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1 INTRODUCTION

Complex characteristics of the weather dynamics
such as being chaotic, uncertain, and of multiple
time- and length-scales, leads to the necessity of
a large sensor network. Expansion of the static
observation network is limited by geographic as-
pects; thus, an adaptive sensor network incorporat-
ing mobile sensor platforms (e.g. UAVs) has be-
come an attractive solution to construct effectively
large networks. Palmer (1998) and Daescu (2004)
located the potential error-growing sites based on
the sensitivity information inherited in the dyanam-
ics; meanwhile, Majumdar (2002) and Leutbecher
(2003) quantified the future forecast covariance
change within the framework of approximation of ex-
tended Kalman filter. However, due to the enormous
size of the system – the network dimension ofO(103)
in the state dimension of O(106) (Majumdar, 2002),
the selection strategy was very simple – for instance,
two flight paths was greedily selected out of 49 pre-
determined paths in Majumdar (2002).

This work provides an information-theoretic way
to perform the targeting of a sensor network in a
large space when the goal is to reduce the uncer-
tainty in a specified verification space/time. The dy-
namic sensor targeting problem is formulated as a
static sensor selection problem associated with the
ensemble-based filtering (Evensen, 1996; Whitaker,
2002). Mutual information, which can take into ac-
count the correlation amongst verification variables,
is introduced as a measure of uncertainty reduction,
and computed under the Gaussian assumption. To
address the computational challenge resulting from
the expense of determining the impact of each mea-
surement choice on the uncertainty reduction in the
verification site, the commutativity of mutual informa-
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tion is exploited. This enables the contribution of
each measurement choice to be computed by prop-
agating information backwards from the verification
space/time to the search space/time. This back-
ward computation significantly reduces the required
number of ensemble updates that is computationally
intensive. Numerical experiments using Lorenz-95
model validates the computational effectiveness of
the proposed information-theoretic ensemble target-
ing algorithm.

In spite of limitation of ensemble size for a re-
alistic weather model, there have no research on
sensitivity of the targeting solution to the ensemble
size. As an essential step toward implementation
of the presented information-theoretic ensemble tar-
geting algorithm to realistic cases, this paper per-
forms sensitivity analysis of the ensemble-based tar-
geting with respect to limited ensemble size. Monte-
Carlo experiments with the Lorenz-95 targeting ex-
ample characterizes three important aspects of sen-
sitivity: discrepancy of the predicted and actual infor-
mation gain value, performance degradation of the
targeting solution, and inconsistency of the targeting
solution with respect to the choice of ensemble. In
addition, based on the statistical analysis of the en-
tropy estimation, this work proposes new predictors
of the degree of impact that limitation of ensemble
size might have on the solution optimality: the range-
to-noise ratio (RNR) and the probability of correct de-
cision (PCD). Numerical investigation of the Lorenz-
95 targeting example will validate the effectiveness
of these predictors.

2 INFORMATION-THEORETIC SENSOR TARGETING

2.1 Entropy and Mutual Information
Entropy representing the amount of information hid-
den in a random variable A1 is defined as

H(A1) = −E [ log (pA1(a1))] . (1)
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Figure 1: Multiple targeting as a sensor placement prob-
lem)

The joint entropy of two random variables H(A1, A2)
is defined in a similar way; it is related to the con-
ditional entropy H(A2|A1) as H(A1, A2) = H(A1) +
H(A2|A1).

The mutual information that is employed in this pa-
per as a metric of the uncertainty reduction of the
forecast by the measurement is defined as:

I(A1;A2) = H(A1)−H(A1|A2). (2)

Note that the mutual information is commutative
(Cover, 1991):

I(A1;A2) ≡ I(A2;A1) = H(A2)−H(A2|A1). (3)

Moreover, in case a random vector A is jointly Gaus-
sian, its entropy is expressed as

H(A) ≡ H(A1, · · · , Ak)
= 1

2 log det(Cov(A)) + k
2 log(2πe).

(4)

This work computes the mutual information between
the verification and measurement variables by ex-
ploiting the commutativity under the Gaussian as-
sumption.

2.2 Sensor Targeting Algorithm

Figure 1 illustrates the sensor targeting problem in
a spatial-temporal gridspace. The objective of sen-
sor targeting is to deploy ns sensors in the search
space/time region (yellow) in order to reduce the un-
certainty in the verification region (purple region) at
the verification time tV . Without loss of generality,
it assumed that each grid point is associated with a
single state variable that can be directly measured.
Denote the state variable at location s as Xs, and
the measurement of Xs as Zs, both of which are ran-
dom variables. Also, define ZS ≡ {Z1, Z2, · · · , ZN}
and XS ≡ {X1, X2, · · · , XN} as the sets of all cor-
responding random variables over the entire search

space of size N . Likewise, V ≡ {V1, V2, · · · , VM}
denotes the set of random variables representing
states in the verification region at tV , with M being
the size of verification space. With a slight abuse of
notation, this paper does not distinguish a set of ran-
dom variables from the random vector constituted by
the corresponding random variables. Measurement
is subject to Gaussian noise that is uncorrelated with
any of the state variables

Zs = Xs +Ns; Ns ∼ N (0, Rs), ∀ s ∈ S , Z+ ∩ [1, N ],
Cov(Ns, Yp) = 0, ∀ Yp ∈ XS ∪ V.

When entropy is adopted as the uncertainty met-
ric, the sensor targeting problem can be written as

sF ? = arg max
s⊂S:|s|=ns

I(V;Zs) , H(V)−H(V|Zs) (5)

G= arg max
s⊂S:|s|=ns

1
2 ldet (Cov(V))− 1

2 ldet (Cov(V|Zs))

where ldet() stands for the log det() function, and G=
denotes the equality under the Gaussian assump-
tion. Calling the above formulation as forward se-
lection, Choi (2007a) verified that the computation
time for the selection decision can be dramatically
reduced by reformulating it as a backward selection:

sB? = arg max
s⊂S:|s|=ns

I(Zs;V) , H(Zs)−H(Zs|V)

G= arg max
s⊂S:|s|=ns

1
2 ldet (Cov(Zs))− 1

2 ldet (Cov(Zs|V))

= arg max
s⊂S:|s|=ns

1
2 ldet (Cov(Xs) +Rs)

− 1
2 ldet (Cov(Xs|V) +Rs) . (6)

Note that sF? ≡ sB?, since mutual information is
commutative.

In finding the optimal solution using explicit enu-
meration, which results in the worst-case compu-
tational complexity, the forward method computes
the posterior entropy of V for every possible mea-
surement candidate s. This means that the evalua-
tion and determinant calculation of the posterior co-
variance of V has to be done

(
N
ns

)
times. On the

other hand, the covariance update can be done as
a constant-time process for the backward method by
updating the covariance of the entire search space
S at once; then, a combinatorial search extracts the
pair of ns × ns submatrices consisting of identical
row/column indices from the prior and posterior co-
variance matrices of S, that reveal the largest dif-



ference between their determinants. As the covari-
ance update usually incurs high computational ex-
pense – especially for the ensemble-based targeting
problems – the backward selection saves a signifi-
cant amount of computation time. In addition, the
backward formulation is preferable if |V| > ns, since
it computes the determinants of smaller matrices.

3 ENSEMBLE-BASED TARGETING

3.1 Ensemble Square Root Filter

This work utilizes sequential ensemble square root
filters (EnSRF) (Whitaker, 2002) for both data assim-
ilation and adaptive targeting, as it represents better
computational stability and effectiveness than other
ensemble filters such as the ensemble Kalman fil-
ter (EnKF) and the ensemble transform Kalman filter
(ETKF). In EnSRF, the state estimate and the esti-
mation error covariance are represented by the en-
semble mean and perturbation ensemble variance,
respectively. The perturbation ensemble being de-
fined as X̃ ≡ η

(
X− x̄× 1T

)
∈ RLS×M , the error

covariance is approximated as

P = X̃X̃T /(M − 1), (7)

where X is the ensemble matrix, x̄ is the ensem-
ble mean vector, LS and M denote the number of
state and the ensemble members, and η is the in-
flation factor to avoid underestimation of the covari-
ance. The propagation step for the EnSRF corre-
sponds to the integration

Xf (t+ ∆t) =
∫ t+∆t

t
Ẋdt (8)

with the initial condition X(t) = Xa(t), superscripts
‘f’ and ‘a’ denote the forecast and the analysis, re-
spectively. The measurement update step for the
EnSRF consists of the mean update and the pertur-
bation update as:

x̄a = x̄f + K(z−Hx̄f ), X̃a = (I−KH)X̃f (9)

where z and H are the measurement vector and the
observation matrix, while K represents the Kalman
gain determined by a nonlinear matrix equation of
X. In the sequential framework devised for efficient
implementation, the ensemble update by the m-th
observation is written as X̃m+1 = X̃m−αmβmpmi ξ̃

m
i

with αm = (1+
√
βmRi )−1, βm = (Pm

ii +Ri)−1, when
i-th state is measured. pmi , ξ̃mi , and Pm

ii are the
i-th column, the i-th row, and (i, i) element of the

Routine obs. already assimilated into the analysis ensemble
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prior perturbation matrix Pm, respectively. αm is the
factor for compensating the mismatch between the
serial update and the batch update, while βmpml is
equivalent to the Kalman gain.

3.2 Ensemble Augmentation for Prior Setup

In the context of numerical weather prediction, the
goal of observation targeting is to improve the
weather forecast in the future time tV by deploying
observation networks over a short future time hori-
zon (t1, . . . , tK), where the current time is t0 at which
the analysis ensemble is available. Also the rou-
tine observation network that periodically takes mea-
surement until tK should be taken into account for
the targeting decision. Note that the routine obser-
vations from tK+1 through tV are not considered, as
what is of particular interest is the enhancement of
∆T (= tV − tK)-interval forecast based on observa-
tions taken up until tK . The observation structure will
be similar to Fig. 2. Note that the targeting decision
should not rely on the actual measurement values
over [t1, tK ], since this information is not available at
the decision time t0. Thus, the ensemble-based tar-
geting process tried to construct an observation net-
work that is expected to give the greatest uncertainty
reduction in the verification space-time in the statis-
tical sense. EnSRF targeting determines where and
when to make additional observations based only on
the covariance information, not on the actual value
of the future measurements.

The effect of the future routine observations is pro-
cessed first and the output of this routine process is
treated as a prior information for the sensor selec-
tion problem in which only the additional observa-
tions are involved. Processing the observation net-
works over the time amounts to a EnSRF ensemble
update for the augmented forecast ensemble defined



as

Xf
aug =

[(
Xf
t1

)T
· · ·

(
Xf
tK

)T (
Xf
tV

)T]T
,

(10)
where Xf

tk
= Xa

t0 +
∫ tk
t0

Ẋ(t)dt, with Xa
t0 ∈ RLS×M

being the analysis ensemble at t0. The routine ob-
servation matrix for the augmented system is ex-
pressed as

Hr
aug = [ diag(Hr) 0Knr×LS

] , Hr ∈ Rnr×LS (11)

where nr is the number of routine measurement at
each time step. If a state can be measured directly,
Hr ∈ {0, 1}nr×LS with every row having only one
nonzero element.

Only the covariance information is updated for the
purpose of the targeting; therefore, the ensemble up-
date step is solely associated with the perturbation
ensemble update:

X̃a
aug = (I −Kr

augH
r
aug)X̃

f
aug (12)

without consideration of ensemble mean update.
In the EnSRF scheme, this process can obviously
be performed one observation by one observation.
X̃a
aug will be utilized to construct the prior covariance

matrix for the sensor selection problem. Since the
selection problem only concerns the search space S
and the verification region V, it deals with the follow-
ing submatrix of the X̃a

aug:

X̃S∪V =
[
ξ̃TX1

· · · ξ̃TXN
ξ̃TV1

· · · ξ̃TVM

]T
(13)

where ξ̃(·) represents the row vector of X̃a
aug corre-

sponding to the subscribed variable. The covariance
matrix can be evaluated as

Cov(XS ∪ V) = X̃S∪VX̃T
S∪V/(M − 1). (14)

Note that XS ∪ V might not be jointly Gaussian in
spite of measurements being linear and Gaussian,
if the dynamics is nonlinear. EnSRF is based on the
assumption that at least for a given time instance, the
ensemble distribution is sufficiently close to Gaus-
sian distribution determined by the ensemble mean
and covariance. This work assumes more that the
ensemble distribution is sufficiently close to Gaus-
sian within the time window [t0, tV ].

3.3 Ensemble Targeting Algorithm

After obtaining the prior ensemble X̃S∪V , the forward
ensemble targeting algorithms are written as

s?F,En = arg max
s

ldetX̃VX̃T
V − ldetX̃V|sX̃T

V|s, (15)

and the backward ensemble targeting is expressed
as

s?B,En = arg max
s

ldet
(
X̃sX̃T

s + (M − 1)Rs

)
(16)

− ldet
(
X̃s|VX̃T

s|V + (M − 1)Rs

)
.

X̃V ∈ R|V|×M and X̃V|s ∈ R|V|×M are the prior
and posterior (perturbation) ensemble associated
with the verification region, while X̃s ∈ Rns×M and
X̃s|V ∈ Rns×M are those for each measurement can-
didate.

3.4 Numerical Results

This section will briefly summarize the numerical
results of the proposed ensemble-based targeting
given in Choi (2007a). The two-dimensional Lorenz-
95 model (Lorenz, 1998) with the following governing
equations are considered:

ẏij = (yi+1,j − yi−2,j) yi−1,j + µ (yi,j+1 − yi,j−2) yi,j−1

− yij + F, (i = 1, . . . , Lon, j = 1, . . . , Lat). (17)

where the subscript i denotes the west-to-eastern
grid index, while j denotes the south-to-north grid
index. There are Lon = 36 longitudinal and Lat = 9
latitudinal grid points, and the external forcing term
F = 8.0. The dynamics in (17) are subject to
cyclic boundary conditions in longitudinal direction
(yi+Lon,j = yi−Lon,j = yi,j) and to the constant ad-
vection condition( yi,0 = yi,−1 = yi,Lat+1 = 4 in ad-
vection terms) in the latitudinal direction, to model
the mid-latitude area as an annulus. Regarding the
time scale, 0.05 time units are are equivalent to real
6 hours.

The routine network with size 93 is assumed to be
already deployed over the grid space (blue ‘o’ in fig.
3 ). The static network is dense in two portions of the
grid space called lands, while it is sparse the other
two portions of the space called oceans. The rou-
tine network takes measurements every 0.05 time
units. The leftmost part of the right land mass (con-
sisting of 10 grid points depicted with red ‘�’ in the
figures) is the verification region. The goal is to re-
duce the forecast uncertainty in the verification re-
gion 0.5 time units after the targeting time. The tar-
geting time tK = 0.05 with K = 1. The analysis en-
semble at t0 with size 1024 is obtained by running
the EnSRF with routine observations for 500 time
units. All the grid points in the left ocean are consid-
ered as a candidate point to locate additional mea-
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Figure 3: Optimal solution for ensemble-based targeting

surement at t1; therefore, N = 108. The measure-
ment noise variance Rs is 0.22 for routines and 0.022

for additional observations. With this setting, the tar-
geting results, as the number of targeting points ns
being increased, are obtained.

It should be first pointed out that the backward al-
gorithm gives the same solution with the forward al-
gorithm for all the cases, while the it works much
faster than the forward algorithm (Table 1). In the ta-
ble, T(·) and T̂(·) represent the actual and estimated
computation times. Figure 3 illustrates a represen-
tative optimal sensor locations(cyan �) for ns = 1,
3, and 5. The shaded contour in both figures rep-
resents the local reward value for each grid point,
that is the entropy reduction of the verification site
by a single measurement at the corresponding grid
point. It is noted that the optimal solution for n = 5
looks very different from the solution for n = 1 and
n = 3. This implies that coupled correlation struc-
ture amongst the search space should be taken into
account to find the optimal targeting solution, and it
could be arbitrarily suboptimal just picking the points
with largest uncertainty. Choi (2007b) incorporated
mobility of the multiple sensor platforms into the tar-
geting decision, but this paper will not present those
results because the sensitivity analysis with respect
to the ensemble size is done for the simple sensor
targeting problem described in this section.

4 EFFECTS OF LIMITED ENSEMBLE SIZE

As the quality of state representation by statisti-
cal ensembles is enhanced the ensemble size in-
creases, the ratio M/LS can be used to predict the
quality of state representation. The numerical ex-
periments in the previous section considered M =
1024 and LS = 324, which leads to M/LS = 3.2.
It is noted that M/LS is much smaller than this
for a realistic weather model: a typical ensemble
size (∼ O(102)) is much smaller than the state di-
mension (∼ O(106)), which results in M/LS being
O(10−4). This limitation in ensemble size is caused
by the computational expense of storing and pro-
cessing additional ensembles. Several researches
have been performed to figure out and mitigate the
effect of small M/LS on the quality of forecast and
data assimilation. Buizza (1998) showed that the im-
pact of ensemble size on the forecast performance
is highly dependent on the choice of metric. The en-
semble mean is less sensitive to the ensemble size,
while the spread-skill relation and outlier statistic is
sensitive to the ensemble size. Hamill (2001) sug-
gested distance-dependent EnKF data assimilation
to mitigate the effect of error in estimation of correla-
tion caused by small ensemble size.

On the other hand, since the quality of estimation
of mutual information value for each measurement
candidate is important for the targeting problem, a
more reasonable index that represents the quality of
the targeting solution is the ratio, the number of en-
sembles to the size of the covariance matrix whose
determinant is computed; that is, n/M for the back-
ward targeting algorithm and |V|/M for the forward
targeting algorithm. Thus, the forward and the back-
ward algorithms will represent different characteris-
tics in terms of the sensitivity to the ensemble size.

Table 1: Actual and estimated computation times for
ensemble-based targeting algorithms

N ns TF (s) TB(s) T̂F (s) T̂B(s)

108 1 0.13 0.13 0.10 0.14
108 2 8.17 0.16 10.4 0.15
108 3 344.5 0.72 561.4 0.61
108 4 − 18.8 5.7 hr 14.6
108 5 − 461.3 6.5 day 349.3



4.1 Well-Posedness

The first concern regarding the limited ensemble size
is well-posedness of the algorithm, as the ldet is
not even defined for a rank-deficient matrix. Re-
call that the forward and backward targeting algo-
rithms compute the determinants of

[
X̃V|·X̃T

V|·
]

and[
X̃s|·X̃T

s|· + (M − 1)Rs

]
, respectively. Then note that

1. Forward algorithm might suffer from rank-
deficiency unless |V| �M .

2. Backward algorithm will not be subject to rank-
deficiency for nontrivial measurement noise with
R > 0.

Since nontrivial sensing noise usually exists in prac-
tice, the backward algorithm is preferred to the for-
ward algorithm in terms of algorithm well-posedness.
In addition, for a given ensemble size M , handling a
smaller covariance matrix is desirable for less sensi-
tivity to the ensemble size (details discussed later).
Recalling that ns is usually smaller than |V|, the
backward algorithm is again preferred in this respect.

However, well-posedness of the backward algo-
rithm regardless of the ensemble size does not mean
that it provides the optimal solution insensitive to the
ensemble size. Instead, the covariance matrix com-
puted from the small number of ensembles can be
inaccurate for small M , and results in a suboptimal
targeting solution.

4.1 Impact on Targeting Solution

Monte-Carlo experiments are performed to quantify
the degree of performance degradation caused by
limited ensemble size. The scenario is the same as
the previous section with a Lorenz-95 model, and
n = 2 additional measurement points are selected
from the search space of size N = 108 to reduce
the forecast uncertainty of the verification site of size
|V| = 10. It is first assumed that true covariance field
is well represented by the full set of ensembles with
size M0 = 1024; only the backward ensemble target-
ing is considered for this experiment.

For a given ensemble size M , 50 different combi-
nations are chosen from the full set. Figure 4 com-
pares the predicted optimal information gain Î(s?B,M )
to the actual information gain I(s?B,M ). For the back-
ward targeting solution s?B,M is based on the prior
and posterior ensemble matrices YS and YS|V of

size N ×M , the above mentioned quantities are de-
fined as:

Î(s?B,M ) = 1
2 ldet

(
Ys?

B,M
YT

s?
B,M

/(M − 1) +RIns

)
− 1

2 ldet
(
Ys?

B,M |VYT
s?

B,M |V/(M − 1) +RIns

)
(18)

and

I(s?B,M ) = 1
2 ldet

(
Xs?

B,M
XT

s?
B,M

/(M0 − 1) +RIns

)
− 1

2 ldet
(
Xs?

B,M |VXT
s?

B,M |V/(M0 − 1) +RIns

)
(19)

where X(·) ∈ RN×M0 denotes the full ensemble ma-
trix.

Figure 4 plots the average value taken over the
different ensemble combinations with the error rep-
resenting the 5th and 95th percentiles. As a refer-
ence, the average predicted and actual information
gain for the random selection strategy is also plot-
ted, while the red dotted line represents the mutual
information value for the optimal solution computed
with M0 ensembles.

Note that there is a discrepancy between the pre-
dicted and actual information gain values (∆1 in the
figure), which increases as ensemble size is re-
duced. This discrepancy indicates the magnitude of
the estimation error by limitation of ensemble size. It
is found that the average magnitude of discrepancy
increases to 0.29 for M = 100. In addition to dis-
crepancy, small ensemble size causes performance
degradation (∆2 in the figure). The average value of
performance degradation grows to 13% of the true
optimal solution value as M decreases to 100. An-
other aspect that should be noted is inconsistency of
the targeting solution for small ensemble size, which
is represented by the size of errorbar. For M = 100,
the size of errorbar increases to 32% of the true op-
timal solution value.

Figure 5 verifies that the discrepancy, the perfor-
mance degradation, and the inconsistency due to
limited ensemble size is not just an issue solely for
the information-theoretic targeting. The figure de-
picts the similar error bar plots in case the uncer-
tainty reduction of the verification site is measured
by absolute decrease in the trace of covariance ma-
trix of the verification site. In this case the predicted
and actual uncertainty reductions are expressed as

T̂ (s?T,M ) =tr
(
YVYT

V /(M − 1)
)

− tr
(
YV|s?

T,M
YT
V|s?

T,M
/(M − 1)

)
(20)
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value maximizing trace reduction

and

T (s?T,M ) =tr
(
XVXT

V/(M0 − 1)
)

− tr
(
XV|s?

T,M
XT
V|s?

T,M
/(M0 − 1)

)
, (21)

which should be computed in a forward manner be-
cause the commutativity does not hold for the trace
reduction. A qualitatively similar trend in discrep-
ancy, performance degradation, and inconsistency
is found for T̂ and T as the case of information-
theoretic targeting. Quantitatively, it can be seen
that the trace-based targeting suffers from more sig-
nificant discrepancy and performance degradation in
this particular experiment.

5 ANALYSIS OF EFFECTS OF LIMITED ENSEMBLE SIZE

Given the experimental findings of the optimality
degradation and the solution inconsistency due to
limited ensemble size, this section investigates how
the ensemble size is related to the solution opti-
mality of the targeting algorithm and discusses why
such large inconsistencies can occur, even for cases
where M is two orders of magnitude larger than ns.

5.1 Sample Entropy Estimation

As the simplest analysis, this section starts with the
estimation of population entropy h ≡ log p (the factor
2 and the additive term are neglected for notational
simplicity; but they can be incorporated without any
difficulty) and the population variance p for compari-
son for a scalar Gaussian random variable X. Esti-
mation is assumed to be based on M = m + 1 ran-
domly drawn samples (ensembles). Unbiased esti-
mators for these two quantities exist (Misra, 2005):

p̂ =
1
m

m+1∑
i=1

(xi − x̄)2 (22)

ĥ = log
mp̂

2
− ψ

(m
2

)
(23)

where ψ(·) is a digamma function defined as ψ(x) =
d
dx (log Γ(x)) = Γ′(x)

Γ(x) .

Since mp̂
p ∼ χ2

m, the pdfs of the estimation errors

p̃ ≡ p̂− p and h̃ ≡ ĥ− h are expressed as

fp̃(x) =
m

p
fχ2

m

(
m

p
(x+ p)

)
, (24)

fh̃(x) = 2ex+ψ(m/2)fχ2
m

(
2ex+ψ(m/2)

)
(25)

where fχ2
m

(x) = 1
2

(
x
2

)m/2−1
e−x/2, x ≥ 0. Also, the

second and third central moments are computed as:

E
[
(p̂− p)2

]
=

2p2

m
, E

[
(p̂− p)3

]
=

8p3

m2
, (26)

and

E
[
(ĥ− h)k

]
= ψ(k−1)

(m
2

)
, k = 2, 3 (27)

where ψ(k−1) is the k−1-th derivative of the digamma
function. It is noted that the pdf of h̃ does not depend
on the true value h, while that of p̃ depends on p.
Figure 6 depicts the pdfs for both estimation errors
for the case m = 99 and p = 1; it can be found that



for this value of p the second moment of p̃ is almost
same as that of h̃ for any m (figure 7). Since the
variance of p̃ is proportional to p, the shape of a pdf
with a larger p will be more dispersed. In figure 6 the
shapes of Gaussian pdfs with same variances, which
are E[p̃2]p=1 = 0.14212 and E[h̃2] = 0.14292, are also
plotted for comparison. Also, it can be found that pdf
of p̃ is positively skewed (right long tail) while that of h̃
is slightly negatively skewed. Since the skewness is
relatively small for h̃ and it is reduce further for large
m, the pdf of h̃ is well approximated as a Gaussian.

As figure 7 shows the standard deviation of h̃ with
respect to m that almost coincides that of p̃ in case
p = 1, it is conceived that the estimation error of en-
tropy estimation decreases on the order of 1/

√
m as

m increases. For instance, in order to estimate p with
estimation error standard deviation being less than
10% of the true value, more than 200 ensembles are
needed. When regarding p itself as a signal not the
variance of another signal, this can be interpreted as
more than 200 samples are needed to have bigger
than 20 dB SNR.

This statistical analysis can be extended to a mul-
tivariate case. The same sort of unbiased estimator
of log detP for P � 0 ∈ Rn×n is written as

Ĥ = ldet
(m

2n
P̂

)
−
n−1∏
i=0

ψ

(
m− i

2

)
(28)

where P̂ ≡ X̃X̃T /m is the minimum-variance unbi-
ased estimator of P (Misra, 2003). Then, the esti-
mation error variance becomes

E
[(
Ĥ − H

)2
]

=
n−1∑
i=0

ψ(1)

(
m− i

2

)
, (29)

which depends on the dimension of the random vec-
tor n, the sample size m + 1, but not the true value
of H. Figure 8 depicts the error standard deviation
for various values of n and m. The plots shows that
large n and smallm lead to large estimation error (on
the order of

√
n/m). This dependency of error stan-

dard deviation on the order of
√
n/m will be utilized

to figure out the impact of limited ensemble size on
the performance of the ensemble-based targeting, in
the following section.

5.2 Range-to-Noise Ratio

The statistical analysis in the previous section is
a generic result that does not take into account
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Figure 6: Probability density of estimation error (m = 99)
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the specific aspects of the problem. Whether or
not the limited sample (or ensemble) size has a
big impact depends on the objective of the prob-
lem. For instance, when tracking the mean of
the underlying random variable X, the accuracy in
the estimation of p might not be important. Since
E

[
(µX − X̄)2

]
= p/(m + 1), the relative accu-

racy E
[
(µX − X̄)2

]
/µ2

X = [(m+ 1)SNR]−1, which is
small for a large SNR signal.

The ensemble-based targeting problem must de-
termine the best measurement candidate from other
suboptimal measurement candidates. An important
predictor of the degree of impact that limitation of
sample size might have on the solution optimality is
the range-to-noise ratio of the mutual information val-
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Figure 8: Standard deviation of H̃

ues:

RNR =
sups I(s)− infs I(s)

sups

√
E

[(
Î(s)− I(s)

)2] . (30)

Utilizing the statistics of the entropy estimation de-
scribed in the previous section, the sup value in the
denominator can be obtained without regard to the
true values of I(s). Estimation of mutual information
can be treated as estimation of the two – prior and
posterior – entropies and substraction of those two.
Since the bias term

∏n−1
i=0 ψ

(
m−i

2

)
is the same for

the prior and posterior entropy estimation, the es-
timation error of the mutual information can be ex-
pressed as

E
{[

1
2 (Ĥ− − Ĥ+)− 1

2 (H− −H+)
]2}

= 1
4E

[
(Ĥ− −H−)2

]
+ 1

4E
[
(Ĥ+ −H+)2

]
− 1

2E
[
(Ĥ− −H−)(Ĥ+ −H+)

]
= 1

2

∑n−1
i=0 ψ

(1)
(
m−i

2

)
− 1

2E
[
(Ĥ− −H−)(Ĥ+ −H+)

]
.

(31)

where superscripts ‘-’ and ‘+’ denote the prior and
posterior. It can be shown that the cross correlation
term in the final expression is always non-negative;
so the estimation error of the mutual information is
upper-bounded by

E
[(
Î(s)− I(s)

)2] ≤ 1
2

∑n−1
i=0 ψ

(1)
(
m−i

2

)
, σ2

m,n

(32)
where equality holds if the prior and posterior
entropy estimators are uncorrelated, which corre-
sponds to infinite mutual information. With this upper

bound, the RNR can be approximated as

RNR ≈ sups I(s)− infs I(s)
σm,n

. (33)

In contrast to the denominator, the numerator of
(33) is problem-dependent. Moreover, the sup and
inf values cannot be known unless the true covari-
ances (and equivalently true entropies) are known.
Regarding the inf value, note that I(s) is lower-
bounded by zero; therefore, it is reasonable to say
that infs I(s) is a very small positive quantity. This
suggests that we can approximate the inf value in
the numerator of (33) as zero. With regard to the sup
value, since the 95%-confident interval estimator of
I(s) is Î(s)± 2σm,n, the interval estimate for RNR is

R̂NR =

[
max

{
0,

sups Î(s)
σm,n

− 2

}
,
sups Î(s)
σm,n

+ 2

]
(34)

with confidence level 95%. The max function that
RNR is positive. If the objective of computing RNR
is to predict whether or not a small RNR would cause
significant performance degradation of the targeting,
the following one-sided interval estimator can also
be used:

RNR =

[
0,

sups Î(s)
σm,n

+ 1.7

]
(35)

with 95% confidence level.

5.3 Probability of Correct Decision

This section considers the probability that the
ensemble-based targeting provides the true opti-
mal(or (1 − ε)-optimal) solution, which is referred to
as probability of correct decision (PCD) hereafter, for
given values of RNR, m, n, and the total number of
candidates q. To do this, the following are assumed:

1. There are a total of q measurement candidates
denoted as s1, . . . , sq. Without loss of general-
ity, si corresponds to the i-th best targeting so-
lution.

2. The true mutual information values are uni-
formly distributed over the corresponding range
I(s1)− I(sq). In other words,

I(si) = I(s1)− (i− 1)δ (36)

where

δ =
I(s1)− I(sq)

q − 1
= RNR · σm,n

q − 1
. (37)



3. The estimation error of each mutual information
value is distributed with N (0, σ2

m,n).

4. The estimation errors of the mutual information
for each measurement candidate are uncorre-
lated each other. In other words,

E
[
(Î(si)− I(si))(Î(sj)− I(sj))

]
= 0, ∀i 6= j.

(38)

Under these assumptions, it can be shown that for
i ≤ q − 1

Di , Î(s1)− Î(si) ∼ N
(
(i− 1)δ, 2σ2

m,n

)
(39)

and
Cov(Di, Dj) = σ2

m,n, ∀i 6= j. (40)

Given that the PCD can de interpreted as the proba-
bility that the ensemble-based targeting declares s1

to be the best candidate, the PCD can be written in
terms of Di’s as

PCD = Prob [Di > 0, ∀i] . (41)

Using (39) and (40), the PCD can be computed as

PCD =
∫ RNR

−∞
· · ·

∫ i
q−1RNR

−∞
· · ·

∫ RNR
q−1

−∞

fN (0,Σ)(x1, · · · , xq−1)dx1 · · · dxq−1

(42)

where fN (0,Σ) is the pdf of the zero-mean multivari-
ate Gaussian distribution with the covariance matrix
of

Σ = Iq−1 + 1q−1 ⊗ 1Tq−1. (43)

where Iq−1 denotes the (q− 1)× (q− 1) identity ma-
trix, 1q−1 is the (q−1)-dimension column vector with
every element being unity, and ⊗ denotes the Kro-
necker product. That is, all the diagonal elements of
Σq are 2, while all the off-diagonal elements are one.

Note that the PCD is expressed as a cdf of a
(q−1)-dimensional normal distribution. In the special
case of q = 2,

PCDq=2 = Φ
(

RNR√
2

)
(44)

where Φ(·) is the cdf of the standard normal distribu-
tion. For the case with q > 2, eigenvalue decompo-
sition of the inverse of Σ in (43) leads to PCD being
a product of univariate normal cdfs, and there exists
an efficient numerical algorithm based on Cholesky
factorization (Genz, 1992).

Figure 9 shows how PCD changes with q and
RNR. the plots shows that PCD is monotonically in-
creasing with respect to RNR, while it is monotoni-
cally decreasing with respect to q. The dependency
of PCD on q is crucial, since q is a very large number
in practice – recall that q =

(
N
n

)
. Thus, PCD can be

meaninglessly small for a large-scale selection prob-
lem. In addition, to calculate PCD for such large q is
computationally very expensive, because it requires
a cdf evaluation of a large-dimensional normal distri-
bution.

For this reason, for a large q case, this work sug-
gests to utilize the probability of ε-correct decision
(ε-PCD) defined as

ε-PCD = Prob

bεqc⋃
i=1

(
Î(si) > Î(sj), ∀j 6= i

) ,
(45)

since it can still be used as an indicator of the im-
pact of limited sample size on the degree of optimal-
ity, and also it can be computed can be computed
tractably.

By the symmetry of the distribution of the true mu-
tual information values, the lower bound of this ε-
PCD can be computed by

PCDb1/εc ≤ ε-PCD, (46)

where equality holds if bεqc and b1/εc are integers. In
other words, if dividing q candidates into 1/ε groups
such that the i-th group consists of s(i−1)εq+1 through
siεq, then the decision of declaring one of the candi-
dates in the first group to be the optimal solution is
equivalent to the decision of distinguishing the best
candidate out of 1/ε candidates.

With this, figure 9 can be used to interpret the re-
lation between RNR and dqe-PCD. For instance, the
graph of PCD for q = 10 represents the relation be-
tween RNR and 10%-PCD for any size of targeting
problem. In the picture, the dotted line indicates the
RNR value above which 10%-PCD is greater than
90%, which is 16.5. This is interpreted as in order to
have a 90%-optimal targeting solution for 90% of the
cases, RNR should be greater than 16.5. In terms of
the one-sided interval estimator of RNR in (35), this
implies that

sup
s
Î(s) > 18.2σm,n ≈ 18.2

√
n/m (47)

for the same qualification with 95% confidence level.
The last approximate expression comes from σm,n ≈√
n/m for a small n.



0 10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RNR

P
C

D

 

 
q=2
q=3
q=4
q=5
q=6
q=7
q=8
q=9
q=10

Figure 9: Probability of Correct Decision for targeting with
q candidates

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

m = number of ensembles − 1

R
N

R

 

 

n=1
n=2
n=3
n=4
n=5

Figure 10: Range-to-noise ratio for Lorenz-95 example
for various m and n

5.4 Lorenz-95 Targeting Example

The results of figure 4 showed a significant perfor-
mance degradation for the targeting example using
the Lorenz-95 model. This section will verify that that
performance degradation can be predicted in terms
of RNR and PCD. The RNR expression in (33) is
considered under the assumption that M0 = 1024
ensembles are sufficiently large to correctly estimate
sups I(s) and infs I(s).

Figure 10 depicts the RNR values for m ∈
[100, 1000] and for n ∈ [1, 5]. Note that for a given n,
RNR decreases as m increases, while for a given m,
it increases as n increases. For n = 1, the require-
ment of RNR>16.5 that achieves 90%-optimality for
90% of cases is not satisfied even with m = 1000,
while m = 400 meets the same requirement for
n = 5. Dependency of RNR on m is simply reflect-

ing the fact that σm,n is an increasing function of m
for fixed n. The increasing tendency of RNR with
respect to n is caused by the fact that the optimal
mutual information value grows faster than O(

√
n).

Since

RNR ≈ sups I(s)√
n/m

(48)

for a small n, RNR becomes an increasing function
of n if the sup value in the numerator grows faster
than O(

√
n), which is the case for the Lorenz-95 ex-

ample in this work. Also, seeing that the marginal in-
crement of RNR diminishes as n increases, it is con-
ceivable that there exists a threshold n̄ over which
increasing n no more improves RNR.

The Monte-Carlo simulation for figure 4 consid-
ers n = 2; it can be seen that the size of error bar
becomes smaller than 10% of the optimal solution
value when the ensemble size is larger than 700.
This result is consistent with figure 10 which indi-
cates that more than 750 ensembles are needed for
90%-optimality. Also, if m = 100 and n = 2, fig-
ure 10 shows that RNR=6.1; in figure 9, it can be
found that the graph that crosses the dotted line of
PCD=0.9 at RNR=6 is the one for q = 4. Since
PCDq=4 = 25%-PCD, it is conceived that the ensem-
ble targeting with m = 100 will provide 75%-optimal
solutions for 90% of the cases, which is consistent
with the result in figure 4.

6 CONCLUSIONS

This paper presented a computationally efficient
algorithm for targeting additional observation net-
works to achieve improvement of ensemble forecast
in terms of information-theoretic uncertainty met-
ric, and performed sensitivity analysis of the pro-
posed algorithm with respect to limitation of ensem-
ble size that could be faced in practical implemen-
tation. While the computational effectiveness of the
suggested algorithm is verified by numerical experi-
ments, small ensemble size incurred substantial per-
formance degradation of the targeting solution. To
quantify the degree of impact that ensemble size
might cause on the performance of the targeting so-
lution, range-to-noise ratio and probability of correct
decision are introduced and derived from the statis-
tical analysis of entropy estimation. The presented
statistical analysis was verified to be consistent with
the numerical experiments.
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