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ABSTRACT 

This paper presents an automated approach to classifying storms based on their structure using 
decision trees.  The type and strength of severe weather has been related to storm morphology, and new 
adaptive sensing tools require some knowledge of cell structure.  However, manually classification of  storms is 
not possible when dealing with real-time data streams.  An automated system can more quickly and efficiently 
sort through real-time data streams and return value-added output in a form that can be more easily 
manipulated and understood.  Our method of storm classification combines two machine learning techniques, k-
means clustering and decision trees.  K-means segments the reflectivity data into clusters and decision trees 
classify each cluster.  We classified both simulated and observed radar data in two ways.  The first was to 
separate storm cells from linear systems.  We then labeled each cell as isolated weak, isolated strong, or 
multicellular.  We labeled the linear systems as trailing stratiform, leading stratiform, and no or parallel 
stratiform. The training and test data sets came from Advanced Regional Prediction System (ARPS) simulated 
reflectivity data and from a collection of composite reflectivity mosaics from the CASA IP1 network . By verifying 
the trees learned on simulated data with observations from the CASA network, we demonstrated that the 
knowledge gained from simulation can be applied to real situations. 

 
 
1. INTRODUCTION 
 The taxonomy of storm classification 
presents many challenges even for human 
experts.  The nature of a classification system 
changes depending on how the storm is observed 
(Doswell et al, 1996). The definition of a 
mesoscale convective complex, for instance, 
requires infrared satellite readings (Maddox, 
1982). The limits of the observational tool also 
determine what storm types can be identified.  For 
example, researchers focusing their classification 
systems on rainfall measurements (Baldwin et al, 
2004), and radar returns (Steiner et al., 1995; 
Biggerstaff et al., 2000; Rigo and Llasat, 2004; 
Anagnostou, 2004), ignore a type like MCC and 
only use types visible from their specific data 
source. This project shares that limitation with 

previous work in its own focus on one variable – 
reflectivity – from one instrument, weather radar. 
 Despite the observation limitations, an 
automated system provides numerous advantages 
over manual classification.  When dealing with 
large datasets on the order of thousands or more 
storms, manual extraction from a data set is 
impossible in a reasonable amount of time.  With 
an automated system, however, an algorithm can 
quickly and efficiently iterate through the data 
processing information as needed.  Without the 
burden of manual analysis, researchers can spend 
more time on data analysis.  Another advantage to 
an automated system is the ability to provide 
storm classification in real-time.  Many adaptively 
sensing tools (e.g., CASA radars (Brotzge et al. 
2006) require some knowledge of storm structure.  
 Other researchers have examined the task 
of creating an automated system.  For example, 
Steiner et al. (1995, SHY95) employed a 
technique that separated convective and stratiform 
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areas using a combination of intensity and 
difference from background reflectivity (1995).  
This is a variation on the background-exceedence 
technique (Biggerstaff et al., 2000).  Anagnostou 
(2004) devised a different approach to the task of 
separating convective regions from stratiform 
regions by employing neural networks as a means 
to form multiple parameters into a separation 
function.  We base our initial labeling of regions of 
reflectivity as convective or stratiform on Parker 
and Johnson’s (2000) definition of stratiform 
regions (20-40 dBZ).  We ignore regions with 
weaker reflectivity and label regions with 
reflectivity above 40 dBZ as convective.   

Another form of storm classification 
involves identifying unique storm cell areas and 
tracking them while gathering information about 
their strength.  The Storm Cell Identification and 
Tracking (SCIT) algorithm does exactly this by 
finding reflectivity intensities that exceed 
thresholds for each of the seven tilts of the radar 
and then combining those tilts to find the cell areas 
(Johnson et al., 1998).  Then the cell areas are 
compared across time steps to detect motion.  Our 
approach also identifies cell areas, but since the 
main goal is to differentiate between storm types, 
we base our type on only one frame and do not 
track between frames.  In addition, we do not 
match the storm areas between tilts since our 
technique requires data from only one level.   

Our decision tree approach is most similar 
to Rigo and Llasat (2004).  They combined 
aspects of the SCIT and SHY95 algorithms and 
used the combination as the basis for a structural 
classification system.  Instead of using those 
storm areas to train an algorithm to automatically 
classify the storms in their dataset, they simply 
used the storm areas and statistics about them as 
guides when classifying each image.  They also 
assigned only one storm type per image even if 
more than one storm appeared whereas multiple 
storm types were often found and labeled within 
our dataset. 

With this project we developed a structure-
based classification system similar to that 
proposed by Rigo and Llasat. Our algorithm 
incorporates two machine learning techniques, k-
means clustering and decision trees, to identify 
and classify storm areas.  The k-means clustering 
section of the project is derived from one used for 
image segmentation that had been applied to 
reflectivity (Lakshmanan, 2001; McQueen, 1967). 

We chose decision trees (Quinlan, 1986). 
as our primary approach for classification for two 
reasons.  One of the biggest factors is the intuitive 
understanding of the model.  Many other machine 

learning models, such as neural networks, are 
difficult to interpret, particularly by  non-computer 
scientists.  As Figure 1 illustrates with its example 
decision tree, the relationships between attributes 
can be easily shown and converted into other 
forms even by people with little background in 
computer science or machine learning.  Second, 
and related to this decision, decision trees are 
selective.  This means they can identify the most 
important attributes from a data set and ignore the 
less important ones.  This ability to be selective 
adds to their human readability and can yield 
improved understanding about what is most 
important in a data set. However, since decision 
trees make their decisions based on only one 
attribute at every point in their structure, they can 
only find linear relationships within a dataset.  
Other approaches may be difficult to interpret but 
can possibly lead to improved results.  With this in 
mind, we compare our final results to several other 
standard machine learning approaches.  
 
2. DATA AND METHODOLOGY 
 The data used for this project comes from 
both simulation and observed radar reflectivity 
from several storms in southwest Oklahoma. The 
simulations are generated by the Advanced 
Regional Prediction System (ARPS), a storm-
scale model with numerical weather prediction and 
data assimilation features (Xue et al., 2001, 2002, 
2003).  We have over 250 simulations of 
mesoscale storms generated in a supercell regime 
(Rosendahl, 2008).  For this project, we examine 
the reflectivity at 4 km.  The simulations used a 
100 km by 100 km grid with 500 meter spacing.  
The reflectivity values of the simulated data tend 
to be higher than observed values of reflectivity 
because there is no attenuation or drop off in 
power with distance from the radar.   

Our second source of data was made 
available the Center for Collaborative Adaptive 
Sensing of the Atmosphere (CASA) IP1 network, a 
group of four small, X-band Doppler radars located 
in southwest Oklahoma (Brotzge et al, 2006).  We 
mapped the reflectivity from each of the radars to 
a single 120 km by 120 km Cartesian grid with 500 
m grid spacing to fit the image as closely as 
possible to the ARPS simulated data.   
 To identify individual storm regions, the 
program first divided a given reflectivity image into 
a specified number of clusters using the k-means 
clustering algorithm.  To do this, the algorithm 
minimizes a Euclidean distance equation derived 
from the image segmentation algorithm of 
Lakshmanan (2001):   
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(Eq. 1) 
In Eq. 1 λ weighs the differences in reflectivity 
versus Cartesian coordinates, r represents the 
reflectivity value in dBZ at a certain point, x and y 
are the coordinates of that point, m designates 
variables derived from the list of means, and p 
designates variables derived from a point in the 
reflectivity image.  The first part of the equation 
seeks to find the distance of each point from the 
reflectivity means while the second part finds the 
distance between the selected point and the 
coordinates of the reflectivity means in the image.  
For this work, we chose a λ of .6 through empirical 
testing. K-means clustering uses this similarity 
metric to find geographically similar areas with 
similar reflectivity readings.  We process the 
output of k-means clustering by breaking clusters 
that are not contiguous and by removing clusters 
whose area is less than 4km2. 
Morphological Reflectivity Control 
Eccentricity 
Maj. Axis Len. 
Min. Axis Len. 
Orientation 
Equiv. Diam. 

Maximum 
Minimum 
Mean 
Std. Deviation 
Range 

Area 
Mean St. Dist. 

Table 1.  Attributes used in the decision tree. 
 We divide the clusters into 

convective, stratiform, and low reflectivity areas.  If 
at least 70 percent of the cluster contains 
reflectivity between 20 and 40 dBZ, then it is 
considered stratiform.  Otherwise, if less than 10 
percent of the cluster contains reflectivity greater 
than 80 percent of the maximum reflectivity, then 
the cluster is considered a low reflectivity area.  If 
the cluster fits neither of those categories, then it 
is considered convective. 

Given reflectivity data at every grid point in 
the domain, the number of possible ways to 
examine the data is large.  Humans examine the 
data using a variety of visual features and 
combine these with their experience.  Our decision 
tree attributes are shown in Table 1.  The 
morphological attributes come from fitting the 
storm region to an ellipse.  These attributes 
include the coordinates of the centroid, the length 
of the major and minor axes, the orientation of the 
ellipse in relation to the major axis and the 
horizontal, and the eccentricity of the ellipse. The 
reflectivity attributes include the maximum, 
minimum, mean, standard deviation, and the 
range of the reflectivity.  The final attribute is the 
mean stratiform distance.  In order to calculate this 
value, the program finds the equation of the major 
axis line and solves it to find the offset value from 

the line through the midpoint of the cluster 
centroids.  It uses Equation 2. 
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(Eq. 2) 
In Equation 2 ml represents the slope of the line, 
the s values represent centroid coordinates of the 
stratiform cluster and c values represent the same 
for the convective clusters.  High positive values 
correlate more with the mean stratiform sitting in 
front of the convective area, values near 0 indicate 
that the mean stratiform center lies almost along 
the line, and high negative values indicate the 
mean stratiform lies behind the line.   
 Clusters are labeled within a hierarchal 
classification system that combines types 
developed by Parker and Johnson (2000) and 
Rigo and Llasat (2004).  At the highest level, 
convective areas are divided into cell and linear 
system.  Within the cell category, the storms are 
then subdivided into weak cell, strong cell, and 
multicell.  In the linear system category, storms 
are divided into leading stratiform, trailing 
stratiform, and no/parallel stratiform.   
 In order to train the decision tree, we hand 
labeled a subset of the data.  Two data sets of 514 
and 819 storms were labeled by two 
undergraduate meteorology students.  We created 
a hand-labeling interface that provides the basic 
information required to visually classify storms.  It 
displays an image of the reflectivity on the left side 
and a diagram of the convective cluster locations 
on the right side.  When a clustered storm appears 
on the screen, we can select an individual cluster 
and then choose the appropriate classification for 
it from a pull down menu. Weak cells tended to be 
small areas of light to moderate reflectivity.  Strong 
cells tended to be isolated areas of high reflectivity 
combined with other features indicating a powerful 
storm such as an overshooting top or a hook echo.  
Multicells were generally clusters that contained 
multiple areas of high reflectivity intermixed with 
weaker reflectivity.  Since the reflectivity image for 
the ARPS data is centered on the main storm 
rather than on a fixed point making the actual 
direction of storm motion difficult to determine, a 
stratiform area to the east of the storm is 
considered leading while one to the west is 
considered trailing.  To form the training and 
validation sets of the storms, we hand labeled five 
random time steps from each of the ARPS 
simulations.   

The decision trees were trained using the 
Waikato Environment for Knowledge Analysis 
(WEKA) version 3.5.6, developed by the University 
of Waikato in New Zealand (Witten and Frank, 



2005).  WEKA is a suite of various machine 
learning and data mining algorithms.  For the 
purposes of this project, we used the data in 
WEKA to generate eight decision trees based on 
different combinations of statistical values from the 
storm data.  We generated decision trees for the 
general and specific storm types based on the 
morphological and reflectivity-based variables, 
only the morphological, only the reflectivity, and a 
control tree given only area and mean stratiform 
distance.  Figure 1 shows an example of one of 
the general decision trees. 
 In order to demonstrate the classification 
ability of the decision tree, we compared it to other 
classification algorithms within WEKA.  We used 
the Multilayer Perceptron, a neural network model; 
the Logistic Model Tree (LMT), a decision tree that 
has Logistic Regressions at each of its leaves and; 
the Logistic Regression, which fits the data to a 
logistic function.  To compare the different models, 
we used their average classification accuracy and 
their area under the curve (AUC) on the four 
different data sets (Bradley, 1997 and Provost and 
Fawcett, 1997).  AUC is an alternative measure for 
comparing algorithms that is not sensitive to the 
underlying distribution of the data.  AUC is 
measured as the area under the Receiver 
Operating Characteristic (AUC) curve.  This curve 
is plotted as the probability of a true-positive result 
versus the probability of a false-positive result.  An 
AUC of 1 means the algorithm performed 
perfectly.  An AUC of 0.5 means the algorithm 
formed as well as random.  Anything below 0.5 is 
performing worse than randomly choosing the 
answer. 

Because boosting (Schapire, 1990, 1999) 
is guaranteed to not hurt the performance and is 
very likely to improve it, we further experimented 
with adding boosting to the decision trees.  
Boosted decision tree stumps (single level trees) 
still satisfy our goals of being able to share results 
easily with non-computer scientists.  Boosting 
takes a single classification algorithm and turns it 
into an ensemble algorithm.  It creates multiple 
models of the same type and weighs each of them 
based on their classification accuracy.  The 
resulting weighted model will then be able to make 
predictions more accurately than the individual 
models it was based on. 
 
3. RESULTS 
 Figure 2 shows the distribution of different 
storm types in the hand-labeled ARPS training 
data.  Because of the regime used to generate the 
simulations, the storm types focus on isolated 
strong and isolated weak categories with 387 of 

the 519 storms falling into one of those two areas.  
The rest of the storms were almost evenly 
distributed across multicell, leading stratiform, and 
trailing stratiform.  None of the storms in the 
training set were labeled as no stratiform.  ARPS 
data set 1 contained a similar distribution of 
storms but in a much smaller number as it was 
randomly drawn from the same set as the training 
data.  ARPS set 2 contained an even higher 
proportion of isolated strong and weak storms and 
very few of the other types.  The CASA set 
featured a higher proportion of isolated weak and 
leading stratiform storms, but it only held a total of 
34 storms from three days. 
 We trained eight decision trees based on 
different combinations of attributes. We 
hypothesized that our morphological and 
reflectivity attributes were critical and tested this 
hypothesis by training several sets of trees. Trees 
designated as control (C) used only area and 
mean stratiform distance in their generation 
process.  Morphological trees used the control 
attributes plus the morphological attributes derived 
from fitting the storm area to an ellipse. Reflectivity 
trees (R) used the control attributes reflectivity-
based attributes.  Morphological and reflectivity 
trees (MR) used all three classes of attributes. 
 We evaluated all the test sets on the eight 
different decision trees.  First we examined the 
overall accuracy of each tree (Fig. 3).  The 
morphological and reflectivity tree (GMR) and the 
morphological (GM) tree had the highest mean 
accuracy at 90.39% while the tree that only used 
reflectivity attributes (GR) had the lowest mean 
accuracy at 82.17%.  For the specific tree types, 
the one with the highest mean accuracy used the 
morphological attributes (SM) at 65.695% while 
the lowest came from the tree that used only 
reflectivity (SR, 62.06%). 
 For the general type trees (Fig. 4), the cell 
morphological and linear system morphological 
trees performed the best in both cells and linear 
systems with a mean AUC value of .912.  This is 
averaged over all test sets.  The lowest mean 
AUC for the general types, .836, came from the 
cell reflectivity and linear system reflectivity trees.  
When the AUC for each type was compared 
across the different datasets, there was very little 
difference in the AUC values. 

Within the isolated strong cell type (Fig. 5), 
control, morphological, and reflectivity ranged from 
.802 to .782 while morphological and reflectivity 
combined had a lower value of .743.  All the 
isolated weak storms performed between .85 and 
.89.  For the multicell storms, three of the four 
trees received an AUC in the low .8s, but the 



morphological value lay at .689, much lower than 
the rest.  Across each linear type (Fig. 6), there 
was little variance between each tree in each set 
although leading stratiform performed better than 
trailing stratiform.  

In the model comparison test, a chi square 
goodness of fit test was performed on the models 
to determine if there were significant differences in 
their classification ability.  It found a p-value of 
.0844, upholding the null hypothesis that the 
models were not significantly different.   

As expected, our implementation of 
boosting improved the performance in both 
accuracy and AUC.  An partial example of one of 
our boosted trees appears in Figure 8.  For the 
general tree type, AUC improved on for cells from 
.945 to .969 on the training set, from .936 to .944 
on ARPS 1, from .909 to .936 on ARPS2, and 
from .879 to .913 on the CASA set (Fig. 9).  For 
the line type, the improvements were similar. 

 
4. DISCUSSION 
The trees containing morphological attributes 
perform just as well as the trees containing both 
morphological and reflectivity attributes and better 
than the ones only containing reflectivity attributes. 
The mean AUC for cells and linear systems does 
not vary significantly across the three datasets 
(Fig. 7).  The fact that the tree learned using 
simulated data performed well on actual radar 
data (the CASA IP1 data) is critical as it means the 
trees were general across both simulated and 
observed data. 
 When analyzing the performance of the 
specific type trees, the influence of the reflectivity 
variables becomes more apparent.  This is 
especially true for the multicell morphological tree, 
which has a much lower AUC than the multicell 
morphological and reflectivity and multicell 
reflectivity trees, indicating one of the reflectivity-
based variables is the determining factor for this 
storm type.  The same relationship exists for 
isolated weak.  With isolated strong, however, the 
dip occurs with the MR tree.  For the two linear 
types, the AUC varies little across each type, 
indicating that the attribute for determining line 
type was mean stratiform distance, one of the 
control attributes. 
 The model comparisons illustrate two 
important points.  First, our choice of decision tree 
based on the human readability of the model was 
a correct choice.  Second, the lack of significant 
difference between the models as shown by the 
chi square test shows that while changing the 
model can cause some improvements in accuracy, 
those improvements will be limited by the quality 

of the data.  As the other graphs of the trees with 
different given attributes show, the attributes given 
to the classifier matter much more than the 
classifier itself.   
 Our experiments with boosting showed a 
promising way to gain slight increases in the 
classification ability of the algorithm.  While it does 
not have the same drastic effects as the 
modification of attributes, it is guaranteed to at 
least slightly strengthen any classification system 
it is applied to. 
 
5. CONCLUSIONS 
 We have found that decision trees are a 
viable method for automatically determining storm 
type.  The trees that distinguished between cells 
and lines had a high AUC and accuracy across all 
datasets, indicating strong performance overall.  
The more specific trees experienced decreasing 
performance across datasets, which is an area for 
future work.  Even though we learned the trees on 
simulated data, they were still able to classify real 
world data (the CASA data) with a high degree of 
accuracy in the case of the general type tree.  In 
addition, because the decision trees are selective 
and human readable, we could determine that the 
morphological attributes were most critical to 
successful classification. 
 
6. CURRENT AND FUTURE WORK 
 We are currently working on an improved 
version of the storm classification algorithm and 
implementing the algorithm in the CASA IP1 
Systems Operation Control Center (SOCC).   For 
the second version of the specific type classifier, 
we are defining our storm types in greater detail 
and adapting and adding the attributes so the 
extra details can be described.  While the previous 
system calculated cluster statistics based on only 
one time step using just reflectivity, the new 
system compares the current time step with the 
previous time step to calculate the direction of 
storm motion and the speed of the storm.  Storm 
motion is important if associated with stratiform 
rainbands in order to determine if the stratiform 
region is trailing or leading the convective line.In 
the previous version, the lines were assumed to 
be traveling from west to east, so the east side of 
the line was leading and the west was trailing.  
The additional attributes make this distinction no 
longer necessary.   
 Another major new attribute is data 
concerning the wind field in the storm model.  
Knowing the wind speed and direction at any point 
in the environment makes it possible to determine 
if winds associated with a severe thunderstorm are 



present and if the thunderstorm has a 
mesocyclone, making it a supercell (Doswell et al, 
1996).  Being able to classify supercells with the 
algorithm will help increase its abilities.  Figure 8 
displays the new algorithm’s ability to detect the 
wind field and find the storm speed and direction 
of motion.  Although this data cannot be observed 
by the radars, we are hypothesizing that it will 
significantly improve the results. 
 Currently, CASA is also adopting this 
algorithm for real-time use within the CASA 
SOCC.  A storm classification algorithm built into 
the radar has many potential uses. First, it can 
determine the scanning strategy of the radar.  The 
adaptive nature of the CASA system focuses radar 
scanning only on those areas of interest.  The 
addition of this algorithm would allow it to only 
focus on storms of a specific morphological type. .  
In addition, the classifications can form the basis 
for a storm catalog within the CASA data.  The 
algorithm can tag each scan with the types of 
storms, thereby improving metadata for long-term 
research applications.   
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Figure 1.  An example of the general type decision tree.   
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Figure 2.  The distributions of the four hand-labeled datasets used to train and test the decision trees.  IS 
= isolated severe, IW = isolated weak, MC = multi-cellular, LS = leading stratiform, TS = trailing stratiform, 
PS = parallel stratiform. 
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Figure 3.  Accuracies of the eight different trees used in the study.  The general trees (GC, GM, GMR, 
and GR) overall have a higher accuracy than the specific trees (SC, SM, SMR, and SR). 
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Figure 4.  AUC of the general type trees.  In both the cell and line types, the trees with morphological 
attributes (CM, CMR, LSM, LSMR) outperformed the control trees (C and LS) and the reflectivity trees 
(CR and LSR). 
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Figure 5. AUC for the specific tree cell types.  Little variance exists across the different tree types in each 
cell type except for the multicell (MC).  The multicell morphological tree has a noticeable drop in 
performance in comparison to the other trees. 
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Figure 6.  Average AUC for the two linear system types found in the data.  There is little variance within 
each type, indicating that one of the control variables most affects the tree performance on that type. 
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Figure 7. AUC across the test sets for the general types of trees.  The AUC remains consistently high 
across all three datasets, indicating little effect from overfitting and a classifier that can be applied to both 
simulated and real storms. 



 
 
Figure 8.  Example of two decision stumps generated by the boosting algorithm.  The boosting measures 
the accuracy of each individual decision stump and weighs them accordingly. 
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Figure 9. AUC for the cellular types of storms for each dataset.  Because of the boosting, AUC increased 
for every dataset.   



 
 
Figure 10.  An example of the reflectivity and convective cluster returns from the new classification 
algorithm.  It has the ability to detect storm speed, direction, and the wind field in and around the storm. 
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