribution, but rather needs
to be weighted by its (possibly scaled) likelihood given
the LES data. The scaling is necessary to account for
data uncertainty. We approximate this scaled weighting
below by selecting only the 20 ensemble members with
the highest likelihood (lowest cost function value). This
represents a sub-optimal weighting that will produce bi-
ases in the estimates of the posterior distribution, but
we feel that the inaccuracy is unimportant for our quali-
tative application.

See Golaz et al. (2007) for more details of the pa-
rameter estimation algorithm.

5. INITIAL PARAMETER ESTIMATION EX-
PERIMENTS

5.1 Configuration

A total of 10 parameters from the SCM have been
selected for the initial calibration: C1, C2, C5, C6, C7,
C8, C11, β, σ̃2

w, and μ. The actual model equations in
which all these parameters occur can be found in Golaz
et al. (2002a) and Larson and Golaz (2005). C1 con-
trols the dissipation rate of the vertical velocity variance
w′2. C2 controls the dissipation rates of the scalar vari-
ances and covariance q

′2
t , θ

′2
l , q′tθ′

l. C5 appears in the
parameterization of the pressure correlation term in the
w′2 equation. C6, C7 appear in the pressure correlation
terms of the scalar flux equations w′q′t and w′θ′

l. C8 and
C11 are part of the pressure term parameterization in
the third moment vertical velocity w′3. The parameters
β and σ̃2

w arise from the PDF functional form. β appears
in the diagnostic relationship linking the skewness of θl

and qt to the predicted skewness of w. σ̃2
w controls the

width of the individual Gaussians in the PDF. Finally, μ
is a mixing timescale used in the computation of the
mixing length.

We estimate parameter values for two boundary
layer cloud regimes separately. The differences in pa-
rameter values help reveal model structural errors.

The set-up of both cases is based on observations.
The first case is a trade-wind cumulus regime based on
the Barbados Oceanographic and Meteorological Ex-
periment (BOMEX) (Siebesma and Coauthors 2003).
The second is a marine stratocumulus case, DYCOMS-
II RF01, hereafter referred to as RF01 (Stevens and
Coauthors 2005). BOMEX and RF01 are selected be-
cause they represent different ends of the boundary
layer cloud regime spectrum. For each case, the SCM
is calibrated against LES results obtained with a version
of COAMPS R© that is suitably modified for LES scales,
which we call “COAMPS-LES” (Golaz et al. 2005).

The variables appearing in the cost function (1) are
chosen to be cloud fraction and cloud water mixing ratio.
The initial experiments we present consist of three en-
sembles: one that uses BOMEX data exclusively (B1)
in the optimization, a second that uses only RF01 data

(D1), and a third that combines both BOMEX and RF01
data (BD1). Each experiment consists of an ensemble
of 400 members.

5.2 Results

Results of the initial parameter estimation experi-
ments are shown as scatter plots in Fig. 2. In the scatter
plots, each dot represents one ensemble member. The
dots are color coded by experiment: green for BOMEX
(B1), red for RF01 (D1), and blue for the combined ex-
periment (BD1). The horizontal axes represent the fi-
nal parameter value, and the vertical axes represent the
normalized cost function end value: Ĵ = J/Jmin where
Jmin is the lowest cost function value of the ensemble.
Jmin is computed separately for each ensemble. There-
fore, the best fitting members (as measured by J) within
a given ensemble reside on the lower portion of each
panel, and the worst in the upper portion.

For each of the 10 parameters, the scatter plots re-
veal a surprisingly large spread in the final parame-
ter values compared to the initial range (gray shaded
area). The plots clearly illustrate the implausibility of
finding a global minimum that is substantially better than
other local minima and justifies the use of an ensem-
ble-based optimization approach. The product of the
optimization is an ensemble of parameter sets drawn
from a single 10-dimensional distribution and not in-
dependent parameters drawn from 10 separate one-
dimensional distributions. Scatter plots can only de-
pict the marginal projections of this multidimensional
distribution and cannot reveal how parameters co-vary.
Therefore, changing one and only one parameter value
to another arbitrary value within the range of the scatter
plot is likely to worsen the fit, because it would neglect
the covariation with other parameters. Also, because
of this covariation between parameters, it would not be
justifiable to select the mean of each marginal parame-
ter distribution as an optimum parameter value.

The optimized parameter distribution reveals some
unexpected features. For some parameters, the distri-
butions for BOMEX (green dots) and RF01 (red dots)
overlap considerably, whereas other parameter distribu-
tions overlap only slightly. In particular, note the small
overlap between green and red dots for C7 and C11.
This small overlap indicates underfitting, which is symp-
tomatic of model structural error.

Profiles from the SCM simulations using the 20 best
parameter sets are depicted in Figs 3 and 4. The pro-
files shown are mean liquid water potential temperature
(θ̄l), mean total and cloud water mixing ratios (q̄t, q̄c),
cloud fraction, second and third central moments of the
vertical velocity (w′2, w′3). For BOMEX (Fig. 3), the cal-
ibrated SCM runs are able to adequately reproduce the
LES profiles. Note that only the cloud fraction and q̄c

enter the definition of the cost function J . θ̄l, q̄t, w′2,
w′3 are not directly driven to match the corresponding
LES profiles. This shows that reasonable physical con-
straints are embedded in the SCM. However, none of
the simulations accurately reproduces the cloud fraction



near cloud base.
The RF01 profiles paint a different picture (Fig. 4).

Even though cloud water for the DYCOMS RF01 en-
semble (D1, red) and the combined ensemble (BD1,
blue) appear comparable, some significant differences
are present in other fields. In particular, the SCM is un-
able to produce a well-mixed total water profile, an indi-
cation of a poor representation of boundary layer mixing
processes. Furthermore, w′3 is unrealistically negative
in the lower portion of the domain.

5.3 Summary

The initial calibration experiments have revealed that
the SCM simulations agree relatively well with the refer-
ence LES for both BOMEX and RF01, if the SCM uses
separately calibrated parameter values. A reasonable
time evolution of RF01 can also be simulated without
having to change the mixing length formulation, a find-
ing that was not at all obvious before the experiments
were performed.

However, the experiments clearly demonstrate that
improved BOMEX and RF01 require different values of
the parameters C7 and C11. This is undesirable since
the SCM is intended to serve as a general boundary
layer parameterization. We address this issue further in
the next section.

6. REVISED PARAMETER ESTIMATION EX-
PERIMENTS

6.1 Proposed model modifications

One major difference between BOMEX and RF01,
or more generally between shallow cumulus and stra-
tocumulus clouds, is the vertical velocity skewness,

Skw = w′3/w′23/2
. The skewness of w measures the

asymmetry between updrafts and downdrafts. In shal-
low convection, updrafts tend to be narrow and strong
and the compensating downdrafts are broad and weak,
giving rise to a large positive skewness. For stratocu-
mulus, areas and vertical velocities of updrafts and
downdrafts tend to be comparable, which translates into
small positive or negative skewness values. Based on
the findings of the previous section, we propose to re-
formulate the parameters C7 and C11 so as to convert
them into skewness-dependent functions:

C7(Skw) = C7b + (C7a − C7b) e
− 1

2

�
Skw
C7c

�2

(2)

C11(Skw) = C11b + (C11a − C11b) e
− 1

2

�
Skw
C11c

�2

(3)

Equation 2 implies that in the limit of small skewness
magnitudes, C7 → C7a, and in the limit of large skew-
ness, C7 → C7b. The sharpness of the transition
between small and large values is controlled by C7c.
Equation 3 has a similar structure. Equations (2)-(3)
are purely empirical and we make no attempt to justify
them theoretically.

A new set of ensemble-based parameter estimation
experiments is performed using the new formulations
for C7 and C11. The methodology is the same as for the
initial experiments, except that the dimensionality of the
optimization problem is now 14.

6.2 Results

The final parameter values of all the members for
the revised experiments B2, D2 and BD2 are shown as
scatter plots in Fig. 5. The overlap between BOMEX
(green points) and RF01 (red points) ensembles for C7x

and C11x is now improved compared to Fig. 2. As a
caveat, we note that because the SCM inevitably still
contains structural errors and because we have opti-
mized simultaneously for all parameter values, the op-
timized values have undoubtedly been influenced by
compensating errors between terms.

We now focus on the SCM profiles of the best 20 pa-
rameter sets of each ensemble. The profiles from the
BOMEX ensemble (B2, green lines; Fig. 6) show little
change compared to the initial experiment (B1, green
lines; Fig. 3). Cloud water profile is improved in the re-
vised combined experiment (BD2, blue lines), but cloud
fraction is still underestimated near cloud base.

The impact of the modified pressure terms C7 and
C11 is more significant for RF01 (Fig. 7). The RF01
ensemble (D2) and the combined ensemble (BD2) now
both yield SCM results that agree better with COAMPS-
LES. This is in contrast to the initial experiments (Fig. 4)
in which the RF01 ensemble (D1) produced total wa-
ter mixing ratio profiles that were not sufficiently well-
mixed, and had erroneous w′3 profiles.

The results from the BD2 ensemble demonstrate
that the modifications made to C7 and C11 in Eqns. (2)-
(3) allow for the existence of parameter sets that pro-
duce reasonable results for BOMEX and RF01 simul-
taneously. This was not the case with the unmodified
SCM. Furthermore, before this work was performed, it
would have been difficult to identify modifications to the
SCM that would have been likely to faithfully simulate
both BOMEX and RF01.

7. EVALUATION WITH INDEPENDENT DATA

We have intentionally calibrated only two LES cases
and reserved other cases for cross-validation in order to
avoid overfitting. To verify that we have indeed avoided
overfitting, we simulate four additional test cases using
the best 20 parameter sets from the BD1 and BD2 en-
sembles. The additional test cases are all set up ac-
cording to the specifications of GCSS intercomparisons,
which are based loosely on observations.

The first case is shallow cumulus over land from the
Southern Great Plain (SGP) Atmospheric and Radiation
Measurement (ARM) site (Brown and Coauthors 2002).
The second case involves cumulus clouds rising under
a broken stratocumulus deck that were observed during
the Atlantic Trade Wind Experiment (ATEX) (Stevens



and Coauthors 2001). The last two cases are both
nocturnal stratocumulus-topped layers. One is based
on observations from the FIRE [First ISCCP (Interna-
tional Satellite Cloud Climatology Project) Regional Ex-
periment] (Moeng and Coauthors 1996). The second
stratocumulus case is based on the second research
flight (RF02) of the DYCOMS-II field experiment1.

Figure 8 shows the SCM cloud properties obtained
with the 20 best parameter sets from the ensembles
BD1 (blue) and BD2 (orange) and compares them with
COAMPS-LES (black). The main interest is in compar-
ing the BD1 and BD2 SCM profiles, which are the “be-
fore” and “after” pictures showing the effects of our em-
pirical modifications.

The biggest difference occurs for RF02, where the
BD2 SCM (“after”) cloud water profiles are markedly su-
perior to the BD1 (“before”) profiles. Most BD1 ensem-
ble members predict liquid water amount near cloud
top that underestimates the LES value by nearly 50%.
In contrast, the BD2 ensemble members almost ex-
actly match the LES. For FIRE, ARM, and ATEX, the
changes between BD1 and BD2 are modest. Given that
these changes are solely based on BOMEX and RF01
datasets, we can safely state that we have avoided
overfitting and hence can have some confidence in the
generality of the SCM modifications, despite their em-
pirical nature.

8. CONCLUSION

We have presented an ensemble method of param-
eter estimation. It has three chief advantages:

1. It allows complete flexibility in the choice of pa-
rameters to be estimated and fields to be opti-
mized. For instance, we may simultaneously es-
timate any combination of the parameters C1, C2,
and so forth. Furthermore, we may optimize any
combination of fields (e.g. cloud fraction and liq-
uid water) that are produced by the SCM and con-
tained in the LES data.

2. The method is easy to implement, because it does
not require writing an adjoint of the model code.

3. The method produces an ensemble of sets of best-
fit parameter values. This is useful in cases in
which the cost function contains many compara-
ble local minima. The ensemble methodology pro-
vides, among other things, the range of acceptable
values of parameters.

We have used the ensemble parameter estima-
tion method to calibrate a single-column model (SCM)
of boundary layer clouds. The “data” used is out-
put from six large-eddy simulations (LES). These con-
sist of three stratocumulus cases, a trade-wind cumu-

1For a description of the intercomparison, see
http://sky.arc.nasa.gov:6996/ack/gcss9/index.html.

lus case, a continental cumulus case, and a cumulus-
under-stratocumulus case. We calibrate 10 SCM pa-
rameters simultaneously against profiles of cloud frac-
tion and liquid water.

In calibrating the SCM, we sought to avoid the op-
posing problems of overfitting and underfitting.

To avoid overfitting, we fit only two fields, cloud frac-
tion and liquid water, and two cases, the BOMEX trade-
wind cumulus case and the DYCOMS-II RF01 marine
stratocumulus case. Other fields and cases were used
for cross-validation. That is, they were used to verify
that the chosen parameter values fit well generally, not
merely for the two fields and cases used in the calibra-
tion.

To diagnose the cause of underfitting, we calibrated
BOMEX and RF01 separately, thereby obtaining two
sets of parameter values. The separate calibrations re-
vealed differences in the values of the parameters C7

and C11, which indicates underfitting due to structural
model error. Assessing the significance of these differ-
ences was made possible by the ensemble methodol-
ogy, which clearly showed the lack of overlap in the ac-
ceptable parameter values. This demonstrates that cal-
ibration need not obscure model structural error; quite
oppositely, if used strategically, calibration may reveal
structural errors. We then replaced the parameters C7

and C11 by empirical functions of skewness. This struc-
tural modification ameliorated the underfitting and per-
mitted the SCM to model all six cloud cases more accu-
rately without case-specific adjustments.

Although the parameter estimation technique can
help identify the existence of model structural errors,
it cannot propose new ideas to fix those errors. Nev-
ertheless, automated parameter estimation does speed
up the process of model development because it allows
rapid re-calibration when a new model improvement is
introduced. This is useful because the introduction of
a true model improvement often produces a worse fit
to data, since errors in other parts of the model are no
longer compensated.
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Figure 1: Flowchart illustrating the optimization algorithm for a single ensemble member.
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Ĵ

C8 C11

Ĵ
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Figure 2: Results of the initial parameter estimation experiments (B1, D1, BD1). Each panel represent one of the 10
parameters. The horizontal axis is the final parameter value, and the vertical axis the normalized error, Ĵ , of a given

optimization with respect to the best member of the ensemble. Each optimization is represented by a single dot.

Green dots are for the BOMEX ensemble (B1), red dots for the RF01 ensemble (D1), and blue for the combined
ensemble (BD1). The gray shaded areas indicate the initial allowable parameter ranges.
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Figure 3: Comparison of the COAMPS-LES profiles (black) with the 20 lowest J value SCM simulations for the
BOMEX ensemble (B1, green) and combined ensemble (BD1, blue) of the initial parameter estimation experiments.

Profiles shown are liquid water potential temperature (θ̄l), total and cloud water mixing ratios (q̄t, q̄c), cloud fraction,

second and third moments of the vertical velocity (w′2, w′3). They are averaged over the last three hours of the
simulation. The gray shaded areas indicate the range (minimum and maximum bounds) of other LES models from

the intercomparison.
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Figure 4: Same as Fig. 3 but for RF01. Red lines are SCM results from the RF01 ensemble (D1) and blue lines

from the combined ensemble (BD1). Profiles are averaged over the last simulation hour.
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Figure 5: Same as Fig. 2 but for the results of the revised parameter estimation experiments (B2, D2, BD2) with 14
parameters. Green dots are for the BOMEX ensemble (B2), red dots for the RF01 ensemble (D2), and blue for the

combined ensemble (BD2).
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Figure 6: Same as Fig. 3 but for the revised parameter estimation experiments (B2, BD2). Green lines are SCM

results from the BOMEX ensemble (B2) and blue lines from the combined ensemble (BD2).
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Figure 7: Same as Fig. 4 but for the revised parameter estimation experiments (D2, BD2). Red lines are SCM

results from the RF01 ensemble (D2) and blue lines from the combined ensemble (BD2).
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Figure 8: Evaluation of the best 20 parameter sets obtained from the combined experiments BD1 and BD2 using
independent datasets. Red lines are COAMPS-LES results and the gray shaded areas represent LES ranges

from model intercomparisons. The SCM results from the 20 best parameter sets from BD1 (i.e. before empirical

modifications) are plotted in blue. The BD2 (i.e. after empirical modifications) results are in orange.


