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1. INTRODUCTION

It is of interest for many purposes, including
nowcasting, to evaluate the structure of radar images in
an effort to produce more accurate estimates of rainfall
totals from radar data. Although subjective analysis can
reliably determine the structure of radar imagery,
computational techniques exist to analyze a radar image
using algorithms that can be automated. Many of these
techniques use some form of multiresolution analysis or
Fourier analysis to accomplish structure identification.

One method of identifying structures of differing
sizes and scales within an image is to use high, low, and
band pass filters to highlight features of interest. This is
frequently accomplished by decomposing an image into
the frequency domain using a transform and performing
the filtering operation within the frequency domain. A
variety of transforms exist for accomplishing this including
the Wavelet Transform (WT) and many transforms
related to the Fourier Transform (FT).

An algorithm, based on the FT and Gaussian filters,
has been developed to analyze a radar image and
identify structures within the image. A variety of cases are
then presented to demonstrate the performance and
robustness of this algorithm. Primarily this algorithm
delineates regions of convective and stratiform
precipitation and identifies convective structures on
multiple scales. Properties of convective features are also
determined by the algorithm including finding a centroid
and attempting to fit an ellipse to define the structure.
Additional properties of convective features are
determined within the classification scheme.
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2. FOURIER TRANSFORM

The FT decomposes a signal in the spatial domain
into a linear combination of sinusoidal orthonormal basis
functions, which are represented in the frequency
domain. Mathematically, the Continuous Fourier
Transform (CFT) can be expressed in a single dimension
as (1),

F(u) = J'f(x)e_zmxdx (1)

which produces sinusoidal waves as shown by Euler's
Formula. A corresponding similar equation, the Inverse
Fourier Transform (IFT), exists to recompose the signal
from the frequency domain into the spatial domain.

There are a number of implicit assumptions of the
FT. These include that the signal is periodic and the
pattern observed in the spatial domain is due entirely to
patterns of constructive and destructive interference. That
is to say that the power of a given frequency remains
constant throughout the entire domain. Although these
assumptions may not be realistic, the FT is still suitable
for analyzing a signal.

When computing the FT, a signal is sampled at
discrete intervals, and a similar pair of equations known
as the Discrete Fourier Transform (DFT) and Inverse
Discrete Fourier Transform (IDFT) are used. If computed
by solving the equation for each (u), or (u,v) if in two
dimensions, the computation will be of O(n?), which may
not be feasible for large domains. Instead, the FT is
calculated using the Fast Fourier Transform (FFT), which
is of the complexity O(n log n), and can be computed
more readily even when the domain is large.

The FT, along with similar transforms, can be used
in multiple dimensions. The FT, and other related
transforms, can be used for image processing and
compression applications. The signal is decomposed into
a linear combination of orthonormal basis images.
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One important property in Fourier analysis and
synthesis is the Convolution Theorem. The theorem
states that convolution and multiplication are related
between the spatial domain and frequency domain.
Convolution in one domain corresponds to multiplication
in the other domain.

3. SIGNAL FILTERING

Although many filters exist for filtering signals,
including ideal filters and Butterworth filters, the research
herein will focus on Gaussian filters. In this context,
filtering refers to attenuating or boosting a component of
a signal based on the frequency of the component. As it
might appear, this can be accomplished through
multiplication in the frequency domain. By the
Convolution Theorem, filtering would be accomplished in
the spatial domain through convolution.

A low pass filter attenuates high frequency
components of a signal while retaining lower frequency
components. In two dimensions, the Gaussian function is
given by (2),
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and is multiplied by the signal in the frequency domain to
perform a Gaussian filtering operation. A high pass filter
attenuates low frequency components of a signal and
retains the higher frequency components. The portion of
a signal attenuated by a low pass filter is the same as the
portion of a signal retained by a high pass filter. A band
pass filter retains components within a range of
frequencies while attenuating signals with frequencies
above and below the range. This can be performed
through a low pass filter to remove signals below the low
cutoff frequency followed by a high pass filter to remove
signals above the high cutoff frequency.

4. SPATIAL ANALYSIS OF PRECIPITATION

Previous work has been done in analyzing the
spatial characteristics of rainfall. Much of this work has
been done for the purposes of developing nowcasting
systems. Some nowcasting systems decompose an
image into various spatial scales using the FT with the
purpose of advecting or evolving features of different
scales at least partially independent of other scales.

Seed (2003) devised the Spectral Prognosis (S-

PROG) nowcasting scheme which uses the FT and band
pass filtering to produce pseudo-reflectivity radar images.
In this scheme, the FT decomposes a radar image into
the frequency domain and the image is then filtered in the
frequency domain into multiple scales using a Gaussian
band pass filter. In addition to forecasting based on
advection, high frequency features are attenuated more
rapidly than low frequency features because high
frequency features are more transient and therefore are
less predictable.

Precipitation systems can be classified based on
reflectivity gradients. Klazura et al. (1999) characterized
precipitation systems into four categories based on the
temporal evolution of the systems and horizontal
gradients in reflectivity within the systems. The categories
were systems that had high reflectivity gradients, systems
that began with high reflectivity gradients and transitioned
to lower reflectivity gradients through the life of the
system, systems with high reflectivity gradients
embedded within lower reflectivity gradients, and systems
with low reflectivity gradients. Systems with high
reflectivity gradients were noted to have small cores with
reflectivity power of 40 to 60 dBZ with high reflectivity
gradients around the core. In systems with lower
reflectivity gradients, weaker reflectivity power of 25 to 40
dBZ was noted over a more widespread area.

Hagelberg and Helland (1995) used a variation of
the Morlet Wavelet in two dimensions to detect radar
thinlines. The wavelet function is symmetric and
directionally selective. Application of the wavelet at
different directions and scales was done. Areas where
strong power is present in the output of the transform
suggest the presence of a possible thinline. The WT is
similar in nature to the FT in that it decomposes an image
in the spatial domain into frequency bands. However,
unlike the FT, the power in a given frequency is not fixed
across the entire domain. Power can be localized in
portions of the domain in a frequency band. Multiscale
analysis can be accomplished by either downsampling
the image or by scaling the wavelet function. Wavelets
may also be useful to analyze radial velocity images for
tornado vortex signatures (Liu et al. 2007) and to analyze
oceanic velocity data derived from sea surface height
maps for vortexes (Turiel et al. 2007).

5. METHODOLOGY

Several cases have been chosen to demonstrate the



performance of the algorithm under a variety of
conditions. These cases are examined using subjective
analysis and then are processed using the algorithm to
objectively analyze the image. The algorithm used relies
only on radar-derived products with no knowledge of the
environmental conditions producing the structures
observed by radar. Although using additional data such
as model derived parameters may provide for a better
interpretation, whether subjective or automated, only
radar-derived products are used for demonstrating the
concept.

A primary use of the algorithm is to distinguish
convective and stratiform precipitation. Cases of pure
stratiform precipitation, pure convective precipitation, and
stratiform precipitation with convective elements are
chosen. In cases with convective precipitation, it is useful
to identify structures within the image of different scales.
For example, individual cells may be embedded within a
larger complex, such as individual thunderstorm cells
within a squall line. However, there are also cases with
scattered or isolated thunderstorm activity in which
individual cells are not contained within larger complexes.
To test the performance of the algorithm, cases with
isolated cells and with thunderstorm complexes are
chosen as well.

Algorithms within the Warning Decision Support
System — Integrated Information (WDSS-Il) software
(Lakshmanan et al. 2007) are used to prepare radar data
for use within the algorithm. The ldm2netcdf algorithm is
used to ingest level Il data and convert it to the Network
Common Data Form (NetCDF) format. The w2merger
algorithm (Lakshmanan et al. 2006) is used to produce a
latitude-longitude-height grid from the radar data, which is
on a polar grid. Data from a single radar is used to
generate the grid, which has a grid point spacing of 1 km
horizontally and vertically, a size of 256 km by 256 km
horizontally, and is centered on the radar site. Reflectivity
at an elevation of 3 km is used in the algorithm because
lower elevations have missing data at the edges of the
grid.

6. ALGORITHM DESCRIPTION

The crux of the classification scheme involves
decomposing a radar image to identify structures of
different scales within the image. This is accomplished
through the DFT, applying various Gaussian low pass,
band pass, and high pass filters within the frequency

domain, and recomposing the filtered images into the
spatial domain. Examining the filtered images yields
information about how much power is within an image at
each point within the selected frequency band.

Identification of convective and stratiform structures
is done independently. That is to say that a region of the
image may be identified both as being convective and
stratiform. This is realistic because convection is
frequently embedded within larger systems that contain
stratiform precipitation. Stratiform precipitation occurs on
a lower frequency and may contain higher frequency
signals indicating embedded convection.

6.1. Precipitation Classification

Stratiform precipitation is identified as areas that
meet two criteria. The reflectivity of the original image at
the point identified must be at or above 10 dBZ. At least 5
dBZ must be concentrated within a selected low
frequency band.

Convective precipitation is also identified by two
criteria. Power is determined by summing the weighted
power within three frequency bands. If the power is
above a certain reflectivity threshold and the reflectivity
from the original image is above a threshold as well, the
point is marked as convective. If reflectivity within the
original image is weak, a strong signal within the bands
used for identifying convection is required to mark the
point as convective. Conversely, if reflectivity within the
original image is strong, a weaker signal within the bands
for identifying convection is required to mark the point as
convective. If reflectivity in the original image exceeds the
hail cap (53 dBZ in this scheme) the point is marked as
convective regardless of the power within frequency
bands.

To determine convection, two values are compared
against a series of thresholds. One of the values, signal
strength within bands used for identifying convection, is
computed by weighting and summing power within three
bands. Values of o given in the equation are based on a
square domain with a length of 256 km and a grid point
spacing of 1 km. The first subscript is the lower cutoff
frequency and the second subscript is the higher cutoff
frequency of the band. This value is calculated by (3),
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and is used to represent the signal in bands that would



represent convection. The other value is based on
reflectivity within the original image. Table 1 shows the
thresholds for Ry and R used for identifying convection.
If the criteria are both satisfied, the point is marked as
convective.

R Threshold Rupt Threshold
=7dBZ = 25dBZ
= 16 dBZ =20dBZ
= 25dBZ = 15dBZ
= 34 dBZ =10dBzZ
= 43dBZ =5dBZ
= 53dBZ N/A

Table 1: Thresholds used for identifying convection

Additional echoes stronger than 5 dBZ that have not
been identified as convective or stratiform are additionally
marked. Although these echoes are not classified as
precipitation, they may be useful in identifying other
structures such as boundaries along which strong
convergence is occurring.

An attempt is made to classify embedded convection
within larger stratiform structures. Such regions must be
classified both as convective and stratiform by the
previous classification scheme. Additionally, criteria must
be met so that ratios of power in frequency bands
associated with convection compared to power in bands
associated with convection is below a threshold. The
purpose of this is to require that, although the region is
classified as convective and stratiform, the stratiform
signal is relatively strong compared to the convective
signal. Without these additional criteria, it is likely that
many larger convective systems would meet both the
convective and stratiform requirements and would have
large areas classified as embedded convection that
would likely not be classified as embedded convection in
a subjective analysis by a forecaster.

6.2. Structure Identification

The cluster, segment, and cell identification schemes
work by identifying structures of different scales within an
image. Structures of different scales may be contained
within one another to represent a hierarchy of structures
within a reflectivity image. That is to say a cluster may

contain multiple segments, each of which may contain
multiple cells. Segments are not required to be contained
within clusters and cells are not required to be contained
within segments or clusters. Clusters are not required to
contain segments or cells and segments are not required
to contain cells. Each scale is identified independently of
other scales.

As with the convective and stratiform identification
scheme, each cluster, segment, and cell must meet a
series of criteria for that scale. Clusters, segments, and
cells must consist entirely of points that have been
marked as convective. Other power thresholds within
frequency bands must also be satisfied to meet each
classification. Cluster identification only examines power
within the lowest frequency band associated with
convection whereas segment and cell identification
examine progressively higher frequency bands.

Upon tagging clusters, segments, and cells,
additional filtering is performed to remove very small
structures at each scale. To accomplish this, the image is
eroded and dilated using the same mask, which can be
defined separately for each scale if desired. By specifying
larger masks, larger structures will be removed. This not
only has the effect of removing structures that are smaller
than the mask, but also of removing detail around the
edges of structures.

To identify structures within a scale, the filtered
image is examined for points within a structure. When a
point in a structure is identified within the filtered image, a
scanline fill is performed starting from the identified point,
but the fill is performed within the unfiltered image. This
identifies only structures present within the filtered image,
however, the structures retain their shape from the
unfiltered image. Small structures are removed by the
filtering operation while larger
unaltered by the filtering operation.

structures remain

6.3. Shape Determination

A variety of metrics are computed on the clusters,
segments, and cells once they have been identified.
Three simple metrics computed are the area of the
structure, the maximum reflectivity power within the
structure, and the average reflectivity of the structure.

It is of interest to determine a centroid of a structure,
which is useful in some shape analysis algorithms. The
centroid is determined by computing a penalty function
for every point within the structure. The point for which



the penalty is lowest is determined to be the centroid.
The algorithm for finding the centroid attempts to place
the centroid near the spatial center of the structure but
also near the core as indicated by the strongest
reflectivity within the structure (reflectivity-weighted

centroid). The penalty function is computed by
summation of (4),
P(x,y)=R(x,y)xD )

where R is the reflectivity at (x,y) and D is the distance
from (x,y) to the centroid for all (x,y) within the cell. The
penalty function is computed for all points within the
structure. The point where the penalty function is
minimized is determined to be the centroid. The centroid
must be within the structure, regardless of the shape of
the structure. The reflectivity at the centroid of the
structure is computed as another metric.

Edge detection is used within the shape analysis to
approximate the shape of the structure. The best method
for identifying structure edges is to consider four
directions adjacent to a pixel, which are north, south,
east, and west. For a point within a structure, it is on the
edge of a structure if at least one of the pixels in one of
the four adjacent directions directly next to the pixel is not
in the structure. Also, if at least one of the four
neighboring pixels is not within the domain, the pixel is
considered to be at the edge of the structure. This is
typically sufficient for detecting the edge of a structure.
However, for the purposes of shape analysis, if any of the
eight directly neighboring pixels to a pixel are not part of
the structure, the pixel is considered to be an edge.

Although there are many methods for representing
the shape of a structure, a simple method that is useful in
shape analysis is to approximate the structure as an
ellipse. An ellipse can be represented by a center point,
major axis, and minor axis.

From the centroid, the distance to each point that is
considered to be an edge is computed. The line through
the centroid to the most distant edge point from the
centroid is considered to be the major axis of the ellipse.
From the centroid, the most distant edge point
perpendicular to the major axis is considered to be the
minor axis of the ellipse. By adding 0.5 to the length of
the major axis in pixels and dividing by the length of the
minor axis plus 0.5, eccentricity can be computed. It is
possible, using this method of computing the shape of the
cell, to have a minor axis of length zero. Depending on
the shape of a cell and the position of the centroid, it is
possible for the minor axis to be zero pixels in length.

Division by zero when computing the eccentricity is
prevented by adding 0.5 to both the length of the minor
axis and the length of the major axis so that neither axis
can ever have a length of zero.

7. CASES SELECTED AND RESULTS

Several cases of varying types are selected to
demonstrate the robustness of the classification scheme
used. Subjective analysis of each of the cases is
compared with the objective analysis performed by the
algorithm.

The ten cases were prepared and processed using
the algorithm described previously. Each case will be
discussed independently with analysis of the
performance of the algorithm. In the images, each cell,
segment, and cluster is uniquely colored. In images
showing the classification of precipitation types, dark red
indicates convection, with other colors indicating
stratiform precipitation, other echoes above 5 dBZ, and
no precipitation as the color scale progresses to blue.

1) KEAX at 2000 UTC on March 12, 2006

Shown in figure 1a, several supercells are evident in
the image with three distinct clusters of cells. Some of the
clusters contain three or four cells. In addition to the
several reflectivity cores, weak echoes are noted to the
east of the cores, likely associated with thunderstorm
anvils.

As shown in figure 1b, the algorithm correctly
identified the intense reflectivity cores as convective in
nature. The structures detected by the algorithm are
shown in figures 1c through 1e. There are several distinct
cells in the image, which seem to correspond well to the
cells identified by the algorithm. Three distinct clusters
are identified by the algorithm, which seems reasonable.
Even though precipitation was not occurring in the areas
beneath the thunderstorm anvils, the algorithm is not
provided information as to the vertical extent of the
structures. Identifying those regions as stratiform
precipitation is reasonable given the information provided
to the algorithm. The algorithm performs well in this case
both on discriminating convective and stratiform
precipitation and identifying structures at multiple scales.

2) KMLB at 1100 UTC on February 2, 2007



A line of supercells is present in the image, shown in
figure 2a, with additional isolated to scattered convection
just ahead of the line, to the north of the line, and to the
southwest of the line. Weak echoes are noted to the
southeast of many of the thunderstorms, likely present as
a result of thunderstorm anvils.

The convection in the image is properly classified by
the algorithm in figure 2b. Figures 2c through 2e show
the structures present at the spatial scales examined.
Although the convective precipitation is correctly
identified, it would appear that there are more cells than
are identified individually by the algorithm. Several of the
cells that are identified have an elongated appearance,
which is due to the presence of multiple cells located
adjacent to one another that are being identified as a
single cell. Although one of the clusters identified appears
too small to actually qualify as a cluster, three other
distinct clusters of cells apparent in the radar image are
correctly identified by the algorithm. Convective and
stratiform precipitation are identified well by the algorithm.
The algorithm performs moderately well at identifying
features at multiple scales.

3) KILX at 2100 UTC on July 13, 2004

In figure 3a, two large clusters of thunderstorms are
evident in the radar image. The northwestern cluster has
several distinct reflectivity cores embedded within it. The
southeastern cluster is at the edge of the domain and the
structure is less clear. Scattered thunderstorm cells are
also present to the northwest of the clusters and between
the clusters. Weak echoes are present to the south and
northeast of the clusters, likely associated with
thunderstorm anvils.

The identification of convective and stratiform
precipitation, shown in figure 3b, by the algorithm
appears to be reasonable. Figures 3c through 3e show
the structures present at the spatial scales examined.
Although one of the clusters that is identified appears to
be small enough to not qualify as a cluster, the other two
clusters are identified correctly. The identification of
convective cells within the clusters appears mostly
reasonable. It is difficult to subjectively discern cells
within some portions of the clusters, so it is reasonable
that some portions of clusters do not have cells identified
within them. Overall, the performance of identifying
convective precipitation is good. However, the algorithm
performs moderately well at identifying features at

multiple scales.

4) KSGF at 0230 UTC on June 21, 2000

As shown in figure 4a, a line of thunderstorms with
embedded cells extends across the domain oriented from
the west-southwest to the east-northeast. Scattered
convection is occurring to the south of the line of
thunderstorms. Weaker echoes are noted to the north of
the line likely due to thunderstorm anvils and stratiform
precipitation.

The identification of the line of thunderstorms and
isolated cells as convective with much of the precipitation
to the north of the line identified as stratiform seems
reasonable. Convective and stratiform areas are shown
in figure 4b. Figures 4c through 4e show the structures
present at the spatial scales examined. Although
numerous cells are properly identified within the line,
there are many more that are not identified. Identification
of segments and clusters was better. However, there are
clusters identified that are too small to be subjectively
identified as a cluster. The algorithm performed well at
identifying convective and stratiform precipitation. The
performance of identifying features at multiple scales was
moderately good.

5) KSGF at 2230 UTC on January 12, 2005

Figure 5a shows a broken line of thunderstorms
extends across much of the domain from south-
southwest to north-northeast. The thunderstorm activity is
embedded within a larger region of weaker echoes likely
due to thunderstorm anvils and stratiform precipitation.
Some evidence of a melting layer is evident in the image.
Scattered convective cells and some weaker echoes are
present to the east of the line in the southern portion of
the image. Additional convective cells are present in the
northwest corner of the image embedded within some
weaker echoes likely due to thunderstorm anvils and
stratiform precipitation.

In figure 5b, he algorithm appears to identify a few
regions of the image as convective that may not be
convective in nature. However, regions that should be
identified as convective appear to be properly identified.
Figures 5c¢ through 5e show the structures present at the
spatial scales examined. There are a few cells within the
image that are not identified. The algorithm appeared to
perform better at identifying segments and clusters,



however. The algorithm performed moderately well both
at identifying convection and identifying features at
multiple scales within the image.

6) KSGF at 2330 UTC on April 22, 2004

Shown in figure 6a, scattered thunderstorms are
noted throughout much of the southwest and northeast
corners of the image. A region of weaker reflectivity is
noted extending east from two cells located in the far
southwest corner of the image, likely due to thunderstorm
anvils from the cells.

Although there may be a couple of false positives in
identifying convection within the image, shown in figure
6b, overall the performance is quite good. Figures 6c¢
through 6e show the structures present at the spatial
scales examined. Cells within the image are mainly
discrete, and the identification appears to be quite good.
Because the cells are discrete but somewhat large in
size, it seems reasonable that they are also identified as
segments and sometimes as clusters. Both the
identification of convective and stratiform precipitation
and the identification of features at multiple scales
appears to be quite good in this case.

7) KEAX at 0600 UTC on December 1, 2006

In figure 7a, a large region of weak echoes
associated with stratiform precipitation extends over all
but the far western and northwestern part of the radar
image. The precipitation is mainly in the form of snow
with possibly sleet and freezing rain in the southern and
eastern part of the image. A band of stronger reflectivity
extends east-northeast from nearly the center of the
image, likely associated with a convective band of
precipitation.

Figure 7b shows that the convective band in the
radar image is not identified by the algorithm. Because
the convective band is not identified, it is not possible to
identify features within this band. A region near the edge
of the image is identified as convective. This region may
have been properly identified as stratiform if it was not
near the edge of the domain. Figures 7¢ through 7e show
the structures present at the spatial scales examined.
Overall, the algorithm performed poorly in this case.
Structure identification performed poorly in this case due
to poor performance of identifying convective and
stratiform  precipitation. The failure to detect the

convective band within the image is likely due to the
weak reflectivity gradients in and around the convective
band.

8) KSGF at 0200 UTC on June 14, 2005

A curved broken line of thunderstorms extends from
the southwest corner to the northeast corner of the
image, shown in figure 8a, with additional thunderstorms
located near the center of the image. Little stratiform
precipitation is observed. Weaker echoes are noted in the
vicinity of reflectivity cores and are likely due to
thunderstorm anvils.

The classification of convective and stratiform
precipitation, shown in figure 8b, is reasonable. Figures
8c through 8e show the structures present at the spatial
scales examined. Some cells that are small and close
together in the image are identified as one elongated cell
when they should be identified as multiple cells.
However, the identification of segments and clusters
within the image is reasonable. The performance of the
algorithm at identifying convective and stratiform
precipitation was very good. The algorithm performed
moderately well at identifying features of multiple scales
within the image.

9) KSGF at 0330 UTC on June 26, 2003

In figure 9a, a broken line of thunderstorms extends
north and east from the southwest part of the image
through the northeast part of the image. Large region of
stratiform precipitation is present to the north and west of
the line of thunderstorms. Some convective cells are
embedded within the stratiform precipitation and possibly
along the northwest edge of the stratiform precipitation.

Although it appears in figure 9b that all convective
features are properly identified, some stratiform regions
are also identified as convective. Figures 9c through 9e
show the structures present at the spatial scales
examined. Many small cells are not identified within the
image. ldentification of segments and clusters appears
more reasonable. However, there are regions that do not
appear particularly convective in nature that are identified
as segments. The algorithm performed moderately well at
identifying convection and stratiform precipitation. The
performance of identifying features of multiple scales was
moderate.



10) KSGF at 1900 UTC on December 6, 2007

Figure 10a shows a large area of stratiform
precipitation is spread over almost the entire domain. The
heaviest precipitation is spread over the southern portion
of the domain. Much of the precipitation is frozen during
this event. No convection is obvious within the domain.

As shown in figure 10b, most of the image is
correctly identified as stratiform precipitation. The regions
identified as convective may be false positives. Figures
10c through 10e show the structures present at the
spatial scales examined. No cells are identified within the
image. However, considering that the precipitation is
stratiform in nature, the identification of a segment and
cluster is not reasonable. The performance was
moderately good at identifying convective and stratiform
precipitation. Identification of structures within the image
was moderately poor. Had no convection been identified,
there would not be structures to the identify, and the
algorithm would have exhibited better performance.

8. ANALYSIS OF RESULTS

The algorithm generally performed quite well over
the selected cases in identifying convective and stratiform
precipitation. Although there were a few false positives
and missed regions of convection, nearly all convective
and stratiform precipitation was correctly identified. In the
cases where convective and stratiform precipitation did
not appear to be identified correctly, the precipitation was
marginally convective or stratiform. In cases of obvious
convection and obvious stratiform precipitation, the
algorithm performed very well.

Larger features appeared to be identified more
correctly than smaller features. Although many cells were
identified correctly, too few cells were identified by the
algorithm. One common problem was the identification of
two or more nearby cells identified as a single cell.
Generally, identification of segments and clusters was
done well. However, at times, features that appeared to
be too small to qualify as a segment or a cluster were
identified as such. The algorithm performed better in
identifying larger features than it did in identifying smaller
features. Discrete cells and cells within clusters that had
distinct strong reflectivity cores were identified quite well.

The algorithm performance was also degraded when
irregular features of a variety of spatial scales were
present in the image, such as in case (8). Although the

algorithm performed well under a variety of conditions,
this may be a limitation of using Fourier analysis. In these
cases, wavelet analysis may outperform algorithms that
are based on the FT.

9. FUTURE WORK

The cell identification and classification scheme is
being incorporated into a larger cell classification scheme
based on cell attributes and near storm environment data
(Lack and Fox 2008). When completed, the cell
classification scheme will identify convective cells and
calculate attributes of the convective cells to classify the
cells. The cell classification can be used as part of a
nowcasting scheme for the purpose of applying
conceptual models to forecast cell behavior.

The identification of convective structures on multiple
scales is useful in verification of output of nowcasting
schemes. This algorithm delineates convective structures
on three scales, which may be useful in evaluating the
performance of nowcasting schemes in forecasting the
evolution of structures of different scales within a radar
image. The classification of precipitation type can be
used to select and apply different Z-R relationships to
different portions of a radar image. This may improve the
estimates of rainfall accumulation. Additionally, rainfall
accumulation estimates generated through this method
may be useful for verifying the performance of
precipitation generated within numerical models.

10. CONCLUSION

Convective and stratiform regime identification is a
strength of this algorithm. Although the identification of
structures within an image at multiple scales did not
perform as well, the issues occurred largely when
convective features were small, very closely spaced, or
exhibited relatively weak reflectivity. Additionally,
because of the nature of the algorithm, identification of
structures within the radar image depends on the
identification of convective and stratiform precipitation.
Some of the failures of the structure identification scheme
were caused by poorly identified convection and
stratiform precipitation.

Although multiscale advection of structures within a
radar image has been implemented in nowcasting
schemes, use of multiscale analysis is very limited in
analyzing structures within a radar image. The FT, or a



similar transform, may be useful in identification and
analysis of convective and stratiform structures within a
radar image.
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KEAX 20:00 UTC March 12, 2006 -Reflectivity KEAX 20:00 UTC March 12, 2006 -Classification of Precipitation

Figure 1a: Radar reflectivity observed by Figure 1b: Precipitation classification for the radar
KEAX at 20:00 UTC on March 12, 2006 image from KEAX at 20:00 UTC on March 12, 2006

KE&K 20:00 UTC March 12, 2006 -Convective Cells KEAR 20:00 UTC March 12, 2006 - Convvective Segments
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Figure 1c: Cells identified within the radar image Figure 1d: Segments identified within the radar
from KEAX at 20:00 UTC on March 12, 2006 image from KEAX at 20:00 UTC on March 12, 2006

KEAK 20:00 UTC March 12, 2006 - Convective Clusters

Figure 1e: Clusters identified within the radar
image from KEAX at 20:00 UTC on March 12, 2006



KMLE 11:00 UTC February 2, 2007 -Reflectivity KMLE 11:00 UTC February 2, 2007 -Classification of Precipitation

Figure 2a: Radar reflectivity observed by Figure 2b: Precipitation classification for the radar
KMLB at 11:00 UTC on February 2, 2007 image from KMLB at 11:00 UTC on February 2, 2007

EMLE 11:00 UTC February 2, 2007 -Convective Cells KMLE 1100 UTC February 2, 2007 -Correective Segments
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Figure 2c: Cells identified within the radar image Figure 2d: Segments identified within the radar
from KMLB at 11:00 UTC on February 2, 2007 image from KMLB at 11:00 UTC on February 2, 2007

KMLE 11:00 UTC February 2, 2007 - Conwective Clusters
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Figure 2e: Clusters identified within the radar
image from KMLB at 11:00 UTC on February 2, 2007



KILK 21:00 UTC July 13, 2004 -Reflectivity KILX 21:00 UTC July 13, 2004 -Classification of Precipitation

Figure 3a: Radar reflectivity observed by Figure 3b: Precipitation classification for the radar
KILX at 21:00 UTC on July 13, 2004 image from KILX at 21:00 UTC on July 13, 2004

KILx 21:00 UTC July 13, 2004 -Convective Cells KIL® 21:00 UTC July 13, 2004 - Corvective Segments

I

Figure 3c: Cells identified within the radar image Figure 3d: Segments identified within the radar
from KILX at 21:00 UTC on July 13, 2004 image from KILX at 21:00 UTC on July 13, 2004

KILX 21:00 UTC July 13, 2004 - Convective Clusters

Figure 3e Clusters identified within the radar
image from KILX at 21:00 UTC on July 13, 2004



KSGF 02:30 UTC June 21, 2000 -Reflectivity KEGF 02:30 UTC June 21, 2000 - Classification of Precipitation
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Figure 4a: Radar reflectivity observed by Figure 4b: Precipitation classification for the radar
KSGF at 02:30 UTC on June 21, 2000 image from KSGF at 02:30 UTC on June 21, 2000

KSGF 02:30 UTC June 21, 2000 -Convective Cells KSGF02:30 UTC June 21, 2000 -Convective Segments

Figure 4c: Cells identified within the radar image Figure 4d: Segments identified within the radar
from KSGF at 02:30 UTC on June 21, 2000 image from KSGF at 02:30 UTC on June 21, 2000

KSGF 02:30 UTC June 21, 2000 -Convective Clusters

Figure 4e: Clusters identified within the radar
image from KSGF at 02:30 UTC on June 21, 2000



K&GF 22:30 UTC January 12, 2005 -Reflectivity
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Figure 5b: Precipitation classification for the radar

Figure 5a: Radar reflectivity observed by
image from KSGF at 22:30 UTC on January 12, 2005

KSGF at 22:30 UTC on January 12, 2005

KSGF 2230 UTC January 12, 2005 -Convective Cells K3GF 22:30 UTC Jarwary 12, 2005 - Correective Segments
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Figure 5d: Segments identified within the radar

Figure 5c: Cells identified within the radar image
image from KSGF at 22:30 UTC on January 12, 2005

from KSGF at 22:30 UTC on January 12, 2005

KSGF 22:30 UTC January 12, 2005 - Conwvective Clusters
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Figure 5e: Clusters identified within the radar
image from KSGF at 22:30 UTC on January 12, 2005



KSGF 23:30 UTC April 22, 2004 -Reflectivity KEGF 23:30 UTC April 22, 2004 - Classification of Precipitation
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Figure 6a: Radar reflectivity observed by Figure 6b: Precipitation classification for the radar
KSGF at 23:30 UTC on April 22, 2004 image from KSGF at 23:30 UTC on April 22, 2004

KSGF 23:30 UTC April 22, 2004 -Convective Cells KSGF 23:30 UTC April 22, 2004 -Convective Segments

Figure 6c¢: Cells identified within the radar image Figure 6d: Segments identified within the radar
from KSGF at 23:30 UTC on April 22, 2004 image from KSGF at 23:30 UTC on April 22, 2004

KSGF 23:30 UTC april 22, 2004 -Convective Clusters
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Figure 6e: Clusters identified within the radar
image from KSGF at 23:30 UTC on April 22, 2004



KEAK D6:00 UTC December 1, 2006 -Reflectivity
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Figure 7a: Radar reflectivity observed by
KEAX at 06:00 UTC on December 1, 2006

KEaiK 06:00 UTC December 1, 2006 - Corvective Cells
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Figure 7c: No cells identified within the radar image
from KEAX at 06:00 UTC on December 1, 2006

KE&K 06:00 UTC December 1, 2006 -Convective Clusters
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Figure 7e: No clusters identified within the radar
image from KEAX at 06:00 UTC on December 1, 2006

KEAK 06:00 UTC Decernber 1, 2006 -Classification of Precipitation
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Figure 7b: Precipitation classification for the radar
image from KEAX at 06:00 UTC on December 1, 2006

KEAR 06:00 UTC December 1, 2006 -Convective Segments

Figure 7d: Segments identified within the radar
image from KEAX at 06:00 UTC on December 1, 2006



KSGF 02:00 UTC June 14, 2005 -Reflectivity K&GF 02:00 UTC June 14, 2005 - Classification of Precipitation
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Figure 8a: Radar reflectivity observed by Figure 8b: Precipitation classification for the radar
KSGF at 02:00 UTC on June 14, 2005 image from KSGF at 02:00 UTC on June 14, 2005

KSGF 02:00 UTC June 14, 2005 -Convective Cells KSGF02:00 UTC June 14, 2005 -Convective Segments

Figure 8c: Cells identified within the radar image Figure 8d: Segments identified within the radar
from KSGF at 02:00 UTC on June 14, 2005 image from KSGF at 02:00 UTC on June 14, 2005

KSGF 02:00 UTC Jure 14, 2005 -Convective Clusters
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Figure 8e: Clusters identified within the radar
image from KSGF at 02:00 UTC on June 14, 2005



KSGF 03:30 UTC June 26, 2003 -Reflectivity KEGF 03:30 UTC June 26, 2003 - Classification of Precipitation

Figure 9a: Radar reflectivity observed by Figure 9b: Precipitation classification for the radar
KSGF at 03:30 UTC on June 26, 2003 image from KSGF at 03:30 UTC on June 26, 2003

KSGF 03:30 UTC June 26, 2003 -Convective Cells KSGF 03:30 UTC June 26, 2003 -Convective Segments

Figure 9c: Cells identified within the radar image Figure 9d: Segments identified within the radar
from KSGF at 03:30 UTC on June 26, 2003 image from KSGF at 03:30 UTC on June 26, 2003

KSGF 03:30 UTC June 26, 2003 -Convective Clusters
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Figure 9e: Clusters identified within the radar
image from KSGF at 03:30 UTC on June 26, 2003



KSGF 19:00 UTC December 6, 2007 -Reflectivity

KEGF 19:00 UTC Decernber 6, 2007 -Classification of Precipitation
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Figure 10a: Radar reflectivity observed by Figure 10b: Precipitation classification for the radar
KSGF at 19:00 UTC on December 6, 2007 image from KSGF at 19:00 UTC on December 6, 2007
KSGF 1900 UTC December B, 2007 - Convective Cells K3GF 19:00 UTC December B, 2007 -Convective Segments
50 F 4
100 - -
150 F -
200 F -
250 1 L L L |
50 100 150 200 250
Figure 10c: No cells identified within the radar image Figure 10d: Segments identified within the radar
from KSGF at 19:00 UTC on December 6, 2007 image from KSGF at 19:00 UTC on December 6, 2007

KSGF 19:00 UTC December 5, 2007 -Convective Clusters

Figure 10e: Clusters identified within the radar
image from KSGF at 19:00 UTC on December 6, 2007



