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In dynamic weather forecast paradigm, a 
weather model is launched in response to the storm 
events detected from real-time observation data. In 
such a situation, many storms may be detected and 
are normally clustered corresponding to several 
local storms. It is therefore more appropriate to 
launch weather models on spatial scales 
corresponding to clusters instead of the individual 
storms. In this study, we evaluate two clustering 
algorithms for their performance to cluster 
individual storms detected from real-time WSR-
88D radar data. We also evaluate the 
performances of two statistical indices for 
determining the number of clusters in a storm data 
set. Based on this research, a storm clustering 
method is proposed that can automatically group 
individual storm events into a limited set of spatial 
clusters.  
 
1. Introduction 
 

The advances in real-time observation, 
information technology and modeling enable the 
paradigm shift of short-term weather forecast from 
static model forecast to dynamic and adaptive 
model forecast. A traditional forecast runs a 
mesoscale model at fixed time interval over a 
region of interest. As a result, it cannot respond 
well to the upcoming weather events, which are 
relatively short lived and change over time. On the 
contrary, a dynamic forecast is triggered by 
weather events and model run focuses on the 
regions of interest where weather events are most 
active. If the real-time observations are assimilated 
in the model run, a forecast becomes adaptive. 
Dynamic and adaptive weather forecast can 
respond to weather events more accurately and 
timely than static model forecast.  
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The Linked Environments for Atmospheric 
Discovery (LEAD) project (Droegemeier et al., 
2004) is a large-scale, interdisciplinary NSF-
funded research project that aims to address 
fundamental information technology and 
meteorology research challenges in dynamic and 
adaptive mesoscale weather forecast. The objective 
of the project is to develop a LEAD cyber-
infrastructure (LEAD-CI) for identifying, 
accessing, decoding, assimilating, analyzing, 
mining, and visualizing a broad array of 
meteorological data and model output necessary 
for next-generation weather forecast (Droegemeier 
et al., 2005). The LEAD-CI takes a service-
oriented architecture (SOA) and provides tools and 
services that allow users to automatically spawn 
weather forecast models in response to real time 
weather events. One of the integral components for 
dynamic weather forecast is the automatic weather 
event detection from real-time observational data. 
In LEAD-CI, this is accomplished through the 
Calder stream processing service, which allows 
users SQL query access to collections of live data 
streams. Figure 1 shows schematic diagram of the 
Calder stream processing service. Calder takes 
requests in the form of “User query”, normally 
request from other services, filters the input data 
streams that users are interested, and dispatches the 
data to the event detection module for storm event 
detections. Vijayakumar et al (2006) presented in 
detail the framework of Calder stream processing 
service. In Vijayakumar et al (2006), the event 
detection module was the Mesocyclone Detection 
Algorithm (MDA), which detected tornadic events 
using the WSR88D radar velocity data. Event 
trigger was dispatched from the service in response 
to each individual storm detected from radar 
observation. During a stormy day, tens to hundreds 
of events could be detected over a region of 
interest.  
 

Even with the grid computational resources, it 
is inconceivable to allow hundreds of models 
running simultaneously on the LEAD in response 
to all the individual storms detected. It may also 
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not be necessary. More often the storm events 
detected reside close to each other and can be 
clustered into groups. Therefore, instead of 
responding to individual storms detected, it will be 
more appropriate for the LEAD system to respond 
to the clusters of storms. In this way, the event 
detection service requires an event detection 
algorithm followed by a storm clustering 
algorithm. The objective of this research is to 
investigate clustering algorithms that can 
effectively and automatically group the storm 
events into spatial clusters. Two clustering 
algorithms, the k-means algorithm and the 
DBSCAN algorithm, are investigated for their 
storm clustering performance. Determining the 
optimal number of clusters in a data set is a 
common challenge for clustering applications. In 
this study, we examine two statistical indices for 
their capabilities in determining optimal number of 
clusters.   
 

The reminder of the paper is organized as 
follow. Section 2 introduces the k-means and the 
DBSCAN clustering algorithms. This section also 
presents the two statistical indices used for 
estimating the optimal number of clusters in a data 
set. Section 3 presents the performance 
comparisons of the clustering algorithms as well as 
the statistical indices. Our conclusions are 
summarized in section 4.  
 
2. Storm events clustering 
 
2.1 Clustering algorithms 

A storm event detected from a storm detection 
algorithm such as the MDA is normally 
characterized by its geospatial attributes, normally 
the latitude and longitude and its physical 
attributes, such as size, base height, depth, and 
radar reflectivity. Therefore, classical clustering 
methods can be directly applied to storm event 
data.  

In this study, we examined two clustering 
algorithms: k-means algorithm (MacQueen, 1967) 
and DBSCAN algorithm (Ester et al. 1996). The k-
means algorithm is one of the simplest and most 
popular algorithms for clustering analysis. It is a 
partitioning-based clustering algorithm. Given a 
number of clusters in a data set, the k-means 
algorithm iteratively determines the center for each 
cluster and assigns each data sample to a cluster to 
whose center the data sample is closest. By 
representing each sample with its cluster center, an 
overall error, normally the root-mean-square error 
(RMS), is calculated at each iteration. This iterative 

clustering process terminates when the overall 
error reaches minimum value. Since our focus for 
spatial clustering is to group storm events into local 
regions of interest, latitude and longitude are the 
only features used in the k-means clustering. One 
of the primary challenges in using k-means 
algorithm is the selection of the number of clusters 
for a data set. 

The DBSCAN algorithm is a density-based 
clustering algorithm, which regards a spatial cluster 
as a region in data space that contains data samples 
with certain density. Data density around a data 
sample is determined as the number of samples N 
within a distance ε to the sample. Two data 
samples are connected if their distance is less than 
ε. DBSCAN algorithm connects neighboring 
samples into spatial clusters. Unlike the k-means 
algorithm that performs well for spherical-shaped 
clusters, the DBSCAN algorithm can identify a 
spatial cluster of any shape. The N and ε 
parameters in the DBSCAN algorithm determine 
the number of clusters in a data set and the 
clustering performance.  

2.2 Number of clusters 
Clustering algorithms such as the k-means 

algorithm explicitly require number of clusters as 
an input parameter. The N and ε parameters in the 
DBSCAN algorithm implicitly indicate the number 
of clusters in a data set.  One common approach to 
automatically determine the optimal number of 
cluster is to apply some criterion to evaluate the 
fitness between a data set and clustering result 
where the optimal number of clusters produces best 
fit. In this study, we examine two of such kind of 
statistical criteria: Hargitan index (1975), a 
statistical index to examine the relative change of 
fitness as number of clusters changes, and average 
silhouette (AS) index.  
 

Assume a data set containing N samples, Xi, 
i=1,N where Xi is a M-component vector, 
representing M features for sample i.  For a 
clustering result with k clusters, the overall fitness 
for the clustering can be expressed as the square of 
error for all samples: 
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Where d is the distance between data sample Xj 
and the center Xci  that it belongs to. err(k) is the 
total square of error for k cluster partitioning. 
   



Then, Hartigan index H(k), for k partitioning, 
is expressed as follow: 
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Since err(k) is monotonically non-increased 
with

AS index is another statistical measure that is 
ofte

 increasing k, the ratio is a relative measure of 
the reduction of square error when number of 
clusters increases from k to k+1. The multiplier 
correction term of (N-k-1) is a penalty factor for 
large number of cluster partitioning. The optimal k 
number is the one that maximizes the H(k).  
 

n used for determining number of clusters. 
Still, assume a data set as given above. The average 
distance of a data sample Xi to all data samples Xj 
that belongs to cluster C is as follow: 
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where Nc is the total number of data samples in 
cluster C. Then, the average intra-cluster distance 
a(i) for Xi is 
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where C  is the cluster t i belongs to. The i
minimum average inter-cluster distance b(i) for X
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where Cj is the cluster that i does not belongs to. 

The silhouette Sil(i) for sample i is then 
defi
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The average silhouette for k partitioning, 

AvgSil(k), is then defined as   
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The optimal k number is the one that 
max
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In this study, the storm events were de
 the WSR88D radar measurement taken from 

the 134 sites covering the CONUS. The data set 
contains radar measurement from 1:00pm to 

6:00pm EST on March 29, 2007. A threshold-
based storm detection algorithm (SDA) was 
applied to all the radar volume scans collected 
during this time period for storm events. The SDA 
algorithm detected radar data volumes with 
reflectivity values larger than 40 DBz and then 
groups these data volumes into 3D regions of 
interest using region-growing technique. Each of 
these regions of interest was considered as a single 
storm event. There were total of 4258 storm events 
detected during the five hours time period. Since 
one radar volume scan takes about 5 minutes and 
the radar measurements are not synchronized over 
the CONUS, for the clustering purpose; we divided 
each hour into 4 time intervals with each one 
having 15 minutes. Thus, there were total of 20 
time intervals during which storm events detected 
were clustered.   
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We compared the performances of the two 
rent clustering algorithms. Figure 2 shows the 

storm events detected during the time period from 
1:00 pm to 1:15 pm. Figures 2a and 2c shows the 
k-means clustering results with k=2 and 3, 
respectively. Figures 2b and 2d shows the 
clustering results using the DBSCAN algorithms. 
In DBSCAN algorithm, the N is chosen as 3, and ε 
values are 9.0 and 6.3 for Figure 2b and Figure 2d, 
respectively. For comparison purpose, these ε 
values are selected so that the number of clusters in 
Figures 2b and 2d are 2 and 3, respectively. Based 
on visual inspection, the data set appears to have 3 
spatial clusters: C1 is on the upper right corner, C2 
is on the lower right part of the figure, and C3 in 
the upper left part of the figure, though the storms 
in C3 are less dense than in clusters C1 and C2. 
When the number of clusters is restricted to 2, the 
k-means algorithm merges clusters C2 and C3, 
while the DBSCAN algorithm merges clusters C1 
and C2, as Figures 2a and 2b show. It seems more 
reasonable to merge C1 and C2 instead of C2 and 
C3. When the number of cluster is set to 3, the 
results from the DBSCAN algorithm agree with 
our visual inspection; while the k-means algorithm 
still merges clusters C2 and C3, it splits the cluster 
C1 into 2 parts. These initial results indicate that 
the DBSCAN algorithm performs better storm 
clustering than that of the k-means algorithm.   
 
3

We also compared
tigan index and AS index in determining 

optimal number of clusters in a data set. Figure 3a 
shows the Hartigan index as function of number of 
cluster k, and Figure 3b shows the AS index as 



function of number of cluster k for time period 
between 1:00pm and 1:15pm. The optimal number 
of cluster using Hartigan index is 3. From Figure 
3a, the value of Hartigan index at k = 3 is 
significantly larger than the values for rest of the k. 
In other word, Hartigan index strongly suggests 
that the there are three clusters in the data set. The 
optimal k value from AS index is 5, as shown in 
Figure 3b. However, the values of AS index change 
slightly as k value ranges from 2 to 5. Visual 
inspection of Figure 2 suggests that storm events 
can be properly clustered into three groups. The 
optimal k value from Hartigan index agrees with 
the visual inspection.  
 

Further examination of all the storm data set 
show

 Conclusions 

In this study, we investigated clustering 
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s that the two indices indicate the same cluster 
number 14 out of the 20 data sets.  For the 6 
remaining data sets, cluster numbers differ by 1 for 
3 data sets. They differ by 2 for one data set and 
differ by 3 for another data set. The largest 
discrepancy occurs at time period 13:30 – 13:45 
pm where they differ by 15. Results from Hartigan 
index agree well with our visual inspection. This 
implies that Hartigan index provides better and 
more reliable performance than that of AS index.   
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ods to automatically group the individual 
storm events into local clusters. Two clustering 
algorithms, the k-means algorithm and the 
DBSCAN algorithm, were examined and their 
clustering performances were compared. It was 
found that the DBSCAN algorithm has a superior 
performance than that of the k-means algorithm. 
Also, we compared two statistical indices for 
determining the number of clusters in a storm event 
data set. It was found that for most of the data sets, 
the optimal number of clusters determined using 
the Hartigan index and the AS index were the 
same. However, the clustering performance using 
the AS index was more sensitive to the storm event 
distributions. As a result, we propose using the 

combination of DBSCAN algorithm with Hartigan 
index measure for automatic storm event 
clustering.  
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  Figure 1 Schematic diagram for Calder stream processing service 
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Figure 2 clustering results using k-means and DBSCAN algorithms for time period 
1:00pm – 1:15pm. (a) k-means algorithm with k = 2, (b) DBSCAN algorithm with 
k = 2, (3) k-means algorithm with k = 3, and (d) DBSCAN algorithm with k = 3 
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Figure 3 a) the Hartigan index and b) the AS index, as function of number of cluster k 
for time period 1:00pm – 1:15pm. 
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