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1.   INTRODUCTION 

 
Improved forecasts of cloud-to-ground (CG) 

lightning would yield many societal benefits.  Skill-
ful probabilistic guidance in the 3-12 h time frame 
would allow the public to better assess the CG 
lightning threat and thereby support better deci-
sion-making regarding the protection of life and 
property.  Some of the economic sectors that 
would benefit include organizers of outdoor sport-
ing events, the fire weather community, aviation, 
the maritime industry, outdoor construction, and 
electric utilities.  A technique that produces accu-
rate and timely CG lightning threat information 
should lead to reduced fatalities and injuries. 
 

Florida annually receives more CG strikes 
than any other state (Orville 1994; Hodanish et al. 
1997; Orville and Huffines 2001; and Orville et al. 
2002).  Warm season convection over Florida is 
regulated by low-level convergence associated 
with the sea breeze.  Interactions between the sea 
breeze, the prevailing wind, coastline curvature, 
and even urban effects have been shown to influ-
ence lightning patterns (e.g., López and Holle 
1987; Arritt 1993; Lericos et al. 2002; Westcott 
1995; Steiger et al. 2002).  Even if one could fore-
cast the exact locations that will experience deep 
convection, it does not necessarily follow that 
these areas will experience the most lightning, 
since lightning production ultimately is controlled 
by cloud microphysics.  Thorough descriptions of 
cloud electrification processes are given in Rey-
nolds et al. (1957), Vonnegut (1963),   Williams 
(1985), Williams et al. (1989), Price and Rind 
(1992) and Petersen and Rutledge (1998).   

  
A variety of statistical techniques have been 

used to develop forecast models for thunder-
storms and lightning, including multiple linear re-
gression (MLR) for continuous predictands (e.g., 
Neumann and Nicholson 1972; Reap and 

MacGorman 1989), or binary logistic regression 
(BLR) for binary “yes” or “no” predictands (e.g., 
Livingston et al. 1996; Mazany et al. 2002; Lam-
bert et al. 2005; and Shafer and Fuelberg 2006).  
Statistical prediction models for lightning over 
Canada and the northern U.S. also have been de-
veloped using Classification and Regression Trees 
(CART) (Burrows et al. 2005). 

    
Many studies have utilized parameters derived 

from morning soundings to forecast afternoon 
lightning.  However, this approach sometimes can 
produce large forecast errors if morning conditions 
change, or if the sounding is not representative of 
the entire forecast area.  An alternative approach 
is to use data from numerical weather prediction 
(NWP) models.  A method known as Model Output 
Statistics (MOS; Glahn and Lowry 1972) often has 
been used to relate forecast output from NWP 
models to a predictand of interest.  However, MOS 
has several drawbacks that can limit its forecast 
skill.  Since NWP models are constantly changing, 
it often is difficult to obtain a sufficiently long ar-
chive of forecasts from the same model to develop 
the MOS equations.  Any modifications to the 
NWP model that change (even reduce) systematic 
model errors require redevelopment of the MOS 
equations (Wilks 2006).   

   
An alternative to MOS is the perfect prognosis 

(PP) (or “perfect prog”) method.  This approach 
develops statistical relationships between ob-
served atmospheric parameters and observations 
of the predictand (Klein et al. 1959; Klein 1971).  
Bothwell (2002) used the PP method to develop 
lightning guidance for the western U.S. on a 40 × 
40 km grid, using analyses from the NCEP 40-km 
RUC (RUC40). 

   
A drawback to the PP scheme is that it as-

sumes a “perfect” forecast of the predictors by the 
NWP model and thus does not account for model 
biases.  Conversely, a significant advantage is the 
stability of the equations.  Since PP equations are 
developed without NWP information, any changes 
to the driving NWP models do not require redevel-
opment of the PP equations.  In fact, improved 
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random or systematic errors in the NWP model 
should improve the statistical forecasts (Wilks 
2006).  This advantage makes PP the method of 
choice for this study. 

       
We use the PP method to develop a high-

resolution, gridded forecast guidance product for 
warm season CG lightning over Florida on a 10 × 
10 km grid at 3-hourly intervals.  An archive of 
analyses from the 20-km RUC model (RUC20) is 
used to examine relationships between observed 
atmospheric parameters and spatial and temporal 
patterns of CG lightning.  The most important 
RUC-derived parameters then are used to develop 
equations producing 3-hourly forecasts of the 
probability of one or more CG flashes (PROB≥1), 
as well as the probability of exceeding various 
flash count percentile thresholds (PROB≥T).  Fi-
nally, the equations are applied to output from 
three mesoscale models during an independent 
test period (the 2006 warm season). 

  
Section 2 describes the study domain as well 

as the lightning and RUC analysis datasets.  The 
model development procedure is described in 
Section 3.  A discussion of the parameters com-
prising the models and their physical significance 
to lightning occurrence is given in Section 4.  Sec-
tion 5 evaluates the utility of the lightning forecast 
scheme when applied to output from several 
mesoscale models during the 2006 warm season.  
Finally, a summary of the model development and 
verification results is given in Section 6. 

  
2.   DATA  
 

Our lightning guidance was developed for all 
of Florida (Fig. 1), covering the Peninsula and 
Panhandle and extending northward into south-
east Alabama and southern Georgia.  Figure 1 
also shows the 10 × 10-km grid points used for 
computing the lightning probabilities.   

        
We utilized CG lightning data from the Na-

tional Lightning Detection Network (NLDN) (Cum-
mins et al. 1998).  A detailed description of its sen-
sors and methods of detection is given in Cum-
mins et al. (1998).  We employed a quality control 
procedure recommended by Cummins et al. 
(1998) to remove possible cloud discharges and 
duplicate strikes.  This procedure is described in 
detail in Shafer and Fuelberg (2006). 

   
At every grid point over land (Fig. 1), flash to-

tals were tabulated for each 3-h period (e.g., 0000-
0259 UTC, …, 2100-2359 UTC) by summing the 

strikes that occurred within a 10 km radius.  The 
flash totals then were transformed into binary vari-
ables; “1” if one or more flashes occurred during 
the 3-h period or “0” if no lightning occurred.  Addi-
tional binary variables were assigned based on 
whether the flash total exceeded the 50th, 75th, 
90th, or 95th percentiles during a given 3-h period 
(values are given in Table 1 for the four most ac-
tive 3-h periods).  The 3-h flash totals and binary 
indicators served as the predictands for develop-
ing the lightning forecast equations. 

           
Observed atmospheric predictors were ob-

tained from an archive of RUC analyses during the 
2002-2005 warm seasons (~ 600 days).  A com-
plete description of the RUC model is given in 
Benjamin et al. (2002, 2004).  The atmospheric 
parameters calculated from the RUC analyses are 
described in Section 3. 

 
We used S-PLUS version 6.1 for Windows 

and the Statistical Package for the Social Sci-
ences (SPSS) version 11.5 for Windows for the 
exploratory analyses and statistical modeling.  
Both are powerful, state-of-the-art packages with a 
wide range of analysis and modeling capabilities. 

 
3.   MODEL DEVELOPMENT 
 
3.1 Climatological and Map Type Predictors 
 

Climatological and pattern type lightning fre-
quencies were developed as candidate predictors 
to capture local enhancements due to interactions 
between the low-level wind, thermal circulations, 
and coastline topography (e.g., Pielke 1974; Arritt 
1993; Laird et al. 1995; Lericos et al. 2002).  
These predictors have the potential to add detailed 
information about local effects that may not be well 
resolved by NWP models (Reap 1994a).  

    
We used a simple correlation technique de-

scribed in Lund (1963) and Reap (1994a) to de-
velop the map type predictors.  Based on Reap 
(1994a), the correlation technique was applied to 
3-hourly observed sea level pressure (SLP) fields 
from RUC analyses spanning the 1998-2005 warm 
seasons (~ 1224 days).  SLP patterns imply both 
the direction and speed of the low-level flow.  The 
pattern classification was performed over the geo-
graphical area shown in Fig. 1.  To capture re-
gional scale patterns (i.e., the prevailing wind) and 
to smooth small scale variations, the RUC SLP 
values were interpolated to a coarser grid (100 
km) (Fig. 1), and the correlation technique was 
applied to the interpolated SLP values.     
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 Table 2 shows results of the map type classi-
fication.  Five map types (A-E) were developed 
using the Reap (1994a) technique.  Types A and B 
comprise ~ 44% of the total sample, while types C-
E comprise ~ 34%.  The remaining ~ 22% of the 
sample could not be classified at the correlation 
threshold being used (0.70).   
 

Using the binary indicators for one or more 
flashes (Section 2), relative lightning frequencies 
(MTFREQ) were calculated for each map type and 
3-h period.  Similarly, 3-h flash totals were used to 
calculate an unconditional mean number of 
flashes for each map type (MTMEAN).  Clima-
tological relative frequencies and unconditional 
means also were calculated using all warm sea-
son days during 1995-2005.  The climatological 
and map type lightning frequencies and means 
were submitted as candidate predictors for the 
regression analysis described in Section 3.4. 

   
Composite SLP patterns associated with each 

map type are shown in the left panels of Fig. 2, 
while the right panels show spatial distributions of 
the mean number of flashes (MTMEAN) for the 
1800-2059 UTC period.  The five map types rep-
resent distinctly different flow patterns, and are 
similar to those from previous studies (e.g., Reap 
1994a; Lericos et al. 2002).  The predominant pat-
tern, type A (Figs. 2a-b), is characterized by high 
pressure northeast of Florida that produces pre-
vailing easterly and southeasterly flow across the 
state.  As a result, most of the lightning is confined 
to the West Coast, with maxima near Tampa Bay, 
Fort Myers, and east of Lake Okeechobee.  Map 
type B (Figs. 2c-d) contains a surface ridge over 
South Florida that results in southwesterly flow 
across the state.  This focuses the lightning along 
the East Coast of the Peninsula, with coastline 
interactions evident near the Big Bend of the Pan-
handle (Camp et al. 1998).  Map type C (Figs. 2e-
f) represents a transition between types A and B, 
in which the east-west oriented surface ridge is 
located over central Florida.  This pattern pro-
duces southeasterly flow over South Florida and 
south-southwesterly flow over the northern Penin-
sula.  Thus, the lightning patterns are a combina-
tion of types A and B, with maxima along both 
coasts.  Map type D (Figs. 2g-h) is characterized 
by high pressure north of Florida and lower pres-
sure to the southeast, which is most common dur-
ing May and September after a cold frontal pas-
sage.  The dry northeasterly flow confines most of 
the lightning to South Florida.  Finally, map type E 
(Figs. 2i-j) is a variation of type B, exhibiting a lobe 
of high pressure over the Gulf of Mexico and lower 

pressure to the northeast.  West-northwesterly 
flow confines most lightning to the East Coast and 
Big Bend, with generally less coverage than ob-
served with type B. 

 
3.2 Model-Analyzed Candidate Predictors 

 
A large number of RUC-analyzed predictors 

were investigated for possible inclusion in the 
candidate predictor pool, many of which have 
been found useful in previous studies.  The pa-
rameters investigated, their abbreviations, and a 
short description of each are listed in Table 3.  The 
parameters were calculated from the RUC-
analyzed temperature, dew point, wind, height, 
and surface pressure fields valid every 3 h (e.g., 
0000 UTC, 0300 UTC,…, etc.).  The fields were 
interpolated to the 10 × 10-km grid (Fig. 1) and 
transformed into the format of a vertical sounding 
at each grid point (Bothwell 2002).   

   
3.3 Generalized Linear Models 
 

MLR has been used in the majority of previous 
statistical lightning studies (e.g., Neumann and 
Nicholson 1972; Reap and Foster 1979; Reap and 
MacGorman 1989; Reap 1994a; Hughes 2001).  
However, unless the assumptions of constant 
variance and Gaussian residuals are met (which is 
rarely the case with count data), these methods 
can lead to undesirable and sometimes nonsensi-
cal results.  Thus, we considered alternative re-
gression methods; namely, the family of general-
ized linear models (GLMs). 

 
When the predictand is either “yes” or “no”, 

one such method is binary logistic regression 
(BLR).  A thorough description of BLR is given in 
Lehmiller et al. (1997) and Wilks (2006).  We used 
BLR to develop equations giving the probability of 
one or more flashes (PROB≥1) within a 10-km 
radius of each grid point (Fig. 1) to produce spatial 
probability forecasts for each 3-h period.  BLR has 
been used successfully in previous lightning fore-
casting studies (e.g., Bothwell 2002; Mazany et al. 
2002; Lambert et al. 2005; Shafer and Fuelberg 
2006).   

 
Our second objective was to develop equa-

tions to forecast the amount of lightning during 
each 3-h period, conditional on one or more 
flashes occurring.  The most appropriate model for 
count data is the Poisson family of GLMs (Elsner 
and Schmertmann 1993; Gardner et al. 1995; Els-
ner and Jagger 2004).  As in BLR, this approach 
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employs a log link function to linearize the ex-
pected value (μ) of the dependent variable (y): 

   

KKi xbxbbx +++= ...])[ln( 110μ
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,        (2) 
 
where μ[xi] is the mean response resulting from 
the ith set of predictors (x1, x2, …., xK).  If one as-
sumes that events occur randomly and at a con-
stant average rate (μ) with Var(y) = μ, then the 
events are said to be generated by a Poisson 
process with the probability model 
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A histogram of the conditional count distribu-
tion for our most active lightning period (1800-
2059 UTC) is shown in Fig. 3.  It is clear that the 
counts are strongly skewed, with the majority of 
cases having 10 or less flashes and few cases 
having 100 or more flashes.  Since the variance of 
the distribution is very large, ~ 80 times greater 
than the mean (μ ~23 flashes), the data do not fit 
the Poisson assumption that Var(y) = μ.  The most 
likely explanation is that the counts were gener-
ated by an inhomogeneous Poisson process (also 
known as a Cox process), whereby the number of 
storms over a given region and the number of 
flashes produced per storm are both approxi-
mately Poisson.  This “mixed” Poisson process 
results in the lightning counts having more disper-
sion than is accounted for by a homogeneous 
Poisson model (personal communication with Dr. 
Thomas Jagger, Department of Geography, FSU).  

  
An alternative probability model is the negative 

binomial (NB) scheme.  As in Poisson regression, 
the mean response (μ) is modeled by (2); how-
ever, the variance now is a quadratic function of μ 
: 

  
Var(yi | μ[xi] ) = μ[xi] + θ -1μ[xi] 2 ,            (4)
      
where θ -1 is the shape parameter (estimated by 
maximum likelihood).  The resulting probability 
model for the number of flashes, y, as a function of 
μ and θ  is given by: 
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where Γ is the gamma function (Crawley 2002). 
 

Figure 4 shows the probability distributions 
implied by the Poisson (3) and NB (5) models with 
only the intercept term (b0) included for μ = 23.15 
and θ = 0.342 (estimated from the observed data 
using the S-PLUS software).  Also shown is the 
observed frequency distribution.  It is clear that the 
Poisson model is a poor choice for representing 
the count distribution since too little probability is 
assigned to the smallest lightning counts while too 
much is assigned to counts near the mean.  The 
NB model is a much better fit to the data, captur-
ing the large number of cases with 10 or fewer 
flashes and more closely representing the tail of 
the observed distribution. 

   
Since the NB provides a much better fit to the 

observed frequency distribution (Fig. 4), it was our 
method of choice.  The NB has been used previ-
ously to model thunderstorm activity at the Ken-
nedy Space Center (KSC) (e.g., Falls et al. 1971, 
Williford et al. 1974) as well as thunderstorm and 
hail day probabilities in Nevada (Sakamoto 1973).  
However, to the best of our knowledge no prior 
study has used the NB as the probability model for 
lightning counts.  Since the count distribution (Fig. 
4) is left-truncated at one flash, the distribution is 
not strictly NB since (5) includes y = 0.  However, 
if we treat y-1 as having a NB distribution, then (5) 
can be used to estimate the probability for each y-
1.  Since (5) is a probability density function, the 
individual probabilities (y = 1,∞) must sum to 1.  
Thus, the probability of meeting or exceeding any 
count threshold, T, can be obtained from 
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3.4. Equation Development 
 
We determined whether relationships between 

observed predictors and lightning were generally 
the same for the entire study area or if they varied 
significantly from one portion of the state to an-
other.  We first subdivided the domain into nine 
areas (Fig. 5).  Then, separate sets of equations 
were developed for each area (i.e., a regionalized 
operator approach), with the results compared to 
those obtained using a model developed for all 
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grid points (i.e., a generalized operator approach).  
A comparison of verification scores revealed that it 
would be sufficient to consolidate the nine areas 
into four larger regions: East Coast, West Coast, 
Panhandle, and Alabama/Georgia (Fig. 5).  To 
minimize spatial discontinuities at the boundaries, 
the regions were permitted to overlap, and the 
probabilities for grid points within the overlapping 
regions were averaged. 

  
The initial set of candidate predictors con-

sisted of parameters calculated from the RUC 
analyses (Table 3), as well as the map type and 
climatological frequencies for each 3-h period.  We 
performed a Principal Component Analysis (PCA) 
to examine inter-correlations among the predictors 
(Table 3) and to aid in choosing a smaller subset 
to retain for the regression analysis.  This proce-
dure is described in Shafer and Fuelberg (2006).   

   
The final list of candidate predictors is given in 

Table 4.  Also shown in Table 4 are Spearman 
rank correlation coefficients between each predic-
tor and the binary indicator for one or more flashes 
during the 1800-2059 UTC period for the East 
Coast (EC) region.  The correlations are low, 
meaning that no single observed predictor is a 
good indicator of lightning (Bothwell 2002; Shafer 
and Fuelberg 2006).  Correlations for the amount 
of lightning (not shown) also were found to be low.  
To account for possible non-linear and interaction 
effects, power terms up to the fourth degree and 
two-way cross products were calculated for each 
parameter selected thus far (Table 4) and then 
included in the final predictor pool.   

    
A combination of forward stepwise selection 

and cross-validation was used to develop the BLR 
equations for each region (Fig. 5) and 3-h period 
using the SPSS software.  This procedure is very 
similar to that described in Shafer and Fuelberg 
(2006).  Data for even numbered years were used 
as a “learning” sample for screening the variables 
for selection, while the odd years were used as an 
“evaluation” sample to test the model each time a 
variable was added or removed during the step-
wise selection process.  Thorough discussions of 
stepwise selection procedures are given in Hos-
mer and Lemeshow (1989) and Wilks (2006).  The 
predictors comprising the model at the step with 
the highest percentage of correctly classified 
events for the evaluation sample were noted.  
Only parameters for which the sign of the coeffi-
cient made physical sense were retained in the 
model in any screening sample.  This procedure 
identified the combination of predictors that is 

most likely to generalize to independent data and 
not over-fit the dependent sample.  The set of 
“best” predictors from this process then was re-
entered using data for all grid points and all years 
to determine the final coefficients for each model. 
 

The NB models for PROB≥T were developed 
using S-PLUS.  We found that the overnight and 
early morning periods did not contain a sufficient 
number of events in the upper percentiles to allow 
stable, reliable models to be developed.  Thus, NB 
models were developed only for the four most ac-
tive periods (1500-1759 UTC, 1800-2059 UTC, 
2100-2359 UTC, and 0000-0259 UTC).  The same 
sampling procedure (i.e., even and odd years) de-
scribed above was used to develop the models. 
However, since the S-PLUS software does not 
permit stepwise selection for NB regression, a 
backward elimination procedure was used.   

   
We used a model containing only climatology 

and persistence (denoted L-CLIPER) as the 
benchmark for assessing forecast skill.  Climatol-
ogy consisted of the lightning frequencies and un-
conditional means for each 3-h period (Section 3), 
as well as the sine of the day number.  Persis-
tence consisted of a binary indicator for whether 
one or more flashes occurred during the same 3-h 
period the previous day, as well as the previous 
day’s flash count.  Separate L-CLIPER models 
were developed for each region and 3-h period. 

   
4.   RESULTS 
    
4.1 Discussion of Model Parameters 

 
This section describes the parameters se-

lected for the BLR and NB models as well as their 
relationships to lightning occurrence.  The discus-
sion focuses on the most active lightning period 
(1800-2059 UTC). However, since the equations 
for each 3-h period are variations on a similar 
theme, the physical reasoning presented here can 
be extended to all other times.   

   
The BLR models giving PROB≥1 and the NB 

models for PROB≥T during the 1800-2059 UTC 
period are shown in Tables 5 and 6, respectively, 
for the four study regions (Fig. 5).  The predictors 
and standardized coefficients are indicated.  A 
series of diagrams displaying the frequency of one 
or more flashes (FREQ≥1) and the unconditional 
mean number of flashes (MEANNF) as a function 
of several important predictors is shown in Figs. 6-
9.  The acronyms used to describe the predictors 
are defined in Tables 3 and 4. 
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PRECPW is the most important predictor for 
one or more flashes (Table 5 and Fig. 6a), while 
KI, a measure of 850-700 hPa moisture as well as 
stability, was selected in 3 out of the 4 NB models 
estimating the amount of lightning (Table 6 and 
Fig. 6b).  This finding agrees with numerous stud-
ies indicating that deep layer moisture provides 
the most favorable large-scale environment for 
warm season thunderstorms over Florida (e.g., 
Lopez et al. 1984; Reap and MacGorman 1989; 
Watson et al. 1995; Mazany et al. 2002).  A non-
linear effect also is evident for PRECPW (Fig. 6a), 
with a peak in FREQ≥1 for PRECPW ~ 5.5 cm, 
followed by a decline for even greater values.   
 

BESTLI was selected as the second most im-
portant parameter in the BLR models (Table 5 and 
Fig. 7a) and also is important for predicting the 
amount of lightning (Table 6 and Fig. 7b).  The 
negative coefficients and the relationships de-
picted in Fig. 7 imply that FREQ≥1 and MEANNF 
increase with increasing instability (i.e., as BESTLI 
becomes more negative).  Many studies have 
shown that sufficient instability that leads to a per-
sistent, strong updraft is necessary for charge 
generation (e.g., Price and Rind 1992; Solomon 
and Baker 1994; Zipser 1994; Petersen and 
Rutledge 1998).   

 
Coincident areas of abundant moisture 

(PRECPW) and instability (BESTLI) are expected 
to be regions of high thunderstorm probability; 
however, storms will not develop without a source 
of lift.  The selection of MFLXC2 in the BLR and 
NB models (Tables 5 and 6) indicates that bound-
ary layer forcing is important for lightning formation 
(e.g., Watson et al. 1987; Reap and MacGorman 
1989; Watson et al. 1991).  The relationships in 
Figs. 8a-b show that FREQ≥1 and MEANNF gen-
erally increase with greater MFLXC2.   
 

First and second-order terms of 1000-700 hPa 
mean wind (MEANU3, MEANV3) were selected in 
several equations (Tables 5 and 6).  This relation-
ship is non-linear for the EC region (Figs. 9a-b), 
with peak lightning for offshore speeds between 2 
and 4 m s-1, and a decline for increasing MEANU3.  
Weak offshore flow produces a better developed 
sea breeze and greater low level convergence, 
while strong offshore flow may prevent the sea 
breeze from penetrating inland (McPherson 1970; 
Pielke 1974; Arritt 1993).  Interaction terms involv-
ing MEANU3 and the distance from the coast 
(DISTEC, DISTWC) also were selected, implying 
that this relationship is modulated by proximity to 
the coast.   

Finally, the pattern type predictors (MTFREQ 
and MTMEAN) enter all of the equations (Tables 5 
and 6).  Although MTFREQ does not rank highly in 
the BLR models during the 1800-2059 UTC pe-
riod, it usually is among the first selected for other 
time periods.  Conversely, MTMEAN consistently 
is the most important predictor in the NB models, 
implying that the prevailing wind greatly influences 
locations where storms are most likely to persist 
over an area and produce large lightning counts 
(López and Holle 1987; Lericos et al. 2002). 

  
4.2 Reliability 
 

Reliability is a measure of the quality of prob-
abilistic forecasts, indicating how well the prob-
abilities correspond with the observed frequency 
of the predictand (Wilks 2006).  Figure 10 plots 
FREQ≥1 as a function of PROB≥1 for all regions 
combined during the 1800-2059 UTC period.  
Similarly, Figs. 11a-d show reliability plots for fore-
casting the unconditional probability of exceeding 
the 50th, 75th, 90th, and 95th percentiles during the 
1800-2059 UTC period (Table 1).  Figs. 10 and 11 
show that the forecasts exhibit good reliability and 
are well calibrated, meaning that the event relative 
frequencies are nearly identical to the forecast 
probabilities.  Reliability at the other time periods 
(not shown) also is very good.  Probabilistic verifi-
cation and skill scores relative to climatology and 
persistence are presented next for the 2006 inde-
pendent test period. 
 
5.   INDEPENDENT TEST PERIOD 
    
5.1 Description of model data 
 

We applied the lightning guidance equations 
(Section 4) to forecast output from two mesoscale 
models run by NCEP during the 2006 warm sea-
son and to output from local high resolution runs of 
the Weather Research and Forecasting (WRF) 
model for a domain over South Florida.  The two 
NCEP models were the 1500 UTC run of the 13-
km RUC (RUC13) and the 1200 UTC run of the 
12-km North American Mesoscale (NAM12).  The 
high resolution WRF runs were initialized at 1500 
UTC with NCEP 1/12th degree sea-surface tem-
peratures (SST) and data from the Local Analysis 
and Prediction System (LAPS). 

 
A description of RUC’s model physics and 

data assimilation methods can be found in Benja-
min et al. (2002, 2004).  We also used two ver-
sions of the WRF model to evaluate the lightning 
guidance equations—the 1200 UTC run of the 12-
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km NCEP operational NAM-WRF and a 4-km 
LAPS-initialized WRF (WRF-LAPS) that is run lo-
cally at the NWS Weather Forecast Office (WFO) 
in Miami, FL.  Janjic et al. (2004) and Skamarock 
et al. (2005) describe the physics and parameteri-
zation options for the WRF model.   

 
WRF-LAPS is part of the WRF Environmental 

Modeling System (WRF-EMS) that is distributed 
by Dr. Robert Rozumalski at the University Corpo-
ration for Atmospheric Research (UCAR).  Unlike 
the NCEP operational NAM-WRF, the version run 
at WFO Miami uses high resolution LAPS data for 
model initialization (see Hiemstra et al. 2006 for a 
description of LAPS).  Etherton and Santos (2006) 
have documented the usefulness of LAPS data for 
local modeling.  

  
WRF-LAPS forecasts (initialized at 1500 UTC) 

for the period 19-30 September 2006 were pro-
vided by Dr. Pablo Santos (NWS Miami, FL), while 
runs for the 1 August – 18 September 2006 period 
were produced locally at Florida State University 
(FSU) using the WRF-EMS package.  The LAPS, 
1/12th degree SST, and NAM12 lateral boundary 
condition files that were required to produce the 
FSU runs were provided by Dr. Santos.  The 
WRF-LAPS domain is centered on the Miami 
WFO county warning area (Fig. 1).   
 

Forecasts from RUC13 encompass the entire 
2006 warm season (1 May – 30 September), while 
forecasts from the NCEP operational NAM-WRF 
span 21 June – 30 September (the NAM-WRF 
became operational on 20 June).  We used fore-
casts valid every 3 h out to 12 h (i.e., the 0-h, 3-h, 
6-h, 9-h, and 12-h projections).  Forecast parame-
ters needed for the lightning guidance equations 
were calculated from the model forecast tempera-
ture, dew point, wind, height, and surface pressure 
fields and interpolated to the 10 × 10-km forecast 
grid (Fig. 1). 

 
5.2 Forecast verification 
 

The most commonly used measure of accu-
racy for probabilistic forecasts is the Brier score 
(Brier 1950) given by: 
 

( )∑
=

−=
N

i
ii of

N
BS

1

21

   ,             (7)
    
where N is the number of forecast-observation 
pairs (i.e., the number of grid points), fi  is the fore-
cast probability, and oi is the observation (set to 1 

if the event occurred, or 0 if the event did not oc-
cur).  Perfect forecasts exhibit BS = 0, while less 
accurate forecasts have 0 < BS ≤ 1.  We also cal-
culated the Brier Skill Score, given by: 
 

REF

MODEL

BS
BSBSS −=1

    ,             (8)
       
where BSMODEL is the Brier score for the model and 
BSREF is the Brier score for a reference forecast 
(i.e., L-CLIPER).  It is clear from (8) that forecasts 
with a lower Brier score than the reference will 
have BSS > 0 (positive skill), while forecasts with 
higher Brier scores than the reference have BSS < 
0 (negative skill). 
           

Brier scores for forecasting the probability of 
one or more CG flashes during each 3-h period 
are shown in Table 7 for the 1200 UTC NCEP 
NAM12 (top), the 1500 UTC NCEP RUC13 (mid-
dle), and the 1500 UTC WRF-LAPS (bottom).  The 
rightmost column shows the Brier skill score with 
respect to L-CLIPER (left) and persistence alone 
(right).  Results show that Brier scores are small-
est for the less active time periods, and greatest 
for the more active periods (i.e., 1800-2359 UTC).  
This occurs because Brier scores tend to be lower 
when the variance of the forecasts and observa-
tions is small (i.e., little lightning and small prob-
abilities), and vice versa when the variance of 
forecasts and observations is large (Burrows et al. 
2005).  More importantly, Brier scores for all three 
models generally are an improvement over L-
CLIPER and an even greater improvement over 
persistence alone through the 2100-2359 UTC 
period.  It is important to note that results for the 
different models should not be compared with 
each other since they are from different initializa-
tion times (for the NAM12) and represent different 
time periods and different regions of the state. 

  
Forecasting the amount of lightning is much 

more difficult than forecasting whether or not at 
least one flash will occur.  Table 8 shows Brier 
scores and Brier skill scores for forecasting events 
in the 75th percentile of flashes or greater (Table 
1), conditional on the occurrence of one or more 
flashes.  Results show that Brier scores generally 
are higher, and skill scores relative to L-CLIPER 
and persistence generally are lower than those for 
merely forecasting one or more flashes (Table 7).  
Nonetheless, skill scores generally are positive 
through the 2100-2359 UTC period.  For events in 
the 90th percentile or greater (not shown), Brier 
skill scores are slightly positive or near zero at 
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most time periods, with only the RUC13 producing 
positive skill through the 2100-2359 UTC period.  
This finding suggests that events in the 90th or 
greater percentiles are near the threshold of pre-
dictability, at least for forecasts longer than 3-6 h.  
This is likely due to an inherent weakness in the 
PP method, namely, the tendency to forecast ex-
treme events unreliably when the accuracy of the 
predictors (i.e., the NWP model forecasts) de-
creases to the point where it is inadvisable to at-
tempt to predict the extremes of the distribution 
(Glahn et al. 1991). 

   
The Brier score computations (Tables 8 and 9) 

require that lightning events occur within a 10-km 
radius of a grid point.  This is a very strict verifica-
tion criterion that does not consider forecasts at 
neighboring grid points.  A more relaxed approach 
is to use the maximum probability or the average 
probability within a certain radius of each grid point 
(e.g., Burrows et al. 2005).  The maximum or av-
erage probability then is used in the Brier Score 
computations instead of the grid point specific val-
ues.  We determined that maximum probabilities 
within 20 km of each grid point generally give the 
best improvement relative to L-CLIPER and per-
sistence.  The results using this new verification 
approach are shown in Tables 9 and 10 for fore-
casting one or more flashes and forecasting 
events in the 75th percentile or greater, respec-
tively.  In most cases, magnitudes of the Brier 
scores remain relatively unchanged; however, 
Brier skill scores generally are higher when using 
the more relaxed verification criteria, especially 
during the first 6 h of the forecast.  For reasons 
that are not clear, the relaxed criteria most benefit 
L-CLIPER and persistence during the later fore-
cast periods (as evident by the lower skill scores 
for these periods in Table 9 and 10). 

          
As one would expect, skill scores deteriorate 

beyond the 6-9 h projections (Tables 8-11) since 
errors in the position and magnitude of predicted 
convection and synoptic scale features increase 
with time in the driving NWP models.  Nonethe-
less, the results in Tables 8-11 are encouraging, 
especially considering that L-CLIPER alone gen-
erally produces very good forecasts during Flor-
ida’s warm season.  In fact, L-CLIPER is the most 
difficult standard of reference to beat since it 
represents an optimal linear combination of both 
climatology and previous day persistence.  L-
CLIPER becomes particularly difficult to beat in 
situations when the synoptic pattern on a particu-
lar day is similar to that of the previous day, which 
often is the case during Florida’s warm season. 

Figures 12 and 13 contain reliability diagrams 
for forecasting the probability of one or more 
flashes and the probability of ≥ 75th percentile 
events, respectively, for the most active lightning 
period (1800-2059 UTC).  Results for the three 
mesoscale models are plotted on the same graph.  
Forecasts from RUC13 lie reasonably close to the 
1:1 line in both plots.  However, forecasts for the 
NAM12 and WRF-LAPS show an under-
forecasting bias in the lower half of the probability 
range, and then bend back toward the 1:1 line at 
higher forecast probabilities.  The reason for this 
behavior is not entirely clear, but most likely is due 
to inherent biases in the model moisture, tempera-
ture, and/or wind field forecasts.  Reliability plots 
for other forecast projections (not shown) indicate 
similar biases.  Reliability when forecasting the 
90th percentile or greater (not shown) is similar to 
that for the 75th percentile (Fig. 13), but tends to 
deviate a bit more from the 1:1 line for higher 
forecast probabilities. 

 
5.3 Forecast example 
 

An example lightning probability forecast for 
16-17 August 2006 using the 1500 UTC WRF-
LAPS model (Fig. 14) is described next.  A map 
containing county names and labeled geographi-
cal features is shown in Fig. 15.  Results using the 
RUC13 and NAM-WRF on this day (not shown) 
compare favorably with those from WRF-LAPS 
(Fig. 14).  The figure shows the probability of one 
or more flashes (left panels), the unconditional 
probability of ≥ 90th percentile events (center), and 
the CG strike verification (right panels) for four 3-h 
time periods.  The flow pattern on this day is type 
A (Section 3), with prevailing southeasterly low-
level flow and no synoptic or tropical influences.  
Between 1500-1759 UTC, the greatest probability 
of one or more flashes (between 30-40%) is fore-
cast over eastern Broward and northern Miami-
Dade (MD) counties, with probabilities of 10% or 
greater for areas south of Lake Okeechobee 
(LOK) (Fig. 14a). Forecast probabilities beginning 
at 1800 UTC (Figs. 14d and e) are considerably 
greater than those at 1500 UTC across South 
Florida (Figs. 14a and b), with the greatest values 
concentrated along the west coast as well as 
eastern PB, Broward, and MD counties.  The veri-
fication (Fig. 14f) reveals a significant increase in 
activity (over 7000 flashes) along the west coast 
and over Broward and MD counties.  With the ex-
ception of the activity south of LOK, this verifica-
tion agrees well with the forecast probabilities 
(Figs. 14d and e).  Forecast probabilities for the 
2100-2359 UTC period (Figs. 14g and h) have 
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increased south of LOK, and lightning occurs just 
east of this area over central and western PB and 
Broward counties (Fig. 14i).  Although the area of 
enhanced probabilities north of LOK does not ver-
ify during this period (Fig. 14i), lightning did occur 
there only one hour earlier, i.e., between 2000-
2030 UTC (Fig. 14f).  Finally, forecast probabilities 
for the 0000-0259 UTC period (Figs. 14j and k) 
show a diminishing lightning threat, and indeed 
little activity occurs during this period (Fig. 14l). 
 

The example in Fig. 14 is typical of many oth-
ers during the 1 August – 30 September 2006 pe-
riod.  That is, the sequence of probability maps 
shows the expected diurnal trend in lightning that 
peaks during the afternoon and then diminishes.  
The lightning forecasts generally show good 
agreement with the verification, with most of the 
observed lightning occurring within the higher fore-
cast probability contours.  However, as observed 
on 16-17 August, the timing and placement of 
lightning is not perfect.  Nonetheless, the forecasts 
do capture the general spatial and temporal trends 
in observed lightning at a level of detail that, to our 
knowledge, has not been reported previously. 
 
6.   SUMMARY AND CONCLUSIONS 

 
Four warm seasons of NLDN data and an ar-

chive of RUC20 analyses were used to develop 
forecast equations for the probability of one or 
more CG strikes, as well as the probability of ex-
ceeding various flash count percentile thresholds 
at 3-h periods on a 10 × 10 km grid.  Binary logis-
tic regression (BLR) and negative binomial (NB) 
regression were used to develop the equations for 
one or more flashes and the amount of lightning, 
respectively.  Deep layer moisture, instability, 
boundary layer forcing, map type, and the low-
level wind were found to be the most important 
predictors for lightning.  

  
The equations were applied to forecast output 

from three mesoscale models during the period 1 
May – 30 September 2006: the 1500 UTC NCEP 
RUC13, the 1200 UTC NCEP NAM-WRF, and 
high resolution runs of the WRF initialized at 1500 
UTC with LAPS and NCEP 1/12th degree SST 
data (WRF-LAPS).  When forecasting one or more 
flashes, all three mesoscale models generally 
showed positive skill relative to L-CLIPER and 
persistence alone through the 2100-2359 UTC 
period.  Skill was found to deteriorate beyond 6-9 
h as errors in the model forecasts increased with 
time in the driving NWP models.  The models also 
showed some improvement over L-CLIPER and 

persistence when forecasting events in the 75th or 
greater percentiles, with limited skill for events in 
the 90th or greater percentiles.  The positive skill 
demonstrated by the RUC13, NAM-WRF and 
WRF-LAPS (through 2100-2359 UTC) during the 1 
May – 30 September 2006 test period provides 
some evidence that the PP scheme is model inde-
pendent.  Testing on a larger independent sample 
(i.e., multiple warm seasons) is needed to further 
support this hypothesis.   

     
The guidance that we have developed repre-

sents an important step toward more precise and 
timely lightning forecasts.  Our results indicate that 
skillful lightning forecasts out to 6-9 h are possible 
using high-resolution models.  In addition, a major 
strength of the PP method is that the inevitable 
changes that will occur in the NWP models will not 
require redevelopment of the equations, and in 
fact, should improve the forecasts (Wilks 2006).  
Conversely, the main drawback is that the PP 
scheme assumes a “perfect” forecast/analysis of 
the predictors by the NWP model and thus, does 
not account for, or correct any type of NWP fore-
cast error.  Thus, it appears that some kind of 
MOS procedure would be needed to produce skill-
ful forecasts beyond 9-12 h.  Nonetheless, as 
model resolution, physics, and data assimilation 
methods continue to improve, better lightning fore-
casts are expected to result. 

         
Our methodology is an enhancement to 

schemes already in use (e.g., Bothwell 2002, 
2005).  Further improvements will be achieved 
through additional research.  Plans currently are in 
place to incorporate the lightning guidance into the 
Interactive Forecast Preparation System (IFPS) 
Graphical Forecast Editor (GFE) at the Tallahas-
see NWS office.  A forecaster then can use output 
from one NWP model or a blend of two or more 
models to generate lightning probabilities using a 
“smart tool” in GFE.  The resulting lightning fore-
casts then could be accessed by the public 
through NWS web sites and used by the NWS in 
forecast products.  Future work also will seek to 
expand the scheme to other parts of the country.  
Since some of the statistical assumptions made 
for Florida may not be applicable to other areas, 
appropriate modifications likely will be needed.   
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FIG. 1.  Map of the study domain.  The 10 km grid points used in equation development 
(land areas only) and the array of 100 km grid points used in the map type classification 
analysis are shown.  The WRF-LAPS computational domain (South Florida) also is 
indicated by the rectangle. 
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a)   Type A   b)        1800-2059 UTC 

H 

  
c)   Type B   d)        1800-2059 UTC 

H

  
e)   Type C   f)        1800-2059 UTC 

H

  
 
FIG. 2.  Composite sea level pressure and spatial distribution of the unconditional mean 
number of flashes for the 1800-2059 UTC period for (a-b) type A, (c-d) type B, (e-f) type C, 
(g-h) type D, and (i-j) type E.  The inferred low-level wind is indicated by arrows on each map.        
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g)   Type D   h)        1800-2059 UTC 
H 
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i)   Type E   j)        1800-2059 UTC 

H 

L 

  
 

FIG. 2 (continued). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

16  
 

 
 
 
 

 
 

FIG. 3.  Histogram of the distribution of flash counts during the 1800-2059 UTC 
period for all cases when one or more flashes occurred.  The histogram has been 
truncated at 200 flashes to emphasize the lower part of the distribution.  Histogram 
bins are 5 flashes. 
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Flash Count Probability Distribution Implied from
Poisson and Negative Binomial Models 
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FIG. 4.  Flash count probability distribution for the 1800-2059 UTC period implied 
from the Poisson and negative binomial regression models.  The observed frequency 
also is shown for comparison. 
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FIG. 5.  Map of the original nine areas for which equations first were developed.  
The shaded areas represent the final four regions used to develop equations. 
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a)  

b)  

 
FIG. 6.  Plots for a) the frequency of one or more flashes as a function of precipitable 
water, and b) the unconditional mean number of flashes as a function of K-index for all 
regions combined during the 1800-2059 UTC period. 
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a)  

b)   

 
FIG. 7.  Plots for a) the frequency of one or more flashes as a function of Best Lifted 
Index, and b) the unconditional mean number of flashes for all regions combined during 
the 1800-2059 UTC period. 
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a)  

b)  

 
FIG. 8.  Plots for a) the frequency of one or more flashes, and b) the unconditional mean 
number of flashes as a function of 1000 hPa moisture flux convergence for all regions 
combined during the 1800-2059 UTC period. 
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a) 

b) 

 
FIG. 9. Plots for a) the frequency of one or more flashes, and b) the unconditional mean 
number of flashes, as a function of 1000-700 hPa mean u-wind component for the East 
Coast region (1800-2059 UTC period). 
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FIG. 10.  Reliability diagram for the logistic models predicting the probability of 
one or more flashes.  The results are for the dependent data sample and all regions 
combined during the 1800-2059 UTC period.  
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a) 

 
b) 

FIG. 11.  Reliability diagrams for the unconditional probability of a) ≥ 50th, b) ≥ 75th, c) ≥ 
90th, and d) ≥ 95th percentiles of flash count.  The results are for the dependent data 
sample and all regions combined during the 1800-2059 UTC period. 
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c) 

d) 

FIG. 11 (continued). 

 

Reliability Diagram 
Negative Binomial Prob(>= 90th percentile)
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FIG. 12.  Reliability diagram for the logistic models predicting the probability of 
one or more flashes during the 2006 independent test period.  Results for the 1200 
UTC NCEP NAM12, the 1500 UTC NCEP RUC13, and the 1500 UTC 4-km 
WRF-LAPS are shown for the 1800-2059 UTC period.  

 
 
 
 
 
 
 
 
 
 

Reliability Diagram (>= 1 flash): 1800-2059 UTC

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Forecast Probability

O
bs

er
ve

d 
R

el
at

iv
e 

Fr
eq

ue
nc

y

1200 UTC NAM12

1500 UTC RUC13

1500 UTC WRF-LAPS



 

27  
 

 
 
 

 
FIG. 13.  Reliability diagram for the negative binomial models predicting the 
probability of        ≥ 75th percentile of flash count during the 2006 independent test 
period.  Results for the 1200 UTC NCEP NAM12, the 1500 UTC NCEP RUC13, and 
the 1500 UTC 4-km WRF-LAPS are shown for the 1800-2059 UTC period. 
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a)   0-h: 1500-1759 UTC   b)   0-h: 1500-1759 UTC    c)   0-h: 1500-1759 UTC 

   
 
d)   3-h: 1800-2059 UTC   e)   3-h: 1800-2059 UTC    f)   3-h: 1800-2059 UTC 

   
 
g)   6-h: 2100-2359 UTC   h)   6-h: 2100-2359 UTC    i)   6-h: 2100-2359 UTC 

   
 
 
FIG. 14.  Probability of one or more flashes (left panels), unconditional probability of ≥ 90th 
percentile (center panels), and CG strike verification superimposed on the one or more flash 
probabilities (right panels) for 16-17 August 2006 based on 1500 UTC WRF-LAPS (a-c) 0-h, (d-
f) 3-h, (g-i) 6-h, and (j-l) 9-h forecast projections.  Valid time periods are shown above each plot. 
Note the different color scales for the left and center panels.  Grid points that received ≥ 90th 

percentile of flash count are indicated by the “x” symbols on the center panels. 
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j)   9-h: 0000-0259 UTC   k)   9-h: 0000-0259 UTC    l)   9-h: 0000-0259 UTC 

   
 

FIG. 14 (continued). 
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FIG. 15.  Map of South Florida with county names and geographical features labeled. 
 

LOK



 

 
 
TABLE 1.  Conditional percentiles of CG flash count for the four most active 3-h periods.  
The percentiles are based on CG flash counts for all land grid points in the domain during 
eleven warm season periods (1995-2005). 
 

 
      Percentile 

 
Time period (UTC) 50th  75th  90th  95th  Max 
 
1500 – 1759  4            14  37    60    810 

1800 – 2059   6            22  62            104            1190 

2100 – 2359  5  21  65  114  1577 

0000 – 0259   4  14  45    83  1267 
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TABLE 2. Number of RUC-analyzed sea-level pressure maps classified into each type at 
a correlation threshold of 0.70, using 3-houly data from the 1998-2005 warm seasons 
(9613 available maps).  For purposes of developing the equations, maps which could not 
be classified into a type were assigned the type with which they were most correlated. 

 
 

          Map Type        No. Maps      % of Sample 
 
    A  2913  30.3 

    B  1303  13.6 

    C  1260  13.1 

    D  1061  11.0 

    E  1002  10.4 

            Unclassified  2074  21.6 

                 Total  9613   100 
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TABLE 3.  RUC-analyzed parameters investigated for inclusion in the candidate predictor pool.  
The name of each variable, a description (where needed), and abbreviations are included.  
 

Abbrev. Name Description/levels 

LTHICK 
TADV 
TCONV 
CCTHICK 

Layer thickness 
Temperature advection 
Convective temperature 
Cold cloud thickness 

1000-850 hPa, 850-500 hPa, 700-400 hPa, 500-300 hPa 
10 m and each 25 hPa surface 
 
Thickness between 0°C level and cloud top (equil. level) 

MFLXC 
THEADV 
PRECPW 
LAYRH 
RHFRZL 
WBZP 
LCLP 

Moisture flux convergence 
Theta-e advection 
Precipitable water 
Layer mean relative humidity 
Relative humidity at 0°C level 
Wet bulb zero pressure 
Pressure at LCL 

10 m and each 25 hPa surface 
10 m and each 25 hPa surface 
Entire depth of sounding (surface-100 hPa) 
45 layers between 1000 hPa and 100 hPa 
 
 
Lifting condensation level 

MUCAPE 
 
LCAPE1 
LCAPE2 
LCAPE3 
LCAPE4 
LCAPE5 
NCAPE(1-5) 
CIN 
 
BESTLI 
 
SSI 
TT 
KI 
SWEAT 
TLAPSE 
THELAPSE 
CCTHGT 
PRFREQ 

Most unstable CAPE 
 
MUCAPE in various layers 
 
 
 
 
Normalized LCAPE 
Convective inhibition 
 
Best Lifted Index (LI) 
 
Showalter Stability Index 
Total Totals Index 
K-index 
Severe Weather Threat Index 
Temperature lapse rate 
Theta-e lapse rate 
Convective cloud top height 
Price & Rind frequency 

Largest CAPE obtained when each parcel between the 
surface and 700 hPa is lifted. 

Cloud base to cloud top (Solomon and Baker 1994) 
Cloud base to –20°C (Bothwell 2002) 
Mixed phase region: 0°C to –40°C (Randell et al. 1994) 
Charging zone: -10°C to –25°C (Solomon and Baker 1994) 
Between –15°C and –20°C (Bothwell 2002) 
Layer CAPE divided by the geometric thickness of the layer 
Negative area between the surface and 700 hPa by lifting the 

surface parcel.  
Most unstable LI obtained when each parcel between the 

surface and 700 hPa is lifted.  
Lifted index based on parcel originating at 850 hPa 
as defined in the AMS Glossary of Meteorology (2000) 
as defined in the AMS Glossary of Meteorology (2000) 
as defined in the AMS Glossary of Meteorology (2000) 
300-hPa layers between 1000 hPa and 100 hPa  
300-hPa layers between 1000 hPa and 100 hPa 
Geometric height of equilibrium level 
Price & Rind function for lightning frequency based on 

cloud top height: F = (3.44 x 10-5) x CCTHGT4.9

DIV 
VORT 
VORTADV 
MEANU 
MEANV 
MEANSP 
SHEAR 

Wind divergence 
Vorticity 
Vorticity advection 
Layer average u component 
Layer average v component 
Layer average speed 
Layer wind shear 

10 m and each 25 hPa surface 
10 m and each 25 hPa surface 
10 m and each 25 hPa surface 
45 layers between 1000 hPa and 100 hPa 
45 layers between 1000 hPa and 100 hPa 
45 layers between 1000 hPa and 100 hPa 
45 layers between 1000 hPa and 100 hPa 
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TABLE 4.  Final list of RUC-derived candidate predictors used to develop the regression 
models.  Power terms and two-way cross products for each parameter also were included 
in the final predictor pool (not listed).  Spearman rank correlations with the binary 
(yes/no) lightning predictands for the 1800-2059 UTC period also are shown for the East 
Coast region.  

 
    Abbreviation          Name/description                Correlation 
 

PRECPW Precipitable water 0.36 

KI K-index 0.33 

SSI Showalter Stability Index -0.30 

LCAPE2 MUCAPE cloud base to -20°C 0.29 

BESTLI Best Lifted Index (LI) -0.28 

LCAPE4 MUCAPE -10°C to -25°C 0.26 

CCTHICK Cold cloud thickness 0.25 

LCAPE5 MUCAPE -15°C to -20°C 0.24 

TT Total Totals Index 0.24 

LTHICK1 1000-850 hPa thickness 0.23 

TLAPSE2 900-600 hPa temperature lapse rate -0.23 

THELAPSE6 500-200 hPa theta-e lapse rate -0.20 

MFLXC2 1000 hPa Moisture flux convergence 0.20 

LCLP Pressure at LCL 0.19 

DIV2 1000 hPa wind divergence -0.17 

TADV4 950 hPa temperature advection 0.14 

MEANSP3 1000-700 hPa wind speed -0.13 

MEANV3 1000-700 hPa v component 0.13 

DIV34 200 hPa wind divergence 0.11 

THEADV5 925 hPa Theta-e advection 0.11 

VORT2 1000 hPa vorticity 0.10 

MEANU3 1000-700 hPa u component 0.10 

LTHICK4 700-400 hPa thickness 0.09 

CIN Convective inhibition 0.08 
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TABLE 5.  Logistic regression models for the probability of one or more flashes during 
the 1800-2059 UTC period.  The regression coefficients for each of the four regions are 
shown.  Parameters not selected for inclusion are indicated by -----.      

 
Predictor East Coast West Coast Panhandle AL & GA 
PRECPW 

(PRECPW)2

BESTLI 

MFLXC2 

MTFREQ 

THEADV5 

TLAPSE2 

DIV34 

(MEANU3) x (DISTEC) 

(MEANU3)2 x (DISTEC) 

(MEANU3) x (DISTWC) 

MEANU3 

MEANV3 

MEANSP3 

SINDAY 

Constant 

1.628

-0.400

-0.357

0.312

0.296

-----

-0.546

-----

-0.385

0.131

-----

-----

-----

-0.228

0.100

-2.160

1.461

-0.387

-0.641

0.218

0.242

0.132

-----

-----

-----

-----

0.116

-----

-----

-0.418

0.181

-1.881

1.396 

-0.474 

-0.633 

0.321 

0.400 

0.103 

----- 

0.152 

----- 

----- 

----- 

----- 

-0.093 

----- 

0.066 

-1.898 

1.326

-0.491

-0.563

0.385

0.216

-----

-----

0.133

-----

-----

-----

0.237

0.097

-----

0.123

-1.940
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TABLE 6. Negative Binomial regression models for the number of flashes during the 
1800-2059 UTC period.  The regression coefficients and the estimated shape parameter 
for each of the four regions are shown.  Parameters not selected for inclusion are 
indicated by -----. 

 
Predictor East Coast West Coast Panhandle AL & GA 
MTMEAN 

BESTLI 

KI 

MFLXC2 

TLAPSE2 

THELAPSE6 

THEADV5 

DIV2 

DIV34 

MEANU3 

(MEANU3)2

MEANV3 

MEANSP3 

SINDAY 

Constant 

Shape parameter (θ) 

0.156

-0.188

0.126

0.139

-0.235

-----

0.112

-----

-----

0.147

-0.099

-----

-----

0.114

3.083

0.369

0.165

-0.238

0.153

0.069

-----

-----

0.083

-----

-----

-----

-----

-----

-0.280

0.055

2.992

0.373

0.325 

-0.252 

0.106 

0.107 

----- 

----- 

----- 

----- 

0.122 

----- 

----- 

-0.247 

----- 

----- 

3.028 

0.368 

0.414

-0.216

-----

-----

-0.156

-0.102

-----

-0.158

-----

0.056

-----

-0.174

-----

-----

3.113

0.377
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TABLE 7.  Verification scores for the 2006 independent test period for forecasting the 
probability of one or more CG flashes.  Brier Scores for the model, L-CLIPER, and persistence 
alone are shown for the 1200 UTC NCEP NAM12 (top), the 1500 UTC NCEP RUC13 (middle), 
and the 1500 UTC WRF-LAPS (bottom).  The rightmost column shows the percent improvement 
in Brier Score with respect to L-CLIPER (left) and persistence alone (right). 
     

 
1200 UTC NCEP NAM12

21 June – 30 September, 2006 (all grid points) 
 

Forecast 
Projection 

Forecast 
Valid Period 

(UTC) 

Brier Score 
Model 

Brier Score 
L-CLIPER 

Brier Score 
Persistence  

Brier Skill 
Scores (%) 

3-h 
6-h 
9-h 
12-h 
15-h 

1500-1759 
1800-2059 
2100-2359 
0000-0259 
0300-0559 

0.075 
0.159 
0.163 
0.087 
0.023 

0.079 
0.164 
0.160 
0.078 
0.022 

0.081 
0.171 
0.167 
0.079 
0.022 

4.5 / 6.5 
2.5 / 6.8 
-1.8 / 2.0 

-12.0 / -10.8 
-6.7 / -6.4  

 
1500 UTC NCEP RUC13 

1 May – 30 September, 2006 (all grid points) 
 

Forecast 
Projection 

Forecast 
Valid Period 

(UTC) 

Brier Score 
Model 

Brier Score 
L-CLIPER 

Brier Score 
Persistence  

Brier Skill 
Scores (%) 

0-h 
3-h 
6-h 
9-h 
12-h 

1500-1759 
1800-2059 
2100-2359 
0000-0259 
0300-0559 

0.062 
0.128 
0.129 
0.071 
0.025 

0.070 
0.143 
0.138 
0.069 
0.025 

0.072 
0.152 
0.144 
0.070 
0.025 

11.7 / 14.1 
10.8 / 16.0 
6.8 / 10.9 
-2.8 / -2.1 
0.2 / -0.1 

 
1500 UTC WRF-LAPS 

1 August – 30 September, 2006 (South Florida domain) 
 

Forecast 
Projection 

Forecast 
Valid Period 

(UTC) 

Brier Score 
Model 

Brier Score 
L-CLIPER 

Brier Score 
Persistence  

Brier Skill 
Scores (%) 

0-h 
3-h 
6-h 
9-h 
12-h 

1500-1759 
1800-2059 
2100-2359 
0000-0259 
0300-0559 

0.125 
0.197 
0.194 
0.087 
0.014 

0.128 
0.212 
0.193 
0.077 
0.013 

0.132 
0.226 
0.202 
0.077 
0.013 

2.0 / 5.1 
7.2 / 13.0 
-0.5 / 3.7 

-13.7 / -14.1 
-3.2 / -3.4 
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TABLE 8.  Verification scores for the 2006 independent test period for forecasting the 
probability of ≥ 75th percentile of flash count.  Brier Scores for the model, L-CLIPER, and 
persistence alone are shown for the 1200 UTC NCEP NAM12 (top), the 1500 UTC NCEP 
RUC13 (middle), and the 1500 UTC WRF-LAPS (bottom).  The rightmost column shows the 
percent improvement in Brier Score with respect to L-CLIPER (left) and persistence alone 
(right).       

 
 

1200 UTC NCEP NAM12
21 June – 30 September 2006 (all grid points) 

 
Forecast 

Projection 
Forecast 

Valid Period 
(UTC) 

Brier Score 
Model 

Brier Score 
L-CLIPER 

Brier Score 
Persistence  

Brier Skill 
Scores (%) 

3-h 
6-h 
9-h 
12-h 

1500-1759 
1800-2059 
2100-2359 
0000-0259 

0.185 
0.185 
0.195 
0.195 

0.187 
0.190 
0.194 
0.192 

0.188 
0.190 
0.193 
0.192 

1.3 / 1.4 
2.5 / 2.6 

-0.4 / -0.6 
-1.8 / -1.7 

 
1500 UTC NCEP RUC13 

1 May – 30 September 2006 (all grid points) 
 

Forecast 
Projection 

Forecast 
Valid Period 

(UTC) 

Brier Score 
Model 

Brier Score 
L-CLIPER 

Brier Score 
Persistence  

Brier Skill 
Scores (%) 

0-h 
3-h 
6-h 
9-h 

1500-1759 
1800-2059 
2100-2359 
0000-0259 

0.188 
0.186 
0.187 
0.203 

0.191 
0.192 
0.194 
0.195 

0.191 
0.192 
0.193 
0.195 

1.4 / 1.7 
3.1 / 3.1 
3.8 / 3.5 

-4.2 / -4.2 
 

1500 UTC WRF-LAPS 
1 August – 30 September 2006 (South Florida domain) 

 
Forecast 

Projection 
Forecast 

Valid Period 
(UTC) 

Brier Score 
Model 

Brier Score 
L-CLIPER 

Brier Score 
Persistence  

Brier Skill 
Scores (%) 

0-h 
3-h 
6-h 
9-h 

1500-1759 
1800-2059 
2100-2359 
0000-0259 

0.177 
0.186 
0.183 
0.206 

0.181 
0.195 
0.188 
0.196 

0.184 
0.195 
0.188 
0.198 

2.2 / 3.4 
4.3 / 4.5 
2.7 / 2.6 

-5.1 / -4.1 
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TABLE 9.  Verification scores for the 2006 independent test period for forecasting the 
probability of one or more CG flashes.  This is the same as Table 8, except using relaxed 
verification criteria.  In this case the forecast probability is the maximum probability within a 20-
km radius of each grid point.  
     

 
1200 UTC NCEP NAM12

21 June – 30 September, 2006 (all grid points) 
 

Forecast 
Projection 

Forecast 
Valid Period 

(UTC) 

Brier Score 
Model 

Brier Score 
L-CLIPER 

Brier Score 
Persistence  

Brier Skill 
Scores (%) 

3-h 
6-h 
9-h 
12-h 
15-h 

1500-1759 
1800-2059 
2100-2359 
0000-0259 
0300-0559 

0.073 
0.153 
0.169 
0.096 
0.025 

0.080 
0.165 
0.160 
0.078 
0.022 

0.080 
0.169 
0.164 
0.078 
0.022 

8.7 / 9.0  
7.1 / 9.1 

-6.1 / -3.8 
-23.8 / -22.9 
-14.8 / -14.7 

 
1500 UTC NCEP RUC13 

1 May – 30 September, 2006 (all grid points) 
 

Forecast 
Projection 

Forecast 
Valid Period 

(UTC) 

Brier Score 
Model 

Brier Score 
L-CLIPER 

Brier Score 
Persistence  

Brier Skill 
Scores (%) 

0-h 
3-h 
6-h 
9-h 
12-h 

1500-1759 
1800-2059 
2100-2359 
0000-0259 
0300-0559 

0.061 
0.125 
0.127 
0.071 
0.025 

0.070 
0.144 
0.137 
0.069 
0.025 

0.071 
0.151 
0.142 
0.069 
0.025 

13.1 / 14.6 
12.6 / 16.6 
7.3 / 10.5 
-3.8 / -3.4 
0.1 / 0.1 

 
1500 UTC WRF-LAPS 

1 August – 30 September, 2006 (South Florida domain) 
 

Forecast 
Projection 

Forecast 
Valid Period 

(UTC) 

Brier Score 
Model 

Brier Score 
L-CLIPER 

Brier Score 
Persistence  

Brier Skill 
Scores (%) 

0-h 
3-h 
6-h 
9-h 
12-h 

1500-1759 
1800-2059 
2100-2359 
0000-0259 
0300-0559 

0.121 
0.184 
0.212 
0.099 
0.014 

0.128 
0.211 
0.194 
0.072 
0.014 

0.130 
0.219 
0.198 
0.077 
0.014 

5.3 / 6.6 
12.7 / 16.0 
-9.3 / -6.9 

-28.4 / -29.5 
-0.5 / -0.4 
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TABLE 10.  Verification scores for the 2006 independent test period for forecasting the 
probability of ≥ 75th percentile of flash count.  This is the same as Table 9, except using relaxed 
verification criteria.  In this case the forecast probability is the maximum probability within a 20-
km radius of each grid point. 

 
 

1200 UTC NCEP NAM12
21 June – 30 September 2006 (all grid points) 

 
Forecast 

Projection 
Forecast 

Valid Period 
(UTC) 

Brier Score 
Model 

Brier Score 
L-CLIPER 

Brier Score 
Persistence  

Brier Skill 
Scores (%) 

3-h 
6-h 
9-h 
12-h 

1500-1759 
1800-2059 
2100-2359 
0000-0259 

0.184 
0.185 
0.201 
0.198 

0.190 
0.192 
0.196 
0.193 

0.188 
0.191 
0.194 
0.192 

3.1 / 2.2 
3.9 / 3.0 

-2.4 / -3.3 
-2.4 / -2.8 

 
1500 UTC NCEP RUC13 

1 May – 30 September 2006 (all grid points) 
 

Forecast 
Projection 

Forecast 
Valid Period 

(UTC) 

Brier Score 
Model 

Brier Score 
L-CLIPER 

Brier Score 
Persistence  

Brier Skill 
Scores (%) 

0-h 
3-h 
6-h 
9-h 

1500-1759 
1800-2059 
2100-2359 
0000-0259 

0.189 
0.188 
0.188 
0.202 

0.192 
0.194 
0.196 
0.195 

0.191 
0.192 
0.195 
0.195 

1.7 / 1.1 
3.3 / 2.5 
4.1 / 3.2 

-3.1 / -3.4 
 

1500 UTC WRF-LAPS 
1 August – 30 September 2006 (South Florida domain) 

 
Forecast 

Projection 
Forecast 

Valid Period 
(UTC) 

Brier Score 
Model 

Brier Score 
L-CLIPER 

Brier Score 
Persistence  

Brier Skill 
Scores (%) 

0-h 
3-h 
6-h 
9-h 

1500-1759 
1800-2059 
2100-2359 
0000-0259 

0.177 
0.186 
0.192 
0.199 

0.184 
0.199 
0.193 
0.189 

0.184 
0.197 
0.192 
0.190 

3.6 / 3.7 
6.4 / 5.3 
0.3 / 0.2 

-5.3 / -4.7 
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