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1. INTRODUCTION 

 
Estimation of rainfall amounts is critical for 

protecting human lives and infrastructure, 
particularly in the case of heavy rainfall that 
triggers flash floods or landslides.  In Puerto Rico 
(PR) during the last 5 years, five severe storms 
seriously impacted human lives and the economy.  
PR has extremely diverse terrain, and during the 
rainy season severe rainstorms can develop due 
to complex orographic attributes.  Easterly winds 
come from the eastern Atlantic almost all year and 
play an important role bringing humidity into the 
island and stimulating orographic rainfall over the 
mountains of PR.  Cold fronts dominate the 
weather pattern during wintertime. Tropical waves 
occur during the rainy season and frequently 
generate large amounts of rainfall in the 
Caribbean basin.  These tropical waves are 
typically the precursor of tropical storms and 
hurricanes from June to November.   

 
For these types of events, estimates of rainfall 

from instruments on geostationary platforms such 
as the Geostationary Operational Environmental 
Satellites (GOES) are preferred over microwave-
based estimates of rainfall from low-Earth-orbiting 
platforms because of the rapid refresh (every 15 
minutes over the CONUS and nearby regions) and 
very short data latency times of GOES data 
relative to low-Earth orbit data.  Numerous 
algorithms have been developed to estimate 
precipitation from GOES-based satellite data.  The 
current generation of algorithms produced at 
NESDIS are the Hydro-Estimator (HE; Scofield 
and Kuligowski 2003), GOES Multi-Spectral 
Rainfall Algorithm (GMSRA; Ba and Gruber 2001), 
and the Self-Calibrating Multivariate Precipitation 
Retrieval (SCaMPR; Kuligowski, 2002).  The HE 
relies on GOES data from the infrared (IR) window 
channel with a fixed relationship to rainfall rates; 
similarly, Palmeira et al. (2004) presented a self-

consistent algorithm for rainfall estimation based 
on GOES data plus lightning data in Brazil.  The 
GMSRA uses additional data from three other 
GOES channels and updates its calibration in real 
time based on matches with radar rain rates.  
SCaMPR calibrates GOES IR parameters against 
passive microwave rain rates, which is an 
approach similar to Kidd et al. (2003) and the 
Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Network 
(PERSIANN; Sorooshian et al. 2000) algorithm.  
Another algorithm called the CPC Morphing 
Algorithm (CMORPH; Joyce et al. 2004) also 
combines IR data and microwave rain rates, but 
uses the IR data as the basis for interpolating the 
microwave rain rates in time between low-Earth 
orbit satellite overpasses. 

 
The HE, which will be the focus of this paper, 

also uses information from numerical whether 
prediction models to estimate rain rate (Scofield 
and Kuligowski 2003).  Rainfall rates are adjusted 
upward or downward for moist or dry 
environments as indicated by National Centers for 
Environmental Prediction (NCEP) North American 
Model (NAM) or Global Forecast System (GFS) 
total column precipitable water and mean-layer 
relative humidity for the lowest third of the model 
vertical domain.  Another adjustment enhances 
rainfall rates in regions where the convective 
equilibrium level temperature is relatively high; i.e., 
regions where very cold cloud tops are not 
thermodynamically possible but where strong 
updrafts and heavy rainfall can still occur.  Finally, 
low-level winds and digital topography are 
combined to produce enhancements of rainfall 
rates in upslope regions and reductions in 
downslope regions, using a technique described in 
Vicente et al. (2001). 

 
The HE has been the operational satellite 

rainfall algorithm of the National Environmental 
Satellite, Data, and Information Service (NESDIS) 
since 2000 and produces rainfall estimates at the 
full spatial and temporal resolution of GOES over 
the CONUS and surrounding regions, including 
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PR.  However, validation of the Hydro-Estimator 
has generally focused on the CONUS (e.g., 
Kuligowski and Scofield 2003; Ebert et al. 2007) 
and has not been performed over Puerto Rico, 
and given the differences in topography and 
climate of Puerto Rico relative to the CONUS, 
previous validation efforts may not necessarily be 
informative to users in PR.  Furthermore, 
validation of the HE over PR may illuminate 
opportunities to enhance the algorithm for 
application over PR. 

 
Validation of the rainfall retrieval algorithm 

consists of comparing the rainfall estimates with 
observations (rain gauges in this study) over the 
same time and space.  The accuracy of rainfall 
estimates can be measured by decomposing the 
rainfall process as sequences of discrete and 
continous random variables; i.e., the presence or 
absence of rainfall events (discrete variable) and 
the amount of rainfall (continuous variable).  The 
occurrence of rainfall events in a given area and at 
a particular time follows a Bernoulli process and 
consequently the estimation accuracy of rainfall 
events can be conducted by analyzing the 
contingency table.  The typical scores that 
measure the accuracy of categorical forecasts are: 
hit rate (H), probability of detection (POD), false-
alarm rate (FAR), and discrete bias (DB).  The 
continuous validation strategy consists of 
comparing the amount of rainfall that occurred at 
specific area in a particular time and the 
continuous measurements of accuracy are: mean 
absolute error (MAE), root mean squared error 
(RMSE), and continuous bias (CB).  

 
The second section of this paper describes the 

data collection process and source of information.  
The third section describes the conventional 
statistical techniques to perform validation.  The 
fourth section presents validation results during 
heavy storms over PR, and includes a comparison 
for rain gauges versus HE and rain gauges versus 
NEXRAD.  The fifth section presents some 
conclusions.  
 
 
2. DATA COLLECTION  

 
Puerto Rico has a rain gauge network that 

collects rainfall measurements every 15 minutes 
and includes 125 rain gauges with data available 
since January 2000.  The rain gauge data are 
used to perform validation of the HE and the 
NEXRAD.  Since this an ongoing project we 
present a preliminary data set used for validation 

and include only one storm that seriously impacted 
PR.  In a near future, a more complete validation 
will be published.  
 

NEXRAD data over Puerto Rico comes from a 
WSR-88D unit located in Cayey (18.12

o
N, 

66.08
o
W, 886.63 m elevation).  The radar 

frequency is 2.7 GHz and the maximum horizontal 
coverage is 462.5 km, and the radar scans the 
entire island every 6 minutes.  The National 
Oceanic and Atmospheric Administration (NOAA) 
National Server Storms Laboratory (NSSL) 
conducted a significant effort to make possible an 
affordable nationwide operational capture, 
distribution, and archiving of Level II NEXRAD 
data (Kelleher et al. 2007).  Unfortunately, for 
Puerto Rico the Level II data are available only 
until 2002 (NCDC, 2005a).  The NWS did resume 
archiving level II data for PR during the summer of 
2007.  On the other hand, Level III data for PR are 
available continuously since 2000 (NCDC, 2005b), 
so the Level III data were selected to perform 
validation since the most recent and catastrophic 
floods over PR occurred after 2002.  The scanning 
angle for reflectivity data was selected as 0.5 
degrees for this research in order to avoid beam 
overshoot over western PR.  Figure 1 shows the 
location of the radar and the spatial distribution of 
rain gauges, the black dot indicates the location of 
the NEXRAD and the red starts show the location 
of the rain gauges.   

 
As mentioned in the Introduction, the HE uses 

satellite IR window (10.7-µm) data and numerical 
whether prediction data to estimate rainfall over 
the CONUS and PR every 15 minutes at 4 km 
spatial resolution, and they are available for the 
entire period of interest.  In order to ensure 
consistency among these data sets during the 
comparison, both the NEXRAD and HE rain rates 
were aggregated in time over the corresponding 
15-minute accumulation period of the gauges. 
 
 

 
 
FIG. 1.  Location of rain gauges (red stars) and 
NEXRAD (black dot) in PR. 
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3. VALIDATION TECHNIQUES  
 

Validation of the rainfall retrieval algorithm 
consists of comparing the rainfall estimates with 
observations over the same time and space.  The 
accuracy of rainfall estimates can be measured by 
decomposing the rainfall process into sequences 
of discrete and continuous random variables, i.e., 
the presence or absence of rainfall events and the 
amounts of rainfall.  The occurrence of rainfall 
events in a given area and at a particular time 
follows a Bernoulli process and consequently the 
estimation accuracy of rainfall events can be 
conducted by analyzing contingency tables (Wilks 
1995).  Table 1 shows the classical two-way 
contingency table.  

 
TABLE 1.  Sample contingency table. 

 
 

Observed 
rainfall (Rain 

gauge) 

Yes N
o 

Estimated 
rainfall 

(HE or 
NEXRAD) 

Y
es 

a b 

N
o 

c d 

 
It is assumed that the values provided by the 

rain gauges are the “ground truth” while the HE 
and the NEXRAD provide estimated rainfall 
values.  The variable a in the contingency table is 
the number of times that the rain gauge identifies 
a rainfall event and the estimator also correctly 
identifies a rainfall event at the same time and 
space.  The variable d represents the number of 
times the rain gauge does not observe a rainfall 
event and the estimator correctly determines that 
there is no rainfall event.  The variable b indicates 
the number of times the rain gauge does not 
observe a rainfall event but the estimator 
incorrectly indicates that there is a rainfall event.  
The variable c shows the number of times that the 
rain gauge detects a rainfall event but the 
estimator incorrectly does not detect the rainfall 
event.  The typical scores that measure the 
accuracy of categorical estimation are:  

 

on

da
H ,    where   dcbano   

(1) 

 

ca

a
POD                        (2) 

 

ba

b
FAR                       (3) 

ca

ba
DB                        (4) 

 
where H is the hit rate, POD is the probability of 
detection, FAR is the false-alarm rate, and DB is 

the discrete bias.  Hit rate is the fraction of the on  

estimating occasions when the categorical 
estimation correctly determines the occurrence of 
rainfall event or nonevent.  Probability of detection 
is the likelihood that the event would be estimated, 
given that it occurred.  The false-alarm rate is the 
proportion of estimated rainfall events that fail to 
materialize.  Bias is the ratio of the number of 
estimated rainfall events to the number of 
observed events (Wilks 1995).  

 
The continuous validation strategy consists of 

comparing the amount of rainfall that occurred with 
the estimated amount of rainfall at specific area in 
a particular time and the continuous accuracy 
scores are:  
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where y and ŷ are the observed and estimated 
amount of rainfall.  The i and j subscripts represent 
time and space, respectively.  The constant n is 
the total number of time intervals for a given 
storm, and m  is the number of rain gauges that 

are collecting rain during a storm.  The error e is 
the deviation between the observed and estimated 
amount of rainfall at a particular time and space 
and was computed only when at least one of y or ŷ 
is greater than zero.  MAE is the mean absolute 
error, RMSE the root mean squared error, and CB 
is the continuous bias.   
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4. VALIDATION RESULTS  
 

4.1. Discrete validation 
 

A contingency table was computed for each 
rain gauge during the storm and the scores of 
those tables were summarized to create 
contingency tables for the HE and NEXRAD which 
are shown in Table 2 while the associated scores 
are shown in Table 3.  The bias of the HE was 
0.50, indicating that the HE heavily 
underestimates the number of times that rainfall 
events have occurred.  Meanwhile, the NEXRAD 
had a bias of 1.07, which is quite close to the ideal 
value of unity.  The hit rates of the HE and 
NEXRAD were 0.70 and 0.81 respectively, 
indicating that the HE has a lower percentage of 
correct rain / no rain estimates than does the 
NEXRAD.  As would be expected given the strong 
dry bias of the HE, the HE correctly detected a 
much smaller percentage of the observed rainfall 
events (30%) than did NEXRAD (80%) for these 
events.  Surprisingly, even though the HE 
indicated rainfall less than half the time that 
NEXRAD did, the false alarm rate was actually 
higher for the HE (39%) than for NEXRAD (32%). 

 
TABLE 2. Contingency tables for (a) the Hydro-Estimator 
and (b) NEXRAD. 

a) Rain Gauge 

Yes No 

Hydro-Estimator Yes 1105 699 

No 2603 6708 
 

b) Rain Gauge 

Yes No 

NEXRAD Yes 2986 1392 

No 730 6124 

 
TABLE 3. Discrete validation scores for the Hydro-
Estimator. 

 
Hydro-

Estimator 
NEXRAD 

Discrete Bias 0.50 1.07 

Hit Rate 0.70 0.81 

Probability of 
Detection 

0.30 0.80 

False Alarm Rate 0.39 0.32 

 
4.2. Continuous validation 
 

The accumulated rainfall across the island 
was computed to perform comparison between the 
observed and the estimated rainfall:   

 
              (9) 

 
where Yi is the total rainfall recorded by all 125 

rain gauges across the island or the closest HE or 

radar pixels at the 
thi  time.  Figure 2 shows the 

time series of comparisons of the HE and 
NEXRAD against the corresponding gauge rainfall 
during the storm that occurred in PR on 17 April 
2003.  Figure 3 contains scatterplots comparing 
the observed and estimated 15-minute 
accumulations of rainfall for all of the gauges in 
the network for both the H-E and NEXRAD, and 
the underestimation by the HE is clear, though it is 
not necessarily apparent whether the 
underestimation is simply because of the detection 
problems of the HE or if it is also the result of 
underestimation of rainfall amounts by the HE.  A 
comparison of the values for individual gauges in 
makes it clear that the HE is underestimating in 
terms of amounts as well as detection. 

 
This is also reflected in the continuous 

validation scores in Table 4.  The continuous bias 
of the HE is even stronger than the discrete bias, 
with the HE estimating only 26% of the total 
observed rainfall.  By comparison, the radar data 
are nearly without bias.  As a result, the mean 
absolute error of the HE is also higher than that of 
NEXRAD by roughly a third.  However, the RMSE 
is surprisingly lower for the HE than for the 
NEXRAD.  This may be because of the tendency 
of the latter statistic to penalize larger errors more 
than smaller ones, and thus more penalize the 
NEXRAD for the occasional overestimation of light 
rainfall that does not occur in the HE (Fig. 4).   

 
TABLE 4.  Continuous validation scores for the Hydro-
Estimator. 

 Hydro
-Estimator 

NEX
RAD 

Continuous 
Bias 

0.26 1.01 

Mean Absolute 
Error (mm) 

1.33    0.99 

Root Mean 
Square Error (mm) 

2.73 3.76 

 
Figure 5 compares the spatial distribution of 

rain gauges, the HE, and NEXRAD for 14:30 UTC 
17 April 2003 to illustrate the differences among 
these fields.  Again, the HE shows a significant 
underestimation of the magnitude of rainfall, 
especially over eastern PR.  In this particular case 
the NEXRAD also fails to capture the heaviest 
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rainfall over eastern PR, but to a much lesser 
degree than the HE.  There are also significant 
differences in the shape of the rainfall area 
depicted over south central PR by the HE 
compared to the gauges and NEXRAD, with the 
HE showing light rain much farther to the north 
and west than the radar and gauges.  This 
presumably is due to the presence of relatively 
cold but non-raining cirrus clouds. 

 
a)  

 
b)  

 
FIG. 2.  Time series of accumulated 15-minute rainfall for 
all 125 gauges across PR along with the corresponding 
(a) HE and (b) NEXRAD pixels for 17 April 2003. 
 

 
 
 
 
 
 

 
a) 

 
b) 

 
FIG. 3.  Comparison of observed total rainfall for all 125 
gauges across PR with the corresponding (a) HE and 
(b) NEXRAD pixels for 17 April 2003. 
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a) 

 
b) 

 
 
FIG. 4. Comparison of observed  rainfall for each gauge 
in PR with the corresponding (a) HE and (b) NEXRAD 
pixels for 17 April 2003. 

 
 
 
 
 
 
 
 
 
 

a) 

 
b) 

 

 
c) 

 
 
FIG. 5.  Comparison of 15-minute rainfall accumulations 
ending 1430 UTC 17 April 2003 for (a) gauges; (b) the 
HE; and (c) NEXRAD. 

 
 
5. CONCLUSIONS 
 

The HE is a high resolution satellite rainfall 
retrieval algorithm run operationally by NESDIS 
that provides estimates of rainfall every 15 
minutes at 4-km resolution over the CONUS and 
nearby areas including PR.  The rain rates are 
primarily derived from GOES 10.7-µm brightness 
temperatures and then adjusted using parameters 
derived from a numerical weather prediction 
model.  The HE estimator should be especially 
useful over regions of complex topography such 
as western PR because of the difficulties 
associate with radar in those regions such as 
beam block.  However, for the heavy rainfall event 
examined in this paper, NEXRAD clearly 
outperformed the HE.  This may be in part 
because of most of the rainfall occurred in the 
central and eastern parts of the island where the 
radar data would be most reliable.  Specifically, 
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the HE underestimated both the spatial extent and 
the amount of rainfall, whereas NEXRAD was 
nearly unbiased in these respects.  The HE 
algorithm did exhibit a satisfactory hit rate, but a 
very low probability of detection and a false alarm 
rate that was surprisingly higher than that of 
NEXRAD despite the dry bias of the HE.  A 
research effort is underway to improve the 
performance of the HE for PR; specifically, the 
algorithm proposed by Ramirez-Beltran at al. 
(2007) will be implemented to improve the HE 
rainfall detection and the equation that relates 
brightness temperatures with rain rates. 
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