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1. INTRODUCTION

Quantification of the uncertainty inherent in predic-
tions of tropical cyclone (TC) intensity is not only of
scientific interest, but also is of relevance to users
who must involve TC intensity forecasts in decision-
making processes. Here, we describe an approach
to quantify the uncertainty in (deterministic) opera-
tional TC intensity forecasts, based solely on a set
of such forecasts and the corresponding set of ob-
served intensity values. The aforementioned data
sample is used to estimate an unconditional prob-
ability distribution of the observations, as well as a
set of conditional probability distributions of the ob-
servations given the forecast. Qualitatively, if these
conditional distributions are sharper than the un-
conditional distribution, then knowledge of the fore-
cast value serves to reduce uncertainty about the
value of the observation, relative to knowledge of
the unconditional distribution alone. The average
reduction in uncertainty about the observation due
to knowledge of the forecast is quantified via calcu-
lation of the mutual information between the fore-
casts and observations, a concept borrowed from
information theory.

Further details concerning mutual information
and its interpretation are contained in Sec. 2. The
data samples used in calculating the mutual infor-
mation between various operational TC intensity
forecasts and the observations are described in
Sec. 3, followed by a demonstration of the calcu-
lation process for a particular data sample in Sec.
4. Sec. 5 then shows the results. It is seen that
the mutual information between the various opera-
tional TC intensity forecasts and the observations
is positive for all lead times (0 to 5 days), meaning
that even the longer lead forecasts reduce uncer-
tainty about the value of the observation relative to
that inherent in the unconditional distribution of the
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observations. The ensuing discussion in Sec. 6 ex-
amines the results from the perspective of forecast
verification, as mutual information can be readily in-
terpreted as a summary measure of deterministic
forecast quality. In this context, mutual information
has a number of appealing properties, foremost of
which is the ability to seamlessly include nominal
forecasts (e.g. “dissipated”) with ordinal forecasts
(e.g. 70 kt) in the verification process.

2. MUTUAL INFORMATION

Fundamentally, mutual information quantifies the
amount of information one random variable con-
tains about another random variable (Cover and
Thomas 2006). Suppose the two (discrete, scalar)
random variables are the forecast, F , and the ob-
servation, X , such that the mutual information be-
tween the two variables is denoted I(F ; X). As
a consequence of the mutual information between
the two random variables, obtaining forecast value
F = f results in the average gain of I(F ; X) bits of
information about the observed value X = x, rela-
tive to no knowledge of the forecast value. This av-
erage gain of information about the observation due
to knowledge of the forecast, the mutual informa-
tion, can be equivalently interpreted as the average
reduction in the uncertainty about the observation
due to knowledge of the forecast.

The aforementioned interpretations of mutual in-
formation as a difference in information/uncertainty
are reflected in the formula

I(F ; X) = H(X) − H(X |F ), (1)

which expresses mutual information as the differ-
ence of the entropy, H(X), and the conditional en-
tropy, H(X |F ). The entropy pertains to the uncon-
ditional distribution of the observations, t(x). It is
the average amount of information needed to de-
scribe realization X = x, assuming X ∼ t(x). En-



tropy is given by the formula

H(X) = −
∑

x

t(x) log
2
t(x). (2)

Entropy is minimized (at a value of H(X) = 0)
for t(x) such that X falls in a particular category
with probability one, and maximized for t(x) such
that all categories have equal probability (Cover and
Thomas 2006). In this sense, entropy measures the
uncertainty in X : the least uncertainty is in a situ-
ation in which X definitely falls in a particular cat-
egory, and the most uncertainty is in a situation in
which X has equal probability of falling in each of
the categories.

The conditional entropy is similar in nature to the
entropy, but pertains instead to the set of conditional
distributions of the observations given the forecast,
q(x|f). It is the average amount of information
needed to describe realization X = x, assuming
X |F ∼ q(x|f). The formula for conditional entropy
is

H(X |F ) = −
∑

f

s(f)
∑

x

q(x|f) log
2
q(x|f), (3)

where s(f) is the unconditional probability distribu-
tion of the forecasts. The interpretation of condi-
tional entropy in terms of uncertainty is analogous
to that of entropy described previously.

It follows from Eq. 1, coupled with the interpreta-
tion of entropy in terms of uncertainty, that the mu-
tual information, I(F ; X), is the average reduction
in uncertainty about the observation due to knowl-
edge of the forecast, relative to the uncertainty in-
herent in the unconditional distribution of the obser-
vations. The minimum value of I(F ; X) is zero, in
the case that F and X are independent, such that
the conditional entropy is exactly the same as the
entropy (i.e. conditioning on an independent vari-
able does not reduce uncertainty in X). The maxi-
mum value of I(F ; X) is H(X), in the case that F

and X are absolutely dependent, such that the con-
ditional entropy is zero (i.e. conditioning on an abso-
lutely dependent variable eliminates uncertainty in
X). Note that absolute dependence does not nec-
essarily imply F = X , but rather that a given value
of F is always paired with a particular value of X in
the data sample. The maximum and minimum val-
ues of I(F ; X) are such as to make a normalized
version of mutual information convenient,

IN (F ; X) =
I(F ; X)

H(X)
= 1 −

H(X |F )

H(X)
. (4)

The maximum value of normalized mutual informa-
tion, IN (F ; X), is one and the minimum value is
zero.

3. DATA SAMPLES

Sec. 2 shows that to calculate the mutual infor-
mation between forecasts and observations, esti-
mates of the probability distributions t(x), q(x|f),
and s(f) are necessary. These distributions can
be obtained through manipulation of an estimate of
the joint distribution of the forecasts and observa-
tions, p(f, x). Here, a joint distribution is estimated
according to the relative frequencies in a data sam-
ple consisting of operational TC intensity forecasts
and the corresponding best track observations, de-
noted {(fk, xk); k = 1 . . .N}. A data sample per-
tains to a particular lead time and TC intensity pre-
diction system. Eight lead times (ranging from 0
to 120 h) and four TC intensity prediction agen-
cies/systems (NHC, GFDL, D-SHIPS, SHIFOR) are
considered here, making for a total of 32 data sam-
ples. The characteristics of these data samples are
now briefly described.

The data samples pertain to operational inten-
sity forecasts and observations of Atlantic basin
TCs from the 2001 through 2005 seasons. Every
data sample consists of N = 1965 (f, x) pairs, en-
compassing all realizations in which a forecast was
initialized from each of the four forecast systems.
Forecast and observed intensities are categorized
into 1 of 30 categories: 29 ordinal categories of 5
kt width (centered every 5 kt from 20 kt to 160 kt),
and 1 nominal category for the dissipated TC. A pre-
diction of “dissipated” is assumed for lead times be-
yond the last lead time an ordinal forecast is issued,
or if the ordinal forecast value is less than 17.5 kt.
An observation of “dissipated” occurs if there is no
intensity value in the best track corresponding to a
time a forecast is valid, or if an ordinal best track
value is less than 17.5 kt.

4. EXAMPLE CALCULATION

Here, the process by which mutual information is
calculated is demonstrated for a particular data
sample, consisting of 12 h lead time NHC TC inten-
sity forecasts and the corresponding observations.
Select probability distributions relevant to the cal-
culation are displayed in Fig. 1. Fig. 1a shows the
unconditional distribution of the observations, t(x).
Using Eq. 2, the entropy is calculated to be 4.30
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Figure 1: Select probability distributions pertaining
to the calculation of the mutual information between
the 12 h NHC TC intensity forecasts and observa-
tions. (a) Unconditional distribution of the observa-
tions, t(x). (b) Conditional distribution of the obser-
vations given a forecast of 35 kt, q(x|F = 35). (c-d)
As in (b), but conditioning on a forecast of 65 kt and
100 kt, respectively. Note that in all panels, “D” de-
notes the nominal category of “dissipated”, to the
left of the ordinal intensity categories.

bits. This value of entropy is quite large (for ref-
erence, the maximum possible value is 4.95 bits),
since the probability is spread out amongst many
categories of observation, such that there is consid-
erable uncertainty present. Fig. 1b-d shows three
components of the set of conditional probability dis-
tributions of the observations given the forecast,
q(x|f); the distribution in Fig. 1b is conditioned on
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Figure 2: Normalized mutual information, as a func-
tion of lead time, for four operational TC intensity
prediction systems.

a forecast of 35 kt, the distribution in Fig. 1c on a
forecast of 65 kt, and the distribution in Fig. 1d on
a forecast of 100 kt. These conditional distributions
are clearly sharper in nature than the unconditional
distribution in Fig. 1a, as probability is concentrated
in a relatively limited number of categories. Thus,
conditioning on the NHC 12 h forecast qualitatively
appears to reduce the uncertainty in the value of
the observed TC intensity. This inference is borne
out in the calculation of the conditional entropy (us-
ing Eq. 3), which is 2.64 bits. Subtracting the con-
ditional entropy from the entropy yields I(F ; X) =
1.66 bits for the mutual information between the 12
h NHC TC intensity forecasts and the observations
(see Eq. 1), or IN (F ; X) = 0.39 after normalization.
Hence, on average, knowledge of the 12 h NHC
forecast reduces the uncertainty in the observation
by 39 percent, relative to the uncertainty inherent in
the unconditional distribution of the observations.

5. RESULTS

Fig. 2 shows the normalized mutual information,
IN (F ; X), for TC intensity forecasts from the NHC,
GFDL, D-SHIPS, and SHIFOR prediction systems
as a function of lead time. Normalized mutual infor-
mation calculations were performed using the data
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samples described in Sec. 3 to estimate the prob-
ability distributions t(x), q(x|f), and s(f) for each
forecast system/lead time combination. Broadly
speaking, IN (F ; X) decreases rapidly for the first
24 hours of lead time, then decreases at a much
slower rate through the 72 h lead time, before
remaining roughly constant out to 120 h. Since
IN (F ; X) does not asymptote to zero with lead time,
it is the case that the long-lead TC intensity fore-
casts reduce uncertainty about the value of the ob-
servation (on average), relative to the uncertainty
inherent in the unconditional distribution of the ob-
servations. However, beyond 36 h the forecasts
only reduce the uncertainty about the observation
by 10–25 percent.

6. APPLICATION TO VERIFICATION

In addition to its role in the quantification of un-
certainty, the mutual information between forecasts
and observations can be utilized as a verification
measure (as has been suggested by Leung and
North 1990; DelSole 2005). Specifically, mutual in-
formation is a summary measure of forecast infor-
mation content, a fundamental attribute of forecast
quality. Mutual information has a number of char-
acteristics that distinguish it from traditional sum-
mary measures of forecast accuracy, such as mean
absolute error (MAE). As described previously, the
calculation of I(F ; X) depends on an estimate of
p(f, x), the joint distribution of the forecasts and ob-
servations. Thus, calculation of mutual information
is a natural extension to the distributions-oriented
approach to verification (Murphy and Winkler 1987),
which is based on analysis of p(f, x). It is unneces-
sary to construct an estimate of p(f, x) to calculate
MAE, however, as MAE can be obtained through di-
rect operation on the (f, x) pairs of the data sample.

Of particular pertinence to the verification of de-
terministic TC intensity forecasts is the difference
between mutual information and MAE in the abil-
ity to handle nominal designations of the forecast
and observed categories. Mutual information can
accommodate a nominal, ordinal, or mixed catego-
rization of the forecasts and observations because
I(F ; X) is a function of only the probabilities of the
categories (see Eqs. 1–3). MAE, which can be ex-
pressed as

MAE =
∑

f

∑

x

p(f, x) |f − x| , (5)

is a function of the probabilities of the categories
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Figure 3: Dashed line shows the fraction of realiza-
tions in the data samples, as described in Sec. 3, in
which the observation is classified as “dissipated”
rather than as an ordinal intensity value. Similarly,
the solid line shows the fraction of realizations in
which the observation or any of the four operational
TC intensity forecasts is classified as “dissipated”.
Such realizations cannot be included in mean ab-
solute error verification.

(elements of p(f, x)) and the designations of the
categories (x and f ). As such, nominal categories
must be excluded from consideration in the calcu-
lation of MAE, to avoid taking the difference of 50
kt and “dissipated”, for instance. Consequentially,
MAE verification of operational TC intensity fore-
casts is forced to ignore (f, x) realizations involv-
ing dissipation. Such realizations constitute a sig-
nificant fraction of the total realizations in the data
samples utilized here, as shown in Fig. 3. These
realizations can be seamlessly included in the op-
erational TC intensity forecast verification process
by utilizing mutual information as a verification mea-
sure.

Given the interpretation of mutual information as
a summary verification measure, a cautionary note
concerning the relative performance of the opera-
tional TC intensity forecast systems in Fig. 2 is war-
ranted. Over the five years of realizations encom-
passed in the data samples, the forecast systems
themselves evolved substantially, such that the re-
sults may not necessarily be representative of the
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performance of the 2005 (or current) versions of
the forecast systems. The application of mutual in-
formation verification to smaller data samples (ten-
able, perhaps, by reducing the number of ordinal in-
tensity categories or statistically modeling the joint
distribution) is a subject for future research.
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