
1. Introduction

The amount of data in geophysical data archives is
increasing rapidly. For example, the data archive from
climate model simulations used for the IPCC AR4 report
consumes about 35 TB of storage and it is anticipated
that the next round of simulations will require at least a
petabyte of storage. It is a major challenge to provide
“user friendly” Web access to these data archives.

Dapper (http://dapper.pmel.noaa.gov/dapper/) is a
Web server that provides OPeNDAP access to both
gridded and in-situ geophysical datasets. It includes
DChart (http://dapper.pmel.noaa.gov/dchart/), a Web
interface that allows users to visualize and download
these datasets. We describe some of the features of
Dapper that make it suitable for serving large datasets.

2. Aggregation

Many large datasets contain thousands or even

millions of individual data files. Most users are only
interested in accessing a small subset of these files.
Traditional OPeNDAP servers present all of these files
to clients, making it difficult for users to find the
variables they are interested in.

Dapper supports two kinds of aggregations:
variable (also know as a union in the Thredds Data
Server 1), and outer (referred to as joinExisting in TDS).
The first allows variables from different files to be
combined into one logical dataset, while the second
concatenates variables along a coordinate variable
(typically time). Outer aggregations can be nested in
variable aggregations. Dapper can aggregate local files,
or datasets that are available on the Web via OPeNDAP
or HTTP.

We have successfully aggregated2 ~80GB and
3700 files of NCEP/NCAR daily reanalysis data 3 into 5
virtual datasets and ~2TB and 2500 files of monthly
mean climate data from the IPCC AR4 model archive at
GFDL4 into 100 datasets.

3. Data streaming
Aggregation can result in virtual datasets that are

much larger than the source datasets. A client
OPeNDAP request for a variable can require the server
to deliver several GB (or more) of data. Many currently
available OPeNDAP servers are unable to deliver such
large chunks of data to clients in one request because
they read all of the data into memory before delivering it
to the client. If the request is larger than the amount of
memory available to the server or there are many
requests occurring at one time the request can fail non-

deterministically. This behavior also increases the
latency of OPeNDAP requests.

Dapper, by contrast, streams the data to the client.
As a consequence, the maximum amount of data that
Dapper can deliver is only limited by the maximum size
that is supported in the OPeNDAP protocol. The same
streaming machinery is also used in DChart to allow
users to download large data subsets as netCDF files.

4. HTTP access
Although Dapper can aggregate remote datasets

using the OPeNDAP protocol, many data centers only
provide HTTP access to their archives. In fact, IT
security constraints have forced some data centers to
entirely eliminate OPeNDAP access. Dapper can still
aggregate data from these archives by using HTTP. We
have also added a proxy service to Dapper that
translates OPeNDAP requests into HTTP requests and
translates HTTP responses into OPeNDAP responses.
An OPeNDAP client only has to append the URL of a
remote dataset to a Dapper URL to retrieve the data.
For instance, a server with a file at
http://www.example.com/data.nc could access the data
via OPeNDAP by using the URL
http://dapper.pmel.noaa.gov/dapper/http://www.example
.com/data.nc.

HTTP access to remote datasets is implemented in
Dapper with the Unidata NetCDF Java library5. We
found that we had to make a number of performance
enhancements to this library in order to aggregate large
datasets. Network latency was a problem, so we
created a multithreaded producer/consumer queue to
deliver data to the client while simultaneously making
HTTP requests to the data archive. Frequently
requested coordinate and metadata is cached when the
server is started rather than waiting for a client request.
Finally, the Unidata library uses a page-based strategy
for HTTP access. This can be very inefficient when
accessing time series in large netCDF datasets. We
found that batched, variable size HTTP range requests
were more efficient.

5. References

[1]http://www.unidata.ucar.edu/projects/THREDDS/

[2]http://dapper.pmel.noaa.gov/dapper/aggregations/ww
w.cdc.noaa.gov/Datasets/ncep.reanalysis.dailyavgs/

[3]http://www.cdc.noaa.gov/cdc/reanalysis/

ADVENTURES IN WEB SERVICES FOR LARGE GEOPHYSICAL DATASETS

Joe Sirott
Sirott and Associates, Seattle, WA

4B.4

*Corresponding author address: Joe Sirott,
7600 Sand Point Wy NE, Seattle, WA 98115;
email: Joe.Sirott@noaa.gov

* Corresponding author address: Joe Sirott,
7600 Sand Point Wy NE, Seattle, WA 98115;
email: Joe.Sirott@noaa.gov

http://dapper.pmel.noaa.gov/dapper/http://www.example.com/data.nc
http://dapper.pmel.noaa.gov/dapper/http://www.example.com/data.nc
http://www.example.com/data.nc
http://dapper.pmel.noaa.gov/dchart/

[4]http://data1.gfdl.noaa.gov/

[5]http://www.unidata.ucar.edu/software/netcdf-
java/

