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1. SYNOPSIS 

ENSCO, Inc.1 has been developing systems for 
imputing source locations using transport and 
dispersion modeling in combination with sample 
records of pollutant concentrations.  

Goodness-of-agreement measures between modeled 
pollutant concentrations at fixed receptor locations 
and sample records at those locations provide the 
bases for likelihood calculations conditioned on 
hypothesized source location and release schedule.  

Abstracting release schedules as Markov processes 
is reasonably justified from a physical/engineering 
perspective and permits exhaustive exploration of the 
enormous space of possible (unknown) release 
schedules using dynamic programming algorithms 
within a framework of hidden Markov models (HMM). 
The so-called Forward and Backward algorithms 
facilitate likelihood calculations marginalized over all 
possible state-paths (release schedules) of the hidden 
Markov process. Meanwhile, the Viterbi algorithm can 
be used to estimate the most-probable (a posteriori) 
state-path.  

We propose an estimation framework using hidden 
Markov models and demonstrate the approach using 
synthetic source/receptor data generated using 
transport and dispersion models ingesting historical 
wind fields over a several-month period in 2005. 

2. BACKGROUND 

Suppose we are given the meteorological record of 
observed transport winds in a given region and the 
time-sequenced sample record at a given receptor 
location, and suppose that a material of interest (from 
a presumed unique source) has been detected in 
multiple samples over that time period. How then 
might we calculate the (posterior) probability that the 
assignable origin of the subject material lies in a given 
cell of the spatial grid? 

It seems logical to answer this in a Bayesian 
framework. To do this, we require some simplifying 
notation. We let F (for “footprints”) denote the 
meteorological record of analyzed transport winds 
during the period of record, and let O = {Ot | t =1,…,T} 
                                                           
1 Corresponding author address:  4849 N Wickham 
Rd., Melbourne, FL 32940.  email: 
shuford.john@ensco.com. 

be the record of observed sample analysis results 
over some sampling campaign that consists of T 
samples. Let Mx denote the model/hypothesis that 
location (grid-cell) x is the source. We also let λ 
denote the parameters of a stochastic process model 
for the source release schedule and amounts. 

Our general goal is to use the posterior probability of 
hypothesis Mx given the observed data sets O and F, 
as a statistic measuring the strength of association 
between the sample record and the meteorology. 
Applying Bayes’ theorem we can formulate the 
desired posterior probability in terms of the likelihood 
of the sample record. If we assume that F and Mx and 
λ are independent we can write 
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This means that the posterior probability of hypothesis 
Mx given the data sets O and F and source stochastic 
model parameters λ is equal to the product of the 
likelihood, that is, P(O | F, Mx, λ), times the prior 
probability of Mx divided by the conditional probability 
of the observed sample record O given the footprint 
dataset F and model parameters λ.  

Assuming one has a way to calculate the likelihood 
P(O | F, Mx, λ) function for every grid cell x, and 
assuming that some reasonable prior can be specified 
(albeit possibly an uninformative one), then our goal 
of finding the most probable location of the source is 
served by identifying the grid cells associated with the 
largest values of P(Mx | O, F, λ). 

3. MATERIALS AND METHODS 

3.1. A Stochastic Model for Source Schedule  

A basic supposition is that the source of an airborne 
pollutant may not be operating in a steady-continuous 
manner – it may be intermittently turned-off or turned-
on, and while on, the release amounts in successive 
time periods can vary. Without knowledge of the 
schedule, it is reasonable to treat the release 
schedule as a stochastic process. Doing so allows us 
to parameterize the process such that the space of 
allowable release schedules can be explored in some 
tractable manner. 

As a first attempt at a reasonable abstraction of the 
stochastic behavior of unknown release schedules, it 
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8.3 
is convenient for us to consider first-order Markov 
processes. A  Markov process is a sequence of 
discrete events or “states” characterizing the 
progression of a system or phenomenon in which the 
probability that a certain state is occupied at a given 
time t in the sequence depends only upon which state 
was occupied at the prior position, t-1 (Rabiner 1989). 
In other words, suppose a system can be understood 
as being in one of N states, say S1, S2, …, SN, at any 
given occasion and that this system makes discrete 
transitions from one such state to another [Note: We 
allow that the system might stay in the same state or 
change to a different state at the next occasion for 
observing the system.] The progression of states 
occupied by that system is properly modeled as a 
Markov process if the current state of the system is 
the only condition affecting the respective probabilities 
for possible states to be occupied by the system at 
the next observing occasion. If we let qt denote the 
state occupied by a Markov process at time t in the 
state-progression sequence (or “path”), then we can 
say that aij = P(qt+1 = Sj | qt = Si ) is the transition 
probability for the Markov process to progress from 
state Si to state Sj (Rabiner 1989). The set of 
transition probabilities comprise a square matrix A = 
{aij}. 

There are some situations, however, in which we 
might postulate the existence of a Markov process 
whose progression of states is hidden from view – 
that is, a system or phenomenon that can be 
understood as a Markov process but for which we 
cannot directly observe the sequence of states that 
the system occupies. Instead, suppose we can only 
observe directly a sequence of “outputs” caused by 
the system where the outputs are values drawn from 
some probability distribution at each step. We further 
suppose that the underlying (hidden) state qt of the 
Markov process at time t in the state-progression path 
determines the probabilities for the possible outputs at 
time t of the path. Such a process is described as a 
Hidden Markov Model or HMM (Rabiner & Juang 
1986; Rabiner 1989). This general notion can be 
imagined as a Markov process lying in the 
background behind a “veil” and a sequence of outputs 
is all that we can observe in the foreground. 

The probability of observing output Ot at time t 
depends on qt – that is, the state occupied by the 
process at time t. So in addition to the transition 
probabilities for the underlying Markov model, one 
must also specify P(Ot | qt = Si) for all i = 1,..,N. 
Utilizing these notions heuristically for our source-
location purposes, we think of the release schedules 
of the (unknown) source as Markov processes whose 
states represent different levels of effluent release. 
Time, meanwhile, is discretized into disjoint intervals 

corresponding to sample exposure times at the 
receptor. So, we will treat the hypothesized source as 
occupying a single state (i.e. operating at some fixed 
output level) during each of the sampling intervals and 
then possibly transitioning to some other state (with 
its corresponding fixed release amount) for the 
subsequent sampling interval.  

To illustrate how this might be applied, one might 
define a set of possible states corresponding to 
release levels that are discretized in logarithmic 
progression. For example, a 6- state Markov model 
for source releases might include a state with release 
level 0 (source “turned-off”), and five other “turned-on” 
states with release rates of, say, 0.01, 0.1, 1, 10, and 
100  g/hr, respectively. A strawman state-transition 
probabilities matrix for this set of states can be 
concocted based on a general notion of “inertia” in the 
process – that is, that when the source is turned-off, it 
tends to stay turned-off for several sampling periods; 
but once turned on, it will tend to stay “turned-on” for 
the duration of several sampling periods before 
returning to the zero-output state. For example, we 
might imagine that when the process is “turned-off” at 
time step t, it will stay “turned-off” at time t+1 with 
probability of, say, 80% but would have a 4% 
probability of transitioning to any given one of the 
“turned-on” states. Meanwhile, when the process is at 
one of the positive release-rate states, it will tend to 
stay in that state with 40% probability, transition to 
another given “turned-on” state with 10% probability, 
and transition back to the zero state with 20% 
probability. Such a matrix would look like the 
following: 
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When available, engineering judgment as to the 
behavior of actual industrial processes (associated 
with the pollutants of interest) should certainly be 
substituted for naïve guesses as to the behavior of 
those processes. However, we may not have to get 
this quite right – for practical purposes, it would 
probably suffice merely that physically “more 
plausible” state paths (release schedules) are 
rewarded with generally higher probability scores than 
physically “less plausible” state paths.  

Time steps for the process, as we have said, are 
successive sample periods. The data set serving as 
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8.3 
the observable “output sequence” in this HMM 
framework is the sample record (quantitative analysis 
results) at the single receptor location. But this raises 
the issue of how to assign a conditional probability for 
the output observed at time t given that the process is 
occupying a given state at that time. In other words, 
we need to specify P(Ot | qt = Si) for all i = 1,..,N and, 
for that matter, for each time step t. To do this, we will 
need the results of transport and dispersion (T&D) 
modeling to measure how hypothesized releases 
would relate to observed collections of target material 
in the sample.  

3.2. Likelihood of Sample Record 

First, we use a transport and dispersion model to 
estimate predicted catch Ut for each sample period t 
under the hypothesis assuming steady-continuous 
unit releases from a hypothetical source at location x.   
Then, we calculate Ct,i – the predicted catch at time t 
that is conditioned on the assumption that the source 
process is in state Si. This is obtained by multiplying 
the Ut  value by the release rate associated with state 
Si.  

Now, we find the difference between (log-
transformed) predicted catch Ct,i and the analyte 
measurement Ot. Standardize this difference by 
dividing by an estimate of the standard deviation of 
that difference: 
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Use the normal probability model to assign a “tail area 
probability” to the event of observing a standard-
normal variate at least as great as | Zt,i |; that is, we 
will let 

P(Ot | qt = Si) = 2(1 – Φ(| Zt,i |)), 

where Φ(x) is the probability distribution function for a 
standard normal random variable. 

In using a HMM framework, the task at hand is to 
evaluate the conditional probability of the output 
sequence for every possible state path. Doing so 
allows one to 1) obtain the likelihood of the observed 
sequence marginalized (summed) over all state 
paths; and 2) infer the a posteriori most probable 
state path given the observed sequence.  

Brute-force exhaustion over all NT possible state 
paths is prohibitive for values for N and T that are 

typically encountered in application (indeed, in this 
report we illustrate use of a model using N=6 and 
T=428). Such a calculation is feasible only by use of 
efficient dynamic programming algorithms known as 
the Forward algorithm (and the closely related 
Backward algorithm) as well as the Viterbi algorithm 
that exploit the assumed Markovian structure of the 
underlying model (Rabiner & Juang 1986; Rabiner 
1989).  

The Forward algorithm is an efficient approach to 
calculating the likelihood of the observed sequence 
(i.e. sum of probabilities over all possible state paths) 
given the model parameters (Rabiner 1989).  

The Viterbi algorithm is a dynamic programming 
algorithm that finds the state path for which the 
probability of the observed sequence is maximized. 
Like the Forward and Backward algorithms, it 
proceeds inductively (including a trace-back step) and 
exploits the Markovian structure of the model (Viterbi 
1967; see also Forney 1973, Hayes 2002).  

Our purpose in invoking the mathematical machinery 
of hidden Markov models is, of course, to serve the 
purpose of calculating the likelihood function P(O | F, 
Mx, λ) of our Bayesian HMM for every grid cell x of a 
regular spatial grid surrounding our sampler location.  

If we consider λ to represent the parameters of our 
HMM framework – that is, the number N of different 
states, the particular release rate associated with 
each of the N states, the state transition probability 
matrix A, and the vector π of initial state probabilities 
– then the likelihood function P(O | F, Mx, λ) can be 
obtained via the Forward algorithm (described in the 
previous section) by summing α(T,k) over all k. We 
emphasize that this likelihood is marginalized over all 
possible state paths.  

A maximum a posteriori (MAP) estimate of the 
location of the true source is sought by evaluating the 
likelihood function at every grid cell x and multiplying 
this likelihood by the prior probability of that grid cell. 
If one has prior belief as to the probable location of 
the source, it is certainly useful to incorporate that 
information in the prior probability. Lacking such prior 
belief, as is usually the case, we can assume an 
uninformative prior – that is, a uniform probability 
distribution over the grid. In that case, the MAP 
estimate corresponds to the grid cell with maximum 
likelihood.  

Since our concern is for the relative likelihood of 
different candidate grid cells, it is convenient to ratio 
the posterior probability obtained for each grid cell to 
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8.3 
the posterior probability of the “winning” cell and to 
express the “score” associated with each grid cell as 
the logarithm of an odds ratio. 
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3.3. Implementation 

We have implemented this Bayesian/HMM technique 
in Java. One of the input datasets contains the 
sample record – that is, a listing of all the samples to 
be included in the analysis along with the measured 
quantity (or concentration) of subject effluent in the 
sample. Another input dataset contains “footprints” – 
that is, the predicted catch (or concentration) in each 
sample from each hypothetical grid-point source, 
assuming a steady-continuous release schedule. The 
number of records in the second dataset is therefore 
the product of the number of samples and the number 
of cells comprising the spatial grid.  A third input file is 
a model-specification file. This file contains 
specifications of the number of states N of the 
underlying Markov model, the release rate associated 
with each of these states, the initial probabilities for 
each state, and the N × N state transition matrix.  

The outputs of the application include a level-plot 
showing the logarithm of the posterior odds for each 
grid cell relative to the highest-scoring grid cell (Figure 
1). The level-plot display is interactive: the user can 
mouse-click on a cell of this level-plot to bring-up a 
window that shows the highest-scoring state path (as 
determined by the Viterbi algorithm) for the selected 
grid cell. All output data are exportable to ASCII flat 
files for analysis or graphing by other applications.  

 
Figure 1.  Screen-shot of the interactive levelplot 
of log posterior odds scores for cells in a spatial 
grid. 

4. Trial Application  

To test whether the basic ideas that are embodied in 
this approach “make sense” or at least show promise, 
we have performed some trial applications of the 
Bayesian/HMM model to simulated source-receptor 
scenarios. 

The simulation test-bed consisted of a dataset of 
observed surface weather data from Dugway Proving 
Ground (DPG) Utah for the period June through 
December 2005. That collection of data includes:  

• Data Set A – a set of high-resolution 
observations from a DPG mesonet known as 
SAMS (Surface Atmospheric Measurement 
System). In this dataset, the SAMS stations 
recorded fifteen-minute averages of air 
temperature, wind speed, wind direction, and 
pressure.  

• Data Set B – a dataset having lower 
resolution in space and time, comprised of 
surface, upper-air, and global gridded data, 
supplemented by hourly observations from a 
single SAMS location in order to mimic the 
presence of a standard surface reporting 
station.  

The transport and dispersion simulations suppose a 
single receptor at a fixed location. We define a grid of 
hypothetical source locations (16x19), having a 
spatial resolution of 0.05-degree, centered on the 
hypothetical receptor. 

Numerous different source-location/release schedule 
scenarios have been created to exercise the 
Bayesian/HMM source-locator technique and 
software application. In each of these scenarios, a 
simulated sample record was created supposing a 
hypothetical source location operating according to:  a 
predetermined (intermittent) release schedule, 
modeled transport based on the high-resolution 
weather data (Data Set A), and a hypothetical 
collector at the center of the grid taking consecutive 
12-hour samples.  Over the seven-month period 
described by this data set, that amounted to a sample 
record of 428 simulated samples. The simulated 
sample results were left-censored according to a pre-
set “detection limit” – that is, if the simulated collection 
fell below the detection limit, the “measured” target 
amount in the sample was set to zero. In some of the 
scenarios, random errors of 5% of the simulated 
sample catch were added to the sample record.  
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In addition to the sample record, the estimation 
technique requires as an input the predicted “catch” of 
effluent at the subject sampler due to hypothetical 
plumes originating from each point of a grid of 
putative sources assuming a steady-continuous 
release schedule. In our case, the predicted airborne 
concentrations are calculated by the transport and 
dispersion model SLAM, which is a Lagrangian 
Gaussian-puff and trajectory model that can ingest a 
wide variety of meteorological data and formats 
(ENSCO, Inc. 2007; Shuford, et al., 2006). In our 
simulations, the lower-resolution meteorological data 
set B was used to drive the T&D model   “footprints”.   

For purposes of illustration, let us examine one 
simulation scenario in which a hypothetical source is 
located approximately 33 km SSE of the hypothetical 
sampler and in which the source emits a material of 
interest intermittently according to the schedule 
pictured in Figure 2.  In this scenario, we do indeed 
add “white” noise and impose a left-censoring to the 
simulated sample record.   
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Figure 2.  Simulated release schedule for 
illustration scenario. 
 

Applying the Bayesian/HMM source-location 
technique with the 6-state Markov model described 
earlier, we obtain two outputs from the program.  The 
first output, of primary interest, is the level-plot of the 
log posterior odds scores for each cell of the spatial 
grid (Figure 3).  In this figure, the location of the 
hypothetical sampler is denoted by the solid white dot, 
and the correct location of the hypothetical source is 
shown by the open white circle.   

The ranking of the ten best scoring grid cells are 
annotated in the corresponding cells.  As we can see, 

the correct source location fell within the 4th-highest 
scoring cell and within the clearly highlighted region of 
the levelplot.  
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Figure 3.  Levelplot of log posterior odds scores 
from the Bayesian/HMM program using a 6-state 
source stochastic model.  The location of the 
hypothetical sampler is denoted by the solid white 
dot, and the correct location of the hypothetical 
source is shown by the open white circle 
 

Another output of the program is the a posteriori 
estimated most probable state sequence (i.e. release 
schedule) obtained via the Viterbi algorithm.  This is 
shown below in Figure 3.  

 

 
Figure 4.  Estimated source release schedule 
obtained via Viterbi algorithm for the illustration 
scenario.  Release schedule estimate shown here 
corresponds to the highest-scoring grid cell. 
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In this simulation scenario, the technique provided 
reasonably accurate estimates of the location of the 
source and the “unknown” intermittent release 
schedule at that source. 

5. DISCUSSION 

We have described here an approach to estimating 
the location of an assignable (and presumably 
unique) source of a monitored effluent given a 
collection record at a receptor location that includes 
multiple collections of the monitored pollutant over a 
sampling campaign. That approach uses a Bayesian 
framework within which hidden Markov models of 
release schedule serve to calculate the likelihood of 
the sample record.   

The advantages of the HMM approach are that we 
can exhaustively search for a solution over a huge 
space of possible release schedules (versus sampling 
that space via Monte Carlo techniques) and that the 
computational cost of exploring that space is 
comparatively very low due to the availability of 
efficient dynamic programming algorithms.  

It is admitted that the use of Markov process models 
for release schedules is somewhat heuristic: certainly 
the use of a discretized set of N “states” to represent 
the possible release rates from a source is at best a 
stair-step approximation to a more continuous time 
series with higher-frequency components, and there 
is nothing physically dictating that changes in release 
rate at a source should correlate with the start and 
stop times for sample exposures at our receptor. 
However, since the temporal resolution of information 
concerning releases is limited by those exposure 
durations, we really should not hope to succeed in 
exploring release schedules of finer resolution. So, 
the discretization of time may not be unreasonable.  

To the extent that true release processes possess a 
Markovian character, we would expect that 
engineering judgment might help refine the 
specification of the state-transition matrix. The matrix 
used in our trial applications was a somewhat 
arbitrary and capricious attempt to capture an 
expected day-to-day “inertia” of the source operation. 
We note, however, that techniques for iterative re-
estimation of the HMM parameters have been 
described extensively in the literature (e.g. Rabiner & 
Juang 1986; Rabiner 1989; Ephraim and Merhav 
2002). Such capability was not implemented in this 
effort due to resource limitations. 
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