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MANAGEMENT DECISION MAKING 
George Hunter, Kris Ramamoorthy Sensis Corporation, Campbell, CA  

Abstract 
This paper we describe how we use 

meteorological measurements and forecasts to 
model the impact of ceiling, visibility and surface 
winds on airport capacity. These impacts can be 
modeled both as deterministic influences on airport 
capacity and stochastic forecasted airport capacities. 
These impacts can be used, along with en route 
airspace impact models, in traffic flow management 
solutions. Our preliminary results suggest that 
traffic flow management is influenced by the airport 
congestion sensitivity. This parallels our earlier 
findings that traffic flow management is also 
influenced by the airspace congestion sensitivity. 

Introduction 
Many of the advanced air traffic management 

and traffic flow management concepts envisioned 
for future implementation require advanced 
meteorological data products. Weather has several 
important effects on system capacity so it is 
important to integrate these effects into the air 
traffic management decision making. This means 
that a wide range of automated meteorological 
forecast products, with forecast horizons ranging up 
to several hours, will be required for use in air 
traffic management tools. 

Meteorological forecasts are uncertain and 
while improved forecast accuracy is desired, it is 
important for the uncertainty of the forecasts to be 
described for proper use in air traffic management 
forecasting and decision making. This is the subject 
of on-going research and key questions include: 
How should forecast uncertainties be described? 
What update rates and forecast horizons are 
required or desirable? How sensitive is the 
performance of the air traffic management to 
forecast accuracy? In this paper we focus on 
meteorological effects in the terminal area, and how 
these impact nationwide traffic flow management. 

The air traffic management research 
community has developed detailed methods and 
practices for modeling terminal area and airport 
capacity. These methods model airport capacity in 
both visual and instrument conditions. Whether 
visual or instrument conditions prevail depends on 
the local ceiling and visibility distances. Beyond 
this, there are several meteorological phenomena 
that can reduce airport capacity. 

High head winds can reduce final approach 
ground speed, and therefore inter arrival spacing 
and capacity. High cross winds make airport 
operations more difficult and reduce capacity. Very 
high winds can shutdown the airport altogether. 
Similarly, very low ceiling and visibility can 
shutdown the airport arrival capacity. 

Heavy thunderstorms can also shutdown the 
airport if overhead, and otherwise can reduce the 
terminal area airspace capacity, or interfere with 
arrival or departure traffic streams. And local 
lightning can slow or shutdown ramp activities such 
as refueling. Degraded airport surface conditions, 
such as wet pavement, slows braking and turning, 
tends to increase runway occupancy time and so can 
reduce runway capacity. En route icing conditions 
causes departure delays for deicing operations. On 
the positive side, emerging wake vortex sensing and 
tracking technologies may be able to increase 
airport capacities in the future, in favorable 
conditions.  

While all these effects are important, in most 
cases the most persistent effects are the local ceiling 
and visibility, and surface winds. In this paper we 
describe how we have used forecasts of these 
phenomena in our probabilistic traffic flow 
management experiments. And we provide 
preliminary results. 

There are two key questions that must be 
addressed when using meteorological forecasts, 
such as ceiling, visibility and winds, in an air traffic 
management planning and decision support tool. 



First, the impact of the meteorological phenomena 
on the system capacity must be understood. Models 
must be developed that translate the meteorological 
data to capacity data. These models are useful both 
for understanding the capacity under known 
conditions, such as the current capacity of an 
airport, as well as predicting the capacity under 
forecasted conditions. 

Second, the uncertainty of the meteorological 
forecast must be understood. Models must be 
developed that characterize the forecast as a random 
variable rather than a deterministic value. These 
models should account for all available information 
that is relevant and influences the forecast accuracy. 
These may include, for example, a forecast 
accuracy, confidence or skill parameter, 
meteorological descriptions of the structure and 
intensity of the forecasted weather, the forecast look 
ahead time, seasonal and regional effects, and so 
forth. The end result is a stochastic version of the 
meteorological forecast, such as in the form of a 
probability distribution function. 

In addressing these two key questions we use 
both rational (model-driven) and empirical (data-
driven) approaches because both have strengths and 
weaknesses. The weakness of purely rational 
approaches is that they are oblivious to real-world 
mechanisms that are not captured in the model. The 
weakness of purely empirical approaches is that 
they rely on the particular scenarios in which the 
data were collected. Those scenarios may not be 
generally descriptive. For instance, empirical 
approaches cannot measure capacity, they can 
merely measure traffic throughput, and it is difficult 
to know whether the throughput was capacity-
limited or demand-limited. Throughput may appear 
to be low merely because demand was low. Also, it 
is likely that pilots sometimes avoid weather not 
because they must, but because they can. 
Sometimes avoiding the weather is a preference 
rather than a requirement. This suggests that 
weather impacted capacity can be fuzzy, or 
alternatively that it is higher than the measured 
throughput indicates when alternatives are easily 
available. 

The impact of final approach headwinds on 
airport capacity serves as an example of how we 
use both rational and empirical approaches. 
Headwinds cause the aircraft groundspeed to 

decrease. Therefore, for aircraft flying at a given 
airspeed profile, with given in-trail spacing on final 
approach, the presence of a headwind increases the 
inter-arrival time spacing, and thus reduces the 
runway throughput. This model compares well with 
the empirical throughput data, though it predicted 
slightly higher capacity reduction. This could be 
explained by several possible mechanisms not 
captured in the model. For instance, pilots 
sometimes increase airspeed in the presence of high 
headwinds. The model is easily adjusted to better fit 
the data. 

In this paper we present our research in 
modeling ceiling, visibility and surface winds 
effects and forecasts. We present how we use these 
models in our probabilistic traffic flow management 
decision support tool with results and performance 
sensitivities. 

Translation of Terminal Area 
Weather to NAS Capacity Impact 

The impact of final approach headwinds on 
airport capacity serves as an example of the 
importance of using both rational and empirical 
approaches. Headwinds cause the aircraft 
groundspeed to decrease. Therefore, for aircraft 
flying at given airspeed profile, with given in-trail 
spacing on final approach, the presence of a 
headwind increases the inter-arrival time spacing, 
and thus reduces the runway throughput. This 
model compares well with our empirical throughput 
data, though the model predicted slightly higher 
capacity reduction. 

This could be explained by several possible 
mechanisms not captured in the model. For 
instance, pilots sometimes increase airspeed in the 
presence of high headwinds. Also, the wind data 
include the cross wind component, which means the 
headwind is sometimes less than the wind speed 
value input to the model. We are currently 
upgrading our model to include wind direction as 
well as magnitude. 

Our results also show that there are outlier 
airports, such as San Diego and Boston. In addition 
to the headwind, particularly heavy crosswinds can 
reduce runway capacity and even cause temporary 
shutdown. Previous research has shown the 
significant impact of these phenomena [1]. 



Wind shifts cause airport configuration 
changes which effectively shutdown the airport for 
20 minutes or more. This may cause significant en 
route delays. Predicting airport configuration 
selection, however, is complicated by several 
factors. First, the exact time of an airport 
configuration change due to wind is often carefully 
selected according to the traffic pattern, including 
both tactical and daily flow patterns. Washington 
Dulles airport (IAD), for instance, switches from a 
morning to an afternoon configuration due to heavy 
international traffic arrivals. Also, some large 
airports have more than a single dominant 
configuration, and in major urban areas 
configuration changes are typically coordinated 
with other nearby airports. Finally, when the wind 
is weak the airport configuration may not change 
with a wind shift. 

This means that advanced TFM methods need 
good predictions of airport configuration changes. 
We need to correlate airport configuration change 
events with traffic and surface wind data, both 
nowcast and forecast, to construct configuration 
predictors.  

Airport ceiling and visibility (C&V) is another 
important meteorological cause of capacity 
reduction and en route delays. When the ceiling is 
higher than 3,000 ft and visibility is greater than 5 
miles then visual flight rules (VFR) prevail. If 
either the ceiling or visibility is less then marginal 
VFR (MVFR) prevails, unless the ceiling is below 
1,000 ft or visibility is less then 3 miles in which 
case instrument flight rules (IFR) prevail. In 
practice IFR typically extends across MVFR as 
well. 

Limited ceiling and visibility reduces airport 
capacity. This impact varies between airports and 
we use airport-specific capacity data for visual and 
instrument conditions. For instance, San Francisco 
(SFO) airport has closely spaced parallel runways. 
In clear weather, SFO runs simultaneous (side-by-
side) landings, but in fog conditions SFO must 
maintain a minimum diagonal spacing between the 
adjacent arrivals thus reducing capacity.  

In addition to winds and C&V, airport capacity 
is also reduced by wet or icy runway conditions. 
These cause longer taxi times, which in turn cause 
longer final approach spacing, thus reducing 
runway capacity. Airborne icing conditions cause 

ground delays for departures when de-icing is 
required. Extremely cold temperatures or lightning 
slow ramp operations, and extremely hot 
temperatures can make take-off impossible because 
of insufficient lift resulting from reduced dynamic 
pressure. 

Capacity Uncertainty Modeling 
The sections above describe capacity impact 

models for the meteorological phenomena. Given a 
meteorological state, the models compute the 
corresponding expected capacity. But when 
forecasting NAS capacity the weather data are 
available only as a forecast. An important step in 
probabilistic TFM is the forecasting of system 
capacities over the duration of the national TFM 
planning window (approximately 1–8 hours). 
Regardless of forecasting accuracy level, TFM 
decision making needs to know the uncertainty 
level. A capacity forecast with high certainty, even 
if low capacity, is often more useful for TFM 
decision making than a high capacity forecast that 
has low certainty. It is important that capacity 
forecasts provide the level of certainty in addition to 
the expected value of the capacity. This can be done 
by providing the forecast in the form of capacity 
probability distribution functions (CPDFs) of the 
terminal area and of the en route airspace. 

For instance the fog at SFO has an uncertain 
burnoff time. When it does occur, the fog burnoff is 
relatively rapid, so it is difficult to use immediately 
the additional capacity which suddenly is available. 
If traffic is scheduled with the assumption that the 
fog will burnoff at a particular time, then there is a 
risk of requiring airborne delay or even costly 
diversions. Substantial research efforts have 
focused on both the problem of predicting fog 
burnoff time and optimizing TFM decision making 
given the fog burnoff uncertainty [2,3]. Given the 
demand level during the period when the SFO fog 
typically burns off, there is a relatively high benefit 
to solving this problem. What makes it particularly 
challenging is that the capacity reduction comes at 
the very end of the flight for SFO arrivals, and the 
only alternatives (i.e., diversions) are costly. 

Aside from the particular case of fog burnoff, 
we develop uncertainty models for C&V forecasts, 
in general. The ceiling and visibility forecasts for 
the major airports are available as part of the 



terminal area forecast (TAF) product. This gives 
ceiling and visibility forecasts over specified time 
windows. We archive TAF forecasts and the 
corresponding METAR reports of the surface 
weather that occurs. We compare these data to 
analyze the TAF forecast uncertainty. Figure 1 
shows that the visibility forecast has a standard 
deviation of about one mile which is not very 
sensitive to the forecast look ahead time (LAT). In 
other words, the TAF visibility forecasts are 
typically good for several hours into the future. 
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Figure 1. Visibility forecast error vs LAT 

The uncertainty of the TAF visibility forecasts 
is, however, sensitive to the weather conditions. 
Specifically, as Fig. 2 shows, clear conditions are 
easier to predict than low-visibility conditions. 
Fig. 2 shows that the one mile standard deviation in 
Fig. 1 is typical of clear conditions, but in poor 
visibility conditions the standard deviation rapidly 
increases to about 1.75 miles. 

 

2006_09_08

2006_11_17

2007_01_08

2006_12_23

Visibility forecast (nmi)

V
is

ib
ili

ty
 f

o
re

ca
st

 s
ig

m
a 

(n
m

i)

2006_09_08

2006_11_17

2007_01_08

2006_12_23

Visibility forecast (nmi)

V
is

ib
ili

ty
 f

o
re

ca
st

 s
ig

m
a 

(n
m

i)
 

Figure 2. Visibility forecast error vs visibility 

The ceiling forecast shows similar trends, and 
we use this information to construct PDF models 

for the visibility and ceiling forecasts. The surface 
wind forecast also has only a minor increase with 
the forecast LAT, and is overall quite accurate, with 
standard deviation less than 2 kt, as Fig. 3 shows for 
our January 7, 2007 data sample. 
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Figure 3. Wind forecast error histogram 

As with the ceiling and visibility forecasts, the 
accuracy of the surface wind forecast varies with 
the wind conditions, as Fig. 4 shows, again for 
January 7, 2007 data. 
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Figure 4. Wind forecast error vs wind speed 

Multi-modal CPDFs 
Beyond summing to unity, a CPDF may take 

on a wide variety of forms, ranging from a single 
value with probability of one to a multi-modal 
form. As Fig. 5 illustrates, airport capacity PDFs, 
for instance, are bi-modal when both visual and 
instrument conditions (VMC and IMC, 
respectively) have non zero probabilities. 
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Figure 5. Example bi-modal airport CPDF 

It is also possible that NAS loading PDFs may 
be multi-modal. The presence of multi-modal 
CPDFs and LPDFs may influence the performance 
of TFM solutions determined by TFM optimizers. 
Such algorithms need to be tested with multi-modal 
PDFs. 

NAS TFM Decision Making 
We constructed weather impact models that 

translate (i) C&V and surface winds into airport 
capacity reductions and (ii) C&V and surface winds 
forecasts into airport CPDFs. We implemented 
these impact models in our probabilistic NAS 
platform (PNP) tool and our ProbTFM TFM 
decision support tool. These tools use real-time data 
for TFM decision support, or use archived data in a 
fast-time mode to replay historical days. For this 
experiment we used Nov. 12, 2006, which was a 
light-moderate traffic day and, as Fig. 6 illustrates, 
a moderate-heavy convective weather day. 

 

Figure 6. Nov 12, 2006 convective weather 

As Fig. 7 shows, according to our models the 
airport capacity weather impact was predominantly 
on the east coast on Nov. 12, 2006. The top 10 

airports, in terms of overall capacity reduction 
throughout the day, were New York-JFK, 
Providence, Buffalo, Washington-Dulles, Tampa, 
Boston, Windsor Locks, Orlando, Raleigh-Durham 
and Teterboro.  
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Figure 7. Nov 12, 2006 airport impacts 

While the New York area was primarily 
impacted in the first half of the day, Boston was 
impacted during the afternoon and evening, heavy 
traffic hours, as Fig. 8 shows. 

 

Figure 8. Nov 12, 2006 BOS capacity 

Figure 9 shows our November 12, 2006 
ProbTFM NAS-wide results. We ran three 
experiments, resulting in three NAS performance 
tradeoff curves. Each tradeoff curve illustrates the 
tradeoff between airspace congestion and system 
delay (see [4] for details). In our three experiments 
we used an airport congestion tolerance factor of 
zero, medium and high, respectively. Also shown is 
the observed sector congestion level and system 
delay, derived from ETMS and ASPM data, 
respectively. 
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Figure 9. ProbTFM NAS-wide results 

Figure 9 shows that the NAS performance is 
highly sensitive to the airport congestion tolerance. 
If very little airport congestion is tolerated (i.e., 
high sensitivity), then delay increases for a given 
level of airspace congestion. On the other hand, if 
there is no sensitivity to airport congestion, then 
delay is minimized for a given level of airspace 
congestion. Figure 10 shows how the NAS delay 
varies with the airport congestion, when the 
airspace congestion is fixed at the observed, ETMS 
level. 
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Figure 10. NAS Congestion-delay tradeoff 

As with the sector congestion versus delay 
tradeoff, the airport congestion is also inversely 
proportional to system delay. 

Not surprisingly these results confirm 
analytical models that predict a tradeoff between 

system congestion and delay. But these are 
preliminary results and there is substantial future 
work. In particular, our next steps include (i) adding 
wind direction to our surface wind impact model, 
(ii) validating of our airport capacity impact models 
using data sources such as ASPM, (iii) including 
airport specific models for the impact of C&V and 
surface winds, (iv) adding models for other terminal 
area weather effects, and (v) calibrating ProbTFM 
to empirical airport congestion data. 
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