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1.  INTRODUCTION 
 

When examining precipitation systems with radar, 
many different types of objects may be identified.  The 
simplest distinction between types of precipitation 
objects is the separation of convective from stratiform 
precipitation areas.  Such automated classification 
procedures have been developed and employed by 
hydrometeorological users (e.g. Biggerstaff and 
Listemaa, 2000).  In instances such as these, the 
primary motivation for identifying cells as convective or 
stratiform has been to improve estimates of rainfall rate 
from radar.  Work has also been done to automate a 
process to distinguish simplified objects, linear versus 
cellular systems, given precipitation analyses (Stage IV 
data) (Baldwin et al. 2005).  Both methods above 
provide a framework for improving quantitative 
precipitation forecasts (QPF) in some way and can give 
insight into mesoscale processes, but the process of 
identifying specific types of convective cells remains 
largely unexplored.  The work herein provides a 
framework for an automated convective storm-cell 
classification algorithm, which includes linear convective 
systems, supercells, pulse thunderstorms and 
nonsevere/severe discrimination.  The algorithm uses 
composite reflectivity data combined with near-storm 
environmental (NSE) data derived from the RUC-20 
gathered from the WDSS-II system. 

The identification and classification of storm cells in 
this framework is primarily aimed at adjusting life-cycle 
parameters in a nowcasting (0-2 hour forecast of 
reflectivity) framework.  The underlying idea is that 
classifying a convective system and retaining 
information from prior time steps can lead to an 
understanding of growth, decay, and morphology of a 
particular storm.  In particular this work is aimed at 
providing input parameters to constrain convective 
storm development and motion within a Bayesian 
hierarchical nowcast scheme such as ones described in 
Xu et al. (2005) and Fox and Wikle (2005).  One may 
also choose to identify and classify convective storm 
elements for verification and climatological studies.  This 
may be particularly useful in object-oriented verification 
procedures where matching objects from the truth to the 
forecast remains the biggest challenge. 
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2.  WDSS-II  
 

The WDSS-II system was used to a large degree 
for the data collection stage of the automated cell 
classifier and is described by Lakshmanan et al. (2007).  
The first set of data obtained for the classifier was 
Level-II radar data for a given radar site.  The Level-II 
data have the highest spatial and temporal resolutions 
for current operational radar networks.  Although the 
resolution of the radar data used is 1 degree (azimuth) 
by 1 km (gate spacing) a Cartesian transformation was 
applied to obtain data at a 1 km x 1 km resolution 
(w2merger:  Lakshmanan et al. 2006).  Although the 
merger algorithm in WDSS-II was primarily developed to 
merge multiple radars into one domain, merging data 
from a single radar results in a simple Cartesian grid of 
radar-derived variables.  There are many merging 
strategies available within the algorithm and for this 
case the default exponential weighting scheme in space 
is used for interpolation.  All elevation angles for the 
given data are merged resulting in constant altitude plan 
position indication (CAPPI) slices.  From the CAPPI 
slices a composite radar image was created using the 
maximum reflectivity in a vertical column.  This 
composite creation was chosen so that the product 
would maximize the rain rate for a given pixel, giving a 
worst-case scenario.  This merging technique to a 
Cartesian grid allows for the data to be easily processed 
in future steps of the classification scheme. 

As this work attempts to classify storm cells for use 
in determining growth, decay, maintenance, and 
morphology it is important to incorporate storm 
environment data as well.  For the problem of 
forecasting storm longevity on the short (nowcasting) 
time scale, it was found that reflectivity alone cannot be 
used; however, with the inclusion of some 
environmental parameters forecasting trends of growth 
and decay may be possible (MacKeen et al. 1999).  For 
the problem of incorporating the environmental data in a 
nowcasting time scale the Rapid Update Cycle at 20-km 
resolution (RUC-20) was considered the best solution 
as it has high spatial and temporal resolution and is 
used operationally.  In addition, the WDSS-II suite 
readily ingests RUC-20 data and outputs gridded NSE 
data.   Benjamin et al. (2002) provide details on the 
architecture and process of the RUC-20 model.  It has 
been widely used in proximity sounding studies that 
focus on storm type and error characteristics of 
variables used from proximity soundings are relatively 
well known (Thompson et al. 2003). 



WDSS-II readily ingests and converts RUC model 
grib files into fields used by the system to display basic 
fields of temperature, height, and pressure.  From the 
basic fields, one can also run a near-storm environment 
algorithm which calculates parameters such as CAPE, 
SRH, CIN, and many other variables over different 
layers. For classification purposes, the storm 
environmental variables were calculated using the 
initialization data at the top of each hour for the duration 
of the event examined.  The nearest radar time stamp 
was used to match the model data initialization to the 
reflectivity image.  As an operational note, it may be 
necessary to run the identification of cells from forecast 
products from the RUC, as one needs to account for 
model issuance times.  The combination of running the 
near-storm environment algorithm with the merging 
algorithm within WDSS-II results in a product with a 
resolution similar to the Cartesian product of reflectivity 
with the same domain.   
 
3.  IDENTIFICATION AND CLASSIFICATION OF 
CELLS 
 

The identification of the individual storm cells was 
based on the object-oriented verification work from 
Micheas et al. (2007).  In this framework, cells are 
identified based on a user-defined threshold of 
reflectivity (in this case 30 dBZ) and a minimum size 
threshold (in this case 40 km2).  A binary image is 
created for all pixels in the domain greater than the 
threshold.   From this binary image, individual cells are 
identified if there is sufficient separation from their 
nearest neighbor.   In other words, adjacent pixels within 
a cluster of reflectivity are tagged with the same cell 
identification number within the domain.   The cell 
identification number ranges from 1 to the maximum cell 
number identified in the domain above the minimum 
size criteria.  Once the cluster of pixels is identified as 
an individual storm cell and a number is assigned, storm 
attributes are derived for each cell in the domain.  This 
is accomplished by overlaying matrices of near-storm 
environmental data and reflectivity-derived data to the 
matrix of identified cells.  This results in storm attributes 
for each individually assigned storm cell within the given 
domain.  For example, for a given identified cell, 
reflectivity, POH, CAPE, CIN, and SRH for all the pixels 
contained in the given cell are overlaid.  From these 
data, values of maximum, minimum, and average (mean 
value) storm attributes are attained for all cells in the 
domain on which the cell classification will be based. 

The overall objective was to use a classification 
tree to predict the membership of a certain object given 
its characteristics compared to a prior set of known 
classifications.  Classification trees are useful in that 
they contain a hierarchical framework for working with 
data.  Each step of the decision process for 
classification consists of what eventually turns out to be 
a series of “if else” statements branching from one initial 
decision (“root” node).  The methodology consists of 
finding the best split possible at each node that results 
in the optimum-sized tree for deterministic classification. 
Classification and regression trees have been recently 

applied and have shown success in predicting lightning 
over the United States and Canada (Burrows 2007). 

 
 

3.1  Expert Classification 
 

In order to create a working dataset for 
classification, storm cells had to be identified individually 
and subjectively classified initially.  The initial dataset 
consists of 15 different dates from 2004 to 2007 with 
over 360 individual identified cells covering various 
geographic regions; however, a majority came from the 
Midwest.  The cases also span different seasons so that 
the classifier would be able to identify storm type 
independent on the time of year; however, cases deal 
only with warm precipitation (snow-producing storms are 
omitted).  A majority of the cases also have severe 
storm reports associated with the given date.  A severe 
report was not a necessity but allowed for dates and 
regions where convection was likely occurring to be 
easily identified. 

A subjective “expert” classification of the individual 
convective storm cells commenced from the initial 
dataset.  The expert classification followed a 
hierarchical procedure, starting with storm appearance 
in reflectivity imagery and continuing with derived radar 
products. These products included those from the storm 
cell identification and tracking (SCIT) algorithm 
(Johnson et al. 1998) contained in WDSS-II along with 
radar reflectivity- and velocity-derived products such as 
the hail detection algorithm (HDA:  Witt et al. 1998) and 
the mesocyclone detection algorithm (MDA:  Stumpf et 
al. 1998).  Model data from the RUC-20 output run 
through the NSE algorithm in WDSS-II also provided 
additional information.  An example of this expert 
classification involving a supercell requires the 
examination of the lowest available elevation scan for 
proper reflectivity structure (a possible hook), the 
detection of a mesocyclone from the MDA, strong 
probability of hail (POH) or severe hail (POSH), and a 
sheared environment with available potential energy 
that would support the claim of a supercell.  The 
ultimate goal, in the case of the supercell, was to 
properly identify the possibility of a tilted, rotating updraft 
from the given data. 

Eight different classification types were used in this 
study and are summarized in Table 1.  An important 
distinction is made between air mass thunderstorms and 
pulse thunderstorms.  Although similar in structure, the 
pulse thunderstorm has characteristics that allow for the 
rapid formation of hail and/or the possibility for a severe 
downburst. Also within the classification types, the two 
small-scale, rotating types may seem redundant; 
however, it was thought that significant differences may 
exist between severe and nonsevere varieties.  The 
nonsevere variety may be thought of as an early stage 
or developing supercell while the severe variety may be 
more representative of a mini-supercell.  These small-
scale, rotating storm types have a slightly different 
physical makeup than the mature supercell.  In addition, 
the severe versus nonsevere discriminator was used  



 
Classification Types Brief Description Code 
Air Mass Thunderstorm Low Shear Environment AM 

Pulse Thunderstorm Low Shear with Potential Severity PULSE 
Small-scale Rotating Thunderstorm Organized Convection within Rotating Environment SRT 
Severe Small-scale Rotating Storms Same as Above with High Reflectivity SSRT 
Linear Convective System Squall-type System with Potential Severity LCS 
Linear Convective System (Rotation) Squall-type System within Rotating Environment LCSROT 
Supercell Severe Storm with Significant Rotation SC 
General Thunderstorm Pre-frontal Non-severe and Other Convection GEN T 

 
Table 1.  Eight classification types used within this classification tree study. 
 
to potentially identify storms with the likelihood of 
carrying severe attributes throughout a majority of their 
lifecycle.  This is useful information for nowcasting storm 
severity.  In the expert classification process, the severe 
versus nonsevere discriminator was identified by using 
the Storm Prediction Center’s (SPC) storm reports and 
the National Climatic Data Center’s (NCDC) storm 
archives. In addition, maximum reflectivity signatures, 
the HDA, and the MDA were used in determining severe 
storms.  The NSE fields produced by WDSS-II were 
again used to discriminate the potential for severe 
activity from organized convection with limited severe 
threat.  This was essential in the case of discriminating 
between severe linear convective systems and general 
thunderstorms.  General thunderstorms can take many 
forms as they are the left-over class. Often they are 
organized in a linear fashion along boundaries with 
weak forcing, which reinforces the need to use model 
data to aid in classification.  Notice there is no severe 
versus nonsevere discriminator for supercells as this 
category implies a well-developed supercell that has 
significant potential for hail, damaging winds, and even 
tornadoes.   

There is some inherent subjectivity to the division of 
the convective cells into eight categories.  The 
categories themselves are relatively subjective as one 
may argue that there is some significant overlap of the 
divisions of convective cell types (i.e. supercell versus 
severe, small-scale rotating storm).  Some of the 
subjectivity also pertains to storm reports or a lack 
thereof.  Most of the classifications of storms into the 
severe category were based upon unofficial SPC storm 
reports.  Note that report times do not always 
correspond to the actual events and that some reports 
are missed especially in the case of sparsely populated 
areas.  During the expert classification process, storms 
without physical storm reports may be classified as 
severe based upon appropriate WDSS-II information.  
Fields such as probability of severe hail, maximum 
estimated hail size, as well as fields generated by the 
mesocyclone and tornadic vortex algorithm were used 
to supplement decisions in the classification process. 

 
3.2 Classification Tree Structure 

 
Once the storms were individually identified using 

expert classification, a table was generated complete 

with all storm attributes and tagged with one of the eight 
classification categories.  From this information, a 
classification tree process was used to determine the 
optimum use of variables to automatically detect cell 
type.  The classification process results in a tree of 
information with nodes at each branch representative of 
the best data split.   These nodes have the advantage of 
yielding a probability that given certain criteria at a 
particular pruning stage that the identified cell belongs 
to a given class.  The use of pruning to get probabilities 
of cell classification yields more meaningful results as it 
accounts for some degree of uncertainty in the 
classification; however, the tree eventually leads to a 
deterministic solution. The classification tree scheme 
will be briefly described below. For a more detailed 
review of creating and using classification trees, the 
reader is referred to Breiman et al. (1984).   

Two splitting rules were available for use in this 
experiment: the Gini diversity index (GDI) and the 
twoing rule.  The goal of the splitting rule is to make a 
split at a given node that minimizes the misclassification 
cost.  In the case of GDI, we are interested in obtaining 
a measure of node impurity for splitting.  Node impurity 
is given by (1), where I(t) represents the impurity at 
node (t), f is the relative frequency of cases in t that 
belong to class cj.   
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This method involves a process that looks at which 
class to be categorized is largest.  It then attempts to 
separate the classes by examining one class at a time.  
The mean squared error (MSE) is used to measure the 
performance of the classification tree for the GDI.  For 
each class j, let cj be an indicator variable that is 1 if the 
class for the example e is j and 0 otherwise; the MSE for 
this case is given by (2),  
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where the expectation (Ee) is over all examples, and  
Pj(e) represents the probability assigned to class j for 
example e.  The GDI minimizes the resubstitution 
estimate for the MSE.  This is advantageous when 



looking at unequal populations of events and is also the 
more efficient choice.   

The twoing rule is different from the GDI in that the 
classes are selected so that half of the data is divided 
on each split.  The result is a classification scheme that 
does not simply attempt to pull out one class initially, but 
pulls out the variable that maximizes the split into two 
equal populations. 

The pruning technique inherent to classification 
trees is called minimal cost complexity pruning (Breiman 
et al. 1984).  This process assumes that there is a linear 
increase in the bias of the resubstitution with the 
number of nodes for the tree.  This cost (Rα) is assigned 
to a subtree and is composed of two terms including a 
resubstitution error for the given tree (R(T)) and the 
number of leaves (N) times a complexity factor α (3). 

 
NTRR αα += )(                        (3)   

 
From the cost equation (3), a series of trees are created 
while varying α from 0 to infinity.  These trees are 
nested and the tree that minimizes the overall cost is 
selected to represent the group.  

Overall, the GDI method to grow classification trees 
involves four steps.  The first uses (1) to calculate the 
diversity index on the parent node.  The second step 
calculates the resultant GDI for the two child nodes from 
the split at the parent node.  Weights are then arranged 
according to the proportion of the parent node in each 
child.  Lastly, an improvement measure is calculated by 
minimizing the cost from each created subtree. 

Input into the tree growth algorithm includes a 
matrix of a series of variables each having a known 
classification.  Again, the classification was broken 
down into eight convective cell types.  The reflectivity-
derived and near-storm environmental variables were 
limited by availability in the WDSS-II scheme but follow 
closely with research previously done using proximity 
soundings with RUC-20 data (Thompson et al. 2003; 
Coniglio et al. 2006; Cohen et al. 2006).  A training set 
was created from the input variables and the known 
classification.  The results of the training and 
classification will be found in section 4.  
 
3.3.  Identification Example   
 

The example for the cell classification was the 
severe weather outbreak over Missouri on 12 March 
2006.  The time period selected for this example was 
2200UTC (Figure 1).  The domain for the radar image 
was centered over the KEAX radar site and extends 
over a256 x 256 km area.  The radar image was created 
using a maximum composite scheme and then run 
through the cell identification scheme. 

 
 

 
 
Figure 1.  The maximum composite reflectivity 
image from 12 March 2006 centered over the KEAX 
radar site at 2200UTC.   
 

 

 
Figure 2.  The identified cells from 12 March 2006 
composite reflectivity centered over the KEAX radar 
site at 2200UTC.  Four distinct objects were 
identified in this particular case with each cell 
labeled a-d.   

 
 

 
 
Figure 3.  The MUCAPE field from 12 March 2006 
centered over the KEAX radar site at 2200UTC.  At 
this time, MUCAPE is weakening to values less than 
3000 Jkg-1. 
 

 
Figure 1 shows the identification of the different cells in 
the domain after they have been isolated at the 30-dBZ 
threshold and have passed the minimum size criterion 
(>40 km2). In Figure 2 multiple supercells are identified 
as one cluster of supercells, this occurs as enough 
 

 



12 March 2006 at 2200UTC Cell Array 
SIZE 3641 459 403 162 
MAXREF 73.704 57.000 58.869 51.000 
STDREF 10.058 7.039 6.359 4.938 
ECHOZ 50081 41409 42962 36631 
VIL 67.173 26.577 15.656 7.695 
SRH 613.64 740.08 226.56 191.37 
MUCAPE 1516.9 1322.8 2205.2 1327.9 
DCAPE 800.73 11.17 825.69 746.17 
AVGVGP 0.435 0.494 0.448 0.382 
EHI 5.743 6.118 3.122 1.594 
SHEAR 44.327 44.920 37.329 41.165 
RH_LCL 78.634 97.904 70.539 58.252 
RATIO 2.833 1.744 2.553 2.331 
MU/SBCAPE 1.993 1322.8 1.636 1.143 
ROT TVS Meso Circ Circ Circ 
"EXPERT"  

TYPE 
Supercell 
Cluster 

Decaying 
Supercell 

Growing 
Rotating Storm 

Growing 
Rotating Storm 

 
Table 2.  Selected output fields for the 12 March 2006 case at 2200 UTC including the “expert” classification, 
for units and category descriptions see Table 1. 
 
overlap of the 30-dBZ regions is present.  The scheme 
dictates that as long as a part of the cluster contains 
supercell characteristics, the entire identified cell will be 
considered a supercell.   

Once the individual cells are tagged with identifying 
numbers, the algorithm calculates and overlays 
reflectivity-derived parameters along with selected NSE 
variables derived from the RUC-20 via the WDSS-II 
software.  Figure 3 shows an example of the most 
unstable CAPE (MUCAPE) field that was overlaid on the 
composite reflectivity field, while Figure 4 shows the 
MUVGP and Figure 5 shows the SRH in the 0 to 3-km 
layer.  These figures illustrate the variability in a small 
domain (256 x 256 km) at a 20-km resolution.   
Significant changes in these variables over such short 
distances can alter the evolution of the individually 
tagged storm from Figure 2.  For each time, a table of 
storm attributes is created including the reflectivity-
derived and the NSE variables which will be input into 
the classification tree.  Table 2 includes some of the 
selected fields used for classification for the 12 March 
2006 example from Figure 2.  Accompanying the 
selected variables is the subjective “expert” 
classification that will fall into one of the eight 
classifications from Table 1 for input into the 
classification tree routine. 
 
4.  CLASSIFICATION EXPERIMENTS 
 

There were four experiments conducted which used 
different training sets yielding different resultant 
classification trees.  Two of the experiments will be 
detailed in this paper including a training set consisting 
of reflectivity-derived fields only and a training set 
consisting of reflectivity-derived fields coupled with near-
storm environmental parameters.   
 

 
 
Figure 4.  The MUVGP field from 12 March 2006 
centered over the KEAX radar site at 2200UTC.  
Notice values exceeding 0.3 ms-2 throughout the 
domain which signifies the continuing threat for 
rotating storms.  

 
 

 
 
Figure 5.  The MUVGP field from 12 March 2006 
centered over the KEAX radar site at 2200UTC.  
Notice values exceeding 0.3 ms-2 throughout the 
domain which signifies the continuing threat for 
rotating storms. 
 
 
 
 
 



4.1.  Reflectivity-derived Fields Only 
 

The classification tree used for this study first tests 
the hypothesis from MacKeen et al. (1999) that using 
reflectivity data alone does not provide the necessary 
information for predicting storm longevity.  The tree is 
created using information on reflectivity-derived 
products and shape information.  Reflectivity-derived 
products include:  maximum reflectivity, mean 
reflectivity, the standard deviation of reflectivity, 
vertically integrated liquid (VIL), VIL density, probability 
of severe hail (POSH), and maximum estimated hail 
size (MESH).  The shape parameters include the echo 
top height, the aspect ratio of the storm, and the storm 
size. 

Equal populations, 16 of each storm type, were 
used in the creation process.   Figure 6 shows the 
classification tree using reflectivity data only.  Figure 7 
shows the misclassification costs which correspond to 
the number of terminal nodes created by the tree.  It is 
notably best to prune the reflectivity only tree at the 
point corresponding to where the lowest cross-validation 
error occurs.  For this case, that level is 5, and the 
cross-validation error is 0.4833.  It is interesting to note 
that using linear classification yields a cost of 1.0333.  
Clearly, using reflectivity only to create a decision tree 
fails when using linear classification methods. 

For the end node that results in the supercell 
classification, the size range was 745 to 3013 km2, the 
mean VIL density was greater than 2.15 g m-3, the 
maximum reflectivity was greater than 60.08 dBZ, and 
the aspect ratio was less than 3.2.  The aspect ratio 
being less than 3.2 reveals that the storm should appear 
more circular in nature which agrees with the supercell 
structure.  The intense reflectivity and size range also 
coincide with most supercell observations.   From the 
supercell end node, estimated probabilities of the eight 
storm types are given and can be incorporated into an 
automated procedure (neural network) for classification.   

Upon further examination of the classification tree 
using reflectivity-derived products only, it is apparent 
that there are a few problems with the logic used to 
create a few of the branches in the testing phase.  The 
main issue stems from the frequency of using maximum 
reflectivity for splitting; an example is found at the first 
two nodes on the left side of the tree in Figure 6.  The 
first split using a maximum reflectivity of 51.175 should 
result in a separation of severe and nonsevere events; 
however, an examination of the final nodes shows that 
nonsevere storms are still classified with size becoming 
the main discriminating factor.  Distinguishing between 
small storms using storm size does not make intuitive 
sense as the smaller scale storms (from Table 1) should 
have approximately the same size.  In addition to the 
overuse of maximum reflectivity there seems to be 
improper splitting at the end of the tree in the 
discrimination between linear convective systems and 
supercells.  The aspect ratio is used in this case and the 
classification results in a supercell if the ratio is greater 
than 1.40425.  Clearly a linear convective system 

should have a greater aspect ratio and some 
considerable misclassification is occurring.  Finally, the 
tree does not seem to have an ideal pruning level; the 
eight classification types do not appear uniquely at one 
pruning level as is shown when combining RUC-20 data 
and radar-derived fields. 

Once the training phase is complete using equal 
populations and reflectivity-derived fields only, additional 
cases are put into the scheme and the created tree 
classifies the new and complete data set using all 
storms.  At this point the quality of the tree can be 
assessed.  Information from other identified cells from 
various dates and geographic locations may be used 
with the same reflectivity-derived data set used as input 
to the classifier.  Once the new data set is run through 
the scheme, the deterministic classification from the test 
tree is compared with the expert classification.  The first 
comparison is an exact-match approach where the 
deterministic classification from the tree must match the 
expert classification exactly.  The second comparison 
made allows for adjustments to the match as long as the 
match is deemed not to be a total miss in classification.  
For example, for an event to be classified by the tree as 
a supercell but for which the “expert” classification 
reveals a severe, small-scale, rotating storm, the case is 
flagged as a match instead of a nonmatch as the 
classification is close to the truth and would not prove to 
be a problem operationally.  However, for the case of a 
linear convective system with rotation being matched to 
a pulse thunderstorm, this would still be considered a 
mismatch. 

In the case of using reflectivity data only to create 
the classification tree, the exact classification rate from 
365 cells including the training cells was 0.417, while 
the marginal classification rate of those same cells was 
0.618.  Table 3 shows a breakdown of skill scores 
including POD, FAR, and CSI for the eight classification 
types for exact matches.  Generally, the classification 
rates of success are not as high as desired when using 
reflectivity-derived products only; this coincides with the 
observations made by MacKeen et al. (1999). 

A contingency table for each of the eight storm 
classifications for exact matches using reflectivity-
derived products only is shown in Table 4.  The table 
was created using 365 expert classification observations 
and the resulting classification from the decision tree.  
Values should be maximized along the diagonal of the 
table for optimal performance. .  Outliers are readily 
apparent when examining the table, especially when 
examining the severe, small-scale rotating storm 
(SSRS) and the nonsevere, small-scale rotating storm 
(SRS).  These outliers are mirrored in the pulse and air 
mass storm classifications as well.  From the table it is 
also clear which storm types are being over- or under-
classified.  For example, there are a total of 62 observed 
supercells and only 34 are accurately classified for the 
reflectivity-derived product only tree.  Overall, it is 
evident that distinguishing between larger-scale storms 
using reflectivity-derived products alone is a weakness.



 
 
Figure 6.  The cell classification tree using reflectivity only.  
 
 

 
Figure 7.  The misclassification error (cost) for the 
classification tree using reflectivity-derived products 
only.  The resubstitution error is an idealized cost 
where the cross-validation curve shows the actual 
cost for the different terminal nodes. 
 
 
 
4.2  Adding NSE Fields 
 

The advantage of the tree classification scheme is 
that large datasets may be used to construct the ideal-
sized (pruned) tree.  There is not an immediate necessity 

to select certain RUC-20 fields for use in the classification 
tree formulation.  The scheme itself will select the best 
splits at each node given the large data array by the 
methods described in section 3.2.  This allows for easy 
comparison between previous studies on near-storm 
environmental fields for certain convective storms and the 
fields identified for use in the classification tree scheme.   
 
 
 
  

Standard Skill Scores (Exact Match) 
Storm Type POD FAR CSI 

Supercell 0.317 0.412 0.260 
Linear Convective System 0.370 0.706 0.196 

Linear Convective System with 
Rotation 0.321 0.591 0.220 

Small Rotating Storm 0.240 0.765 0.135 
Severe Small Rotating Storm 0.389 0.548 0.264 

Pulse 0.385 0.753 0.177 
Air Mass 0.600 0.580 0.328 

General Thunderstorm 0.550 0.333 0.431 
 

Table 3.  Skill scores for exact matches for the 
classification tree using reflectivity-derived 
parameters only. 



 
 
Table 4.  Contingency table for the expert-classified 
observation cell types (x-axis) and the output from 
the reflectivity-derived products only decision tree.  
The table was created for 365 total cells. 
 

The classification tree created using fields created 
by the WDSS-II NSE algorithm using RUC-20 data 
should provide better results than when using reflectivity 
products alone.  The tree created when using the 
combination of radar reflectivity-derived fields along with 
RUC-20 NSE fields is shown pruned to the eight 
classification types in Figure 8.  The misclassification 
errors (cost) at each terminal node are shown in Figure 
9.  The cross-validation cost of the tree at the pruned 
level shown in Figure 8 is at a minimum (0.275).  When 
doing a linear classification, the cost drops to around 
0.125; however, more work would need to be done to 
examine the full effectiveness of a linear classification 
tool in this seemingly nonlinear application.  The 
supercell classification end node shown in Figure 8 
reveals that the supercell classification relies on a mean 
VGP to be greater than 0.299 ms-2 and a size between 
745 and 3734 km2.  The VGP value is consistent with 
the findings by Thompson et al. (2003) for supercells 
utilizing RUC proximity soundings.  Note that for the 
classification tree using RUC data and reflectivity-
derived products, the main split uses the VGP and 
separates the tree into the four nonrotating storm types 
and the four rotating storm types.  Physically this is a 
logical first split.  The addition of some kind of model-
derived rotation quantity alone improves the formulation 
of the classification tree(s).  

From the exact comparison, the tree using RUC-20 
fields with the radar-derived fields yields a classification 
success rate of 0.50.  When accounting for near 
matches this figure jumps to 0.78.  When examining 
standard skill scores for the eight different types of 
storms for exact matches (Table 5) and for near 
matches (not shown) an improvement is evident in 
comparison with the reflectivity-derived parameters only 

classification tree.  It is important to keep in mind that in 
the success rate comparison, deterministic 
classifications are used.  If the estimated probabilities, 
or misclassification rates were used, more insight into 
the success of the classification scheme could be 
attained.   

 
Standard Skill Scores (Exact Match) 

Storm Type POD FAR CSI 
Supercell 0.556 0.300 0.449 

Linear Convective System 0.778 0.447 0.477 
Linear Convective System with 

Rotation 0.071 0.600 0.065 
Small Rotating Storm 0.720 0.478 0.434 

Severe Small Rotating Storm 0.333 0.467 0.258 
Pulse 0.269 0.600 0.192 

Air Mass 0.400 0.754 0.179 
General Thunderstorm 0.750 0.565 0.380 

 
Table 5.  Skill scores for exact matches for the 
classification tree using an even population of 
reflectivity-derived parameters combined with near -
storm environmental data from the RUC-20 model. 

 
 
When examining where problems exist within the 

classification scheme, it becomes evident that the small-
scale convective cells and some of the linear type of 
storms are frequently misclassified.  However, upon 
examination of the small-scale systems, the node splits 
are consistent with observations.  For example, the 
standard deviation of reflectivity is used to discriminate 
between severe and nonsevere storm types.  The 
standard deviation is a way of examining maximum 
reflectivity gradients.  In the case of small-scale severe 
storms, this gradient should be large when viewing 
composite reflectivity as this would represent a nearly 
vertical updraft supporting large hail.  The problem in 
the small-scale storms may exist with the expert 
classification.  Comparisons of storms with hail reports 
and storms of similar structure with no hail reports may 
need to be made for an accurate subjective 
classification.  Objects that are similar in overall 
structure but do not produce observable severe weather 
still need to be grouped in the same category.   

A contingency table for each of the eight 
classifications for exact matches is shown in Table 6, 
highlighting some of the strengths and weaknesses of 
using the combination of RUC-20 data with the radar 
reflectivity-derived products. Overall, there is vast 
improvement in discriminating between rotating and 
nonrotating types with the addition of RUC-20 data; 
however, work still needs to be done on the smaller-
scale storms. 
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SC 20 10 2 14 8 0 5 3 62 
SSRS 3 28 8 0 0 1 29 2 71 
SRS 0 3 12 0 0 26 9 0 50 
LCS 4 0 4 10 5 0 1 3 27 
LCSROT 5 3 1 8 9 0 1 1 28 
AM 0 2 3 0 0 21 9 0 35 
PULSE 2 16 10 1 0 2 20 1 52 
GEN T 0 0 11 1 0 0 6 22 40 
Total 
Class 34 62 51 34 22 50 80 32 365 



 
Figure 8.  Classification tree for the RUC-20 fields combined with reflectivity data calculated from the WDSS-
II system.  The tree is pruned at level 2 of 8 to capture the eight classification types at the end nodes.   
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SC 34 17 2 3 1 0 0 5 62 
SSRS 3 24 19 0 0 7 14 4 71 
SRS 0 1 36 0 0 11 1 1 50 
LCS 0 0 0 21 2 1 2 1 27 

LCSROT 11 0 0 10 2 0 0 5 28 
AM 0 1 3 0 0 14 4 13 35 

PULSE 0 2 4 2 0 20 14 10 52 
GEN T 0 0 4 2 0 4 0 30 40 
Total 
Class 48 45 68 38 5 57 35 69 365 

 
 
Table 6. Contingency table for the expert classified 
observation cell types (x-axis) and the output from 
the even population RUC-20 model fields combined 
with reflectivity-derived products decision tree.  The 
table was created for 365 total cells. 
 
 5.  CONCLUSIONS  
 
For the nowcasting problem, the information needed to 
capture growth, decay and morphology is encapsulated 
in the eight classifications described in previous 
sections.  This does not include the many sub-types of 
supercells and linear convective systems (squall lines) 
that may appear in the literature.  For the research 
herein, the focus is primarily on the type of weather 
produced by the different storm types.  We assumed 
that the different types of linear convective  

 
systems produce high winds on many occasions, and 
that the subtypes of supercells all have the potential to 
produce hail and damaging winds. This research 
attempts to categorize smaller types of cells such as the 
pulse, air-mass, and small rotating storms, and this can 
be understood from the stand point of lifecycles.   For 
example, an air mass storm is more likely to have a 
shorter residence time than a small rotating storm which 
may evolve into a supercell or at least persist for a 
longer time.   
 

 
Figure 9.  The misclassification error (cost) for the 
classification tree using an even population with 
reflectivity-derived products combined with RUC-20 
NSE fields.  The resubstitution error is an idealized 
cost where the cross-validation curve shows the 
actual cost for the different terminal nodes. 



Furthermore, the air mass to pulse discrimination 
results in the prediction of severe weather reports.  
Pulse thunderstorms tend to have strong updrafts 
capable of producing hail or strong downbursts.  These 
smaller types of storms have been shown to be difficult 
to classify due to the nature of their short persistence 
times and deficient information of the three-dimensional 
structure of the updraft or suspended higher reflectivity 
cores.  It may therefore be concluded that with the lack 
of three-dimensional information (updraft orientation and 
height of maximum reflectivity), it may only be useful to 
separate the rotating, small-scale storms from the 
nonrotating, small-scale storms instead of including an 
attempt to distinguish between severe or nonsevere.   

Potential uses of the classification include informing 
an object-oriented nowcast scheme on how to evolve 
the shapes in space and how to grow and decay them 
based on trends found in the model and trends found in 
the reflectivity fields. For nowcasts made further than 60 
minutes, a RUC-20 forecast solution may be used to 
predict future classification of the identified cell.  The 
incorporation of RUC-20 data at forecast times, instead 
of the initial time, may introduce more error to the 
nowcast system, but allows the classification to still 
have some of its roots in the general reflectivity 
structure of the given identifiable storm. 

Trends in the classification over time can also be 
used to provide insight into the storm’s life cycle.  This 
requires some consistency in the observation; however, 
storm splits and mergers may be able to be handled  
well with the increase or decrease in observed cells and 
their corresponding properties used in the classification 
process.  These trends may also be used to pick out 
time steps that may have been misclassified due to poor 
model initialization or gaps in radar data. 

MCS longevity studies (i.e. Coniglio et al. 2006) 
indicate the possibility of using model fields for the 
nowcast problem.  The research herein takes this a step 
further by breaking down longevity based on individual 
cells instead of entire regions.  Note also that the 
occurrence of the storm cells in the domain may alter 
the environment, thus making it important to evaluate 
storm cells on a case-by-case basis.  Finally, it may be 
useful for future derivations of the storm classifier to use 
only the model fields utilized for MCS maintenance 
outlined by Coniglio et al. (2006).  This may yield better 
and physically more realistic results than allowing the 
tree classification creation scheme to select from a large 
data set. 
 
6.  FUTURE WORK 
 

Future work with the cell classification problem 
includes a large-scale effort to develop an expert 
classification database that would require continuous 
updating.  This database would be instrumental in the 
setup of a neural network.  For a given date, cases must 
be selected that exhibit cells that have a pure 
classification in one of the eight categories.  Further 
research may also be conducted on decreasing the 
number of cell types.  It may be useful to reduce the 
number of classification types to six.  This would result 

in removing the severe versus nonsevere type of small-
scale convection.  Combining the air-mass thunderstorm 
with the pulse thunderstorm along with combining the 
two smaller-scales, rotating thunderstorms may be 
essential to improving classification until more three-
dimensional fields can be used in a near-real time 
setting.  Alternatively, there is the possibility of an 
increase in storm categories if it is determined there are 
more then eight life-cycle models that should be applied 
in the nowcasting problem.  Overall, the first step in 
future work of the classifier should be to create a large 
database of ideal storm classes to be used in the 
problem. 

The use of velocity products from Level-II radar 
data may give some insight for the storm classification 
problem.  Currently, there are products that can be 
displayed in the WDSS-II software package which 
include azimuthal shear and divergence derived from 
Doppler velocities.  The fields appear in regions of 
significant reflectivity, including ground clutter.  From the 
azimuthal shear product for the lowest elevation angle 
(0.5°), it can be shown that for areas of significant 
rotation, there is a peak in azimuthal shear values.  
Also, at the lowest elevation angle significant rotation 
appears to be found near a couplet of strong divergence 
and convergence upon examining the divergence 
product.  The utility of these fields in the classifier may 
be assessed in the near future. 

Enhancements of storm identification for the 
classification experiment may also be needed.  Storm 
cells that are merging or splitting may cause a problem 
for identification.  This can be avoided by using a multi-
Doppler radar analysis to calculate updraft motions in 
the storms (Stalker and Knupp, 2002).   From the 
identification of significant updrafts, storms may be 
readily identified as being separate entities in the 
splitting/merging stages of development or morphology.  
This process will remain a problem in the immediate 
future as multi-Doppler analysis is only available during 
research and in a few select regions that may have 
significant radar coverage overlap. 

Finally, a number of other methodologies can be 
applied in place of the classification tree used in this 
research.  Substituting a Bayesian Additive Regressive 
Tree (BART:  Chipman et al. (2005) may result in better 
estimations on the probabilities of proper classification 
of the expert storm types.  This method is relatively new 
and has shown vast improvements over standard 
classification and regression trees of the past.  A 
comparison between the linear Fisher discriminant 
(LFD) and the nonlinear kernel Fisher discriminant 
(KFD) with the classification tree methodology might 
also show interesting results in classifying convective 
storm types. 
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