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1. INTRODUCTION 
 
The main challenges in predicting the weather 
are insufficient computational power and gaps in 
our understanding of the complex dynamics of 
atmospheric phenomena. There are 
comparatively straightforward solutions to these 
problems: enough teraflops, the right equations. 
But what happens when you have neither? This 
is the problem facing aviation turbulence 
forecasters, who are charged with the task of 
predicting turbulent conditions that would affect 
aircraft, but who have neither the computational 
resources to predict it explicitly nor a complete 
understanding of how to derive it accurately from 
available meteorological data. Yet, commercial 
and private aviation communities expect 
accurate, timely turbulence forecasts. 
 
Pilots' ability to avoid turbulence during flight 
affects the safety of the millions of people who 
fly commercial airlines and other aircraft every 
year. Of all weather-related commercial aircraft 
incidents, 65% can be attributed to turbulence 
encounters, and major carriers estimate that 
they receive hundreds of injury claims and pay 
out ``tens of millions" per year (Sharman et al, 
2006). Turbulence can occur in clouds or in 
clear air. At upper levels, clear-air turbulence, or 
CAT, is particularly hard to avoid because it is 
invisible to traditional remote sensing 
techniques. One seasoned pilot noted that CAT 
was his “greatest worry” when flying (Salby, 
2006). In order to plan flight paths to avoid 
turbulence, air traffic controllers, airline flight 
dispatchers, and flight crews must know where 
CAT pockets are likely to be. The dynamical 
scales in which CAT appears, however, are far 
finer than those of any current weather model. 
And observations of the state of the system – 
reports radioed in by pilots who encounter CAT 
– are sparse and subjective. For these reasons, 
no currently available CAT forecasts meet the 
Turbulence Joint Safety Implementation Team's 

(TJIST) recommended  >0.8 probability of 
moderate-or-greater (MOG) turbulence detection 
and  >0.85 probability of null turbulence 
detection.  
 
The turbulence forecasting difficulty is due to 
two main factors: (1) turbulent eddies at the 
scales that affect aircraft (~100m) are a 
microscale phenomenon and NWP models 
cannot resolve that scale, and (2) lack of 
objective observational turbulence data. The 
prior factor has been addressed during the past 
50 years, by assuming that most of the energy 
associated with turbulent eddies at aircraft 
scales cascades down from larger scales of 
atmospheric motion (Dutton and Panofsky 
(1970), Koshyk et al. (2001), Tung et al.(2003)). 
The turbulence forecast problem then becomes 
one of linking large-scale features resolvable by 
NWP models to the formation of aircraft-scale 
eddies. Numerous `rules of thumb' empirical 
linkages, termed turbulence diagnostics, were 
developed by the National Weather Service, 
airline meteorologists and academic 
researchers. The forecast skills of these 
diagnostics depend on the forecaster (for 
manual forecasts) and diminish with lead time; 
none meet the TJIST recommendations, either 
alone or used together in any current 
implementation. The diagnostics' skills reflect in 
part researchers' imperfect understanding of the 
atmospheric processes involved. 
 
The imperfect nature of the current diagnostics 
leads forecasters to depend, at least partially, on 
available turbulence observations. Until recently, 
the only available observations were pilot 
reports (PIREPs), and they are the second 
factor contributing to the difficulty of turbulence 
forecasting (and forecast verification). PIREPs 
are sparse, aircraft-dependent, subjective 
reports by pilots of turbulence encountered 
during flight. Sharman et al. (2006) shows that 
PIREP inaccuracy is not as large as once 



thought (Schwartz, 1996), however, the 
distribution of reports is not representative of the 
state of the atmosphere because most non-
turbulent areas are not reported. 
 
One major effort by the FAA’s Aviation Weather 
Research Program (AWRP), some major 
airlines, and the National Center for Atmospheric 
Research’s Research Applications Laboratory 
(NCAR/RAL) is the development of a better 
turbulence observation data source: in-situ data 
of eddy dissipation rate (EDR) (Cornman et al. 
1995, 2004). In this system turbulence 
observations are recorded automatically every 
minute during cruise by on-board software. It 
addresses many of the faults of PIREPs: it is 
aircraft-independent, objective, less sparse, and 
is designed to be used quantitatively. Not only 
does it offer higher-resolution observations, but 
it also helps alleviate the inconsistent null-
turbulence reporting issues with PIREPs 
(Takacs et al., 2005).  
 
While the in-situ measurement and reporting 
system is still in its first and limited deployment, 
it is being incorporated already into the next 
release of NCAR/RAL’s CAT forecasting 
system, the Graphical Turbulence Guidance 
System (GTG).  However, the GTG algorithm 
was developed using PIREPs, and thus is 
designed to make the most of sparse and 
subjective observational data. Not surprisingly, 
simply adding in-situ data into the current 
algorithm results in only a modest improvement 
in forecasting accuracy (Kay et al. 2006). The 
authors believe that in order to fully exploit the 
potential of in-situ data, a new approach or 
forecasting algorithm is needed. 
 
The specific goal of this project is to intelligently 
integrate this new data source. In this paper, we 
use artificial intelligence techniques to produce 
turbulence forecasts. We combine a wrapper 
method for feature selection with Support Vector 
Machines and logistic regression to produce 
turbulence forecasts. We tested both algorithms 
on a real-time system to compare forecasting 
accuracy. With these baseline results and initial 
regional forecasting results, we can begin to 
design a regional CAT forecasting system which 
intelligently uses all available observational and 
atmospheric data to produce a forecast. 
 
2. IN-SITU DATA 
 

In-situ turbulence measurements are data 
recorded by special software on commercial 
aircraft during flight. This measurement and 
reporting system was developed at NCAR under 
FAA sponsorship in order to augment or replace 
PIREPs with a data source that has more 
precise location and intensity data. Insitu 
measurements use existing aircraft equipment 
and are reported using existing communications 
networks. Detailed coverage of in-situ data 
methods can be found in Cornman et al. (1995, 
2004). 
 
The in-situ-derived turbulence metric is the eddy 
dissipation rate (EDR), 1/3ε . EDR is recognized 
as an objective measure of atmospheric 
turbulence intensity (Panofsky and Dutton, 
1983). Two methods to estimate 1/3ε onboard 
aircraft were developed: the accelerometer-
based method and the vertical wind-based 
method. Both are aircraft-independent 
measurements, and both result in approximately 
the same turbulence measurements. 
 
Currently, only the accelerometer-based method 
is in use, in United Airlines 737 and 757 aircraft. 
Southwest Airlines and Delta Airlines are 
scheduled to use the wind-based method when 
the system is deployed in their aircraft, which is 
expected to happen by the end of the year. 
 
EDR data is reported once a minute except 
during takeoff and landing, when data is 
reported more frequently depending on rate of 
altitude change. Each in-situ data report is a 
location (latitude, longitude, and altitude) and a 
set of statistics about various turbulence levels 
calculated from a number of EDR 
measurements taken onboard during that 
minute.  
 
The set of statistics are the median eddy 
dissipation rate (medEDR) and the maximum 
eddy dissipation rate (maxEDR). Reporting just 
these two fields reduces transmission costs 
while still providing a way to distinguish between 
discrete and continuous turbulence events. The 
medEDR is the median value of a time series.  
The maxEDR value is the 95% value of the time 
series; as a protection measure against 
erroneous data, peak values are not used. 
 



 
Figure 1. Taken from Sharman et al. (2006). 
This figure shows the probability distribution 
function (PDF) of three months of observed EDR 
values ( 1/3ε ) in each in-situ bin, both median 
(lower bar) and 95th percentile (upper bar). The 
open circles are estimates of the true lognormal 
distribution of turbulence based on the RUC20 
model (Frehlich & Sharman 2004). The fact that 
observed EDR distribution differs from the 
estimated distribution may reflect the ability of 
commercial air carriers to avoid some turbulence 
during flight. 
 
Due to transmission costs, both values are 
binned into 1 of 8 bins, and each possible pair of 
maxEDR/minEDR values for a minute is 
mapped to a single 8-bit character and then 
downloaded to the ground. The number of bins 
was limited by the available character sets, but a 
newer version of the algorithm now in 
development compresses the EDR data to 
enable more bins and thus a higher resolution of 
data. Currently, in-situ data is being downloaded 
from 89 United Airlines 757 aircraft. The 
software is installed on 96 757s and 101 737s. 
Figure 2 shows the geographic distribution of in-
situ data over winter 2005-2006. 
 
In-situ data provides a better representation of 
turbulence statistics in the atmosphere (Dutton 
(1980), Sharman et al. (2006)). Figure 1 shows 
that over 99% of in-situ reports are reports of 
null turbulence. If this distribution is 
representative, at any time at most 0.01% of the 
atmosphere at upper levels should contain MOG 
turbulence. In contrast, about half of PIREPs 
report null turbulence, 27% report light, 17% 
report moderate and 1% report severe; thus, 
pilots substantially underreport the null events.  
 

 Figure 2. Geographic distribution of the in-situ 
data used in this study.  
 
 
In-situ data overcomes this uncertainty by 
reporting data every minute during flight. 
 
The effort to understand in-situ intensity values 
relative to PIREP intensities is ongoing. For 
instance, is a 0.45 reading moderate or severe 
turbulence? Comparisons to qualitative PIREPs 
encounter many problems such as PIREP 
location and time errors, and overall lack of 
PIREPs.  A main problem is the fact that a pilot 
makes a report of his overall impression of the 
turbulent event, while in-situ data are 
measurements every minute; a turbulent event 
can span multiple minutes. How to match a 
series of in-situ data to one PIREP continues to 
be studied. Initial comparisons used the reading 
with the highest intensity in the event, defined as 
a consecutive series of 2nd-bin or higher in-situ 
readings (0.15 or higher), as representative of 
the event’s severity.  This value was compared 
to a PIREP, if there was one, from the same 
flight, within 40km, five minutes and 1000ft of 
the in-situ reading.  The lack of PIREPs severely 
limited the number of matches – only 328 
between August 2004 and November 2005 - but 
2nd bin in-situ values (0.15) roughly 
corresponded to light/moderate PIREPs 
(intensity 2) and 3rd bin in-situ values (0.25) 
roughly corresponded to moderate PIREPs 
(intensity 3). There were too few matches at 
higher in-situ bins to draw any conclusions.  
 



We defined MOG turbulence as 0.25 reading - 
3rd in-situ bin - or higher. This is based on the 
PIREP and in-situ data comparisons, and that 
GTG considers a PIREP of intensity 3 or higher 
to be MOG.   
 
3. CLEAR-AIR TURBULENCE DIAGNOSTICS 
 
A clear-air turbulence diagnostic is a simple 
turbulence model (equation) derived from 
qualitative expert knowledge based on 
experience or from basic physical principles. 
Through the years when forecasts were done 
manually, forecasters developed ``rules of 
thumb'' about what atmospheric conditions 
typically indicate turbulence. These rules of 
thumb were an attempt to link the large-scale 
meteorological data that was available and the 
micro-scale CAT that was the subject of the 
forecast (Hopkins, 1977). Forecasters later 
quantified these rules, creating CAT diagnostics.  
For instance, a major cause of CAT is thought to 
be the Kelvin-Helmholtz instability (Dutton and 
Panofsky, 1970). This typically happens in areas 
of strong vertical shear and low local Richardson 
number (Ri, the ratio of static stability and wind 
shear). Thus many qualitative CAT diagnostics 
concern shears and Ri.  There are many 
different diagnostics linking a large-scale 
condition to small-scale turbulence. Their 
predictive powers vary, depending upon the 
large-scale condition that each represents and 
how directly it is linked to turbulence. There are 
forty CAT diagnostics; the diagnostics cited in 
this paper are detailed in (Sharman et al. 2006). 
 
Forecasters use these diagnostics by mapping 
their values to different turbulence severity 
levels. In this way, forecasters took their 
qualitative knowledge about large-scale 
atmospheric conditions and their relationship to 
small-scale turbulence, quantified it in the form 
of diagnostic equations, then interpreted the 
results using thresholds to produce a qualitative 
forecast. The GTG forecasting system does 
exactly the same thing. Its authors used several 
years' worth of PIREPs to develop threshold 
values for each diagnostic that map to different 
levels of PIREP turbulence severity. Using fuzzy 
logic, GTG weights the diagnostics dynamically 
depending on their recent agreement with 
PIREPs, and the weighted values are combined 
to produce a turbulence forecast (Sharman et al. 
2006).  
 
 

4. METHODOLOGY 
 
Background on the technique of Support Vector 
Machines can be found in Hsu et al. (2003). For 
implementation of the SVM, we will use the 
LibSVM library (Chang and Lin, 2003).  
Background on the technique of logistic 
regression can be found in Hosmer and 
Lemeshow (1989). Although logistic regression 
produces probabilities, we used its outputs as 
turbulence intensities on a scale of (0,1) in order 
to compare to deterministic forecasts of the 
current GTG and the SVM model.  
 
To compare the two techniques to the current 
GTG algorithm, we first established baseline 
performance of GTG. We then implemented 
both SVM and logistic regression models as 
“global” (one forecast over the CONUS) 
forecasting systems to measure their global 
performance as compared to GTG, which uses 
one set of parameters (weights) to make a 
forecast for the entire CONUS. We looked at the 
performance of static (one model) versus 
dynamic training (training a new model each 
forecast time) of the algorithms, and 
implemented both in a realtime simulation 
system to measure performance and 
performance variability. Included are some initial 
regionalization results using SVMs.  
 
4.1 Data 
 
This study used data from winter 2005-2006 and 
2006-2007 (October – March), since there are 
more CAT events during winter (Sharman et 
al.,2000). The National Center for Environmental 
Prediction’s Rapid Update Cycle model at 13km 
resolution (RUC13) provided the environmental 
data to calculate 40 CAT diagnostics at every 
grid point (Sharman et al., 2006). Diagnostics 
were calculated for several daytime hours at 
analysis time (zero-hour forecast) and the six-
hour forecasts.  Diagnostics were matched by 
location and hour on the RUC13 grid to PIREP 
and in-situ data from the In-Situ Reporting 
System. If there was more than one in-situ and 
or PIREP reading in a grid box during the hour, 
only the highest intensity reading was used. 
Thus, one observation was matched to 40 
diagnostics at a grid point. Only data at FL200 
(20000ft) and higher were included, since the in-
situ data was only available at these heights. 
The geographic distribution of the in-situ data for 
the 2005-2006 winter is shown as an example in 
Figure 2.  The full 2005-2006 winter contained 



over two million observation/diagnostic matches 
for each due to more planes reporting in-situ 
data by late 2006, the 2006-2007 winter 
contained over nine million 
observation/diagnostic matches for each of the 
zero-hour and six-hour forecast times. 
 
4.2 Feature Subset Selection Searches 
 
Turbulence forecasting, in its current state, is 
essentially the task of classifying atmospheric 
indicators of turbulence: the forecast reflects the 
number of diagnostics which indicate turbulence 
in an area. While it might seem obvious to 
simply use the individually best-performing 
diagnostics for forecasting, as was done with 
GTG, that approach allows one to possibly miss 
a different set of diagnostics that might perform 
better, as a group, than the set of the individually 
top-ranked diagnostics (Kohavi (1995,1997), 
Guyon (2003)). Results from Sharman et al. 
(2000) show that no single diagnostic can 
produce a more accurate forecast than can 
multiple diagnostics together, supporting this 
multiple-diagnostic approach.   
 
Our search for the best subset of diagnostics is 
essentially the task of feature subset selection 
(Guyon and Elisseef, 2003). We are faced with 
the choice between 40 diagnostics, knowing that 
some may not improve our current forecasting 
accuracy. The wrapper method in feature subset 
selection executes a state space search for a 
good feature subset, estimating prediction 
accuracy using an induction algorithm – here, 
we used SVMs and logistic regression (Kohavi 
and Sommerfield, 1995). We used a simple 
hillclimbing search. Each state is a subset of 
diagnostics, and the search operator is “add a 
diagnostic”. The search chooses the best 
addition to the current subset based on the 
classification performance of the induction 
algorithm using the current subset plus an 
additional diagnostic. This approach to the 
search is called forward selection. Thus, we start 
with an empty subset and added diagnostics 
stepwise; our stopping condition was no further 
classification performance improvement.  
 
At each step, sets of training data, testing data, 
and holdout data were generated containing 
only the current subset of diagnostics plus the 
proposed addition to that set. Training data 
consisted of the set of analysis-time (zero-hour 
forecast) observation/diagnostic matches, and 
the test and holdout sets consisted of either 

different zero-hour matches or the set of six-
hour observation/diagnostic matches (divided 
between the two files).  
 
The distribution of the data used during the 
training process is a very important factor in the 
ability of a classifier to discriminate between the 
two classes (Japkowicz, 2000). SVMs, for 
instance, aim for the lowest overall error rate. In 
our case, where in-situ data is over 99% null 
observations, an SVM could simply classify 
everything as null and have a less than 1% 
overall error rate. We found this to be true in 
preliminary tests and it is well-supported in the 
literature (Japkowicz (2000), Wiess and  Provost 
(2001), Chen et al. (2004), Wu and Chang 
(2005)). To work well, the training data set must 
have a large number of examples from each 
class. The best proportion of examples from 
each class to have in a training set is case-
dependent. For cases such as ours, this 
distribution requirement means altering the 
distribution of the data in the training set, rather 
than having the training set be a representative 
sample from the available in-situ data. There are 
multiple methods for creating a new training set 
with acceptable proportions of MOG reports and 
null reports. The methods applicable to this 
project include altering the kernel, increasing the 
number of MOG reports, or decreasing the 
number of null reports. To increase the number 
of MOG reports, we could synthetically create 
more that look statistically similar to real MOG 
reports. Decreasing the number of null reports 
(to increase the proportion of MOG reports) 
means simply not including some percentage of 
the null reports in a training set (but including all 
MOG reports). . Here, the latter method was 
chosen. Since the in-situ data set is more than 
99% null turbulence (0.05, 1st bin), we 
rebalanced the training data such that 40% of 
the data were of Moderate-or-Greater (MOG) 
turbulence, and 60% were null (less than MOG) 
turbulence. We did this by keeping all the MOG 
observations and choosing null observations 
randomly to be 60% of the set. This proportion 
of MOG/nulls resulted in the best SVM 
classification rate in an earlier study of SVMs 
with CAT diagnostics and in-situ data 
(Abernethy, 2005). We found 20% MOG and 
80% nulls to be a good distribution for logistic 
regression training data. 
 
For comparison with GTG evaluations we 
wanted the classification accuracies of both 
classes – MOG and null – to weigh equally in 



the estimated prediction accuracy used to 
choose the next node expansion. The 
classification accuracy given by both algorithms 
reflects the number of samples in each class. 
We added an extra step wherein we took the 
classification accuracy of each class and 
factored them equally into the final assessment: 
 
True Skill Score (TSS ) = MOG classification 
accuracy + Null classification accuracy -1  
 
Thus, -1 < TSS < 1.  
 
TSS is a primary part of the scoring function in 
GTG (Sharman et al., 2006).  
 
5. RESULTS 
 
We used the winter 2006-2007 data to assess 
baseline GTG algorithm forecast accuracy. We 
found that the TSS for zero-hour and six-hour 
forecasts, respectively, were 0.35 and 0.31. 
They rose slightly for hour 18Z to 0.353 and 
0.36, presumably due to more observations on 
which to base a forecast.  
 
5.1 Subset Searches  
 
Our first subset searches focused on zero-hour 
forecasts.  
 
Our global subset searches yielded sets of 
diagnostics with higher TSSs than that of the 
current GTG. Our search using SVMs as the 
induction algorithm yielded a TSS of 0.501 on 
holdout data using the diagnostic subset CP, 
ET2, DTF3, DTF5, DIV, TrophTinv, TempG and 
ABSW. 
 
Our subset search using logistic regression as 
the induction algorithm yielded a TSS of 0.467 
on the set of holdout data. The diagnostics 
chosen in the logistic search were: B1, B2, -Ri, 
Frntg, LAZ, -NGM2, HS, STABinv, DefSQ, 
Vortsq, AG_inv, UBF, -SatRi, PVgrad, DIV, -
RTW, TrophTinv, TempG, TropGovz, NCSU2, 
ABSW, RoL, EDRS10 and SIGW10.  
 
While some of the diagnostics in the chosen 
subsets are also in the GTG combination, our 
study found that other diagnostics, such as 
STABinv and ABSW, appear to work well as part 
of a group despite having a lower individual 
forecasting accuracy (and thus not being chosen 
as part of the current GTG combination). These 

initial results support our group performance 
approach.  
 
The number of diagnostics that differ between 
the GTG combination and those our machine 
learning techniques chose is larger than 
expected. We can attribute this at least in part to 
the difference in the algorithms and the 
evaluation functions: True Skill Score versus 
area under the ROC curve (Sharman et al. 
2006)), although these two are similar. Our initial 
assumption was that the GTG set of diagnostics, 
due to their high individual prediction accuracies, 
would also have high classification accuracies 
using an SVM; a forward search through the 
GTG set should find that all ten diagnostics 
produce the highest TSS. However, this was not 
the case. We executed a hillclimbing search 
using only the GTG set of and found that it 
terminated at a set of three diagnostics: ETI1, 
TempG, and SIGW10. These differences will 
require further investigation. 
 
5.2. Realtime Simulation System 
 
We have created a simulated real-time 
forecasting system capable of using either 
SVMs or logistic regression to create a 
turbulence forecast every hour. The system 
uses past data, from 2006-2007 winter season. 
The system is running internally at NCAR/RAL 
for development only at this time. In addition, the 
system is capable of training a model for every 
forecast or using a pre-trained model so that we 
may test performance differences between 
dynamic and static weighting, respectively.  
 
Using this real-time system, we ran the logistic 
regression algorithm over data from the month 
of February 2007, using the diagnostics chosen 
in the search detailed in 5.1. We tested zero-
hour forecasts. Through preliminary trials, we 
found that logistic regression performed well 
using around seven hours of training data. Thus, 
in this real-time simulation, the system gathered 
the “previous” seven hours of data to train the 
model for predicting the “current” forecast.  We 
tested both static and dynamic weighting of the  



 

 

 
Figure 3. a)GTG forecast b)logistic regression 
forecast, and c) SVM zero-hour forecast for 01Z 
2/15/2007 at 35000ft. Both (b) and (c)  
overforecast turbulence but do follow the same 
spatial pattern as (a). 
 

logistic model. For the static weighting test, we 
used the set of weights (regression parameters) 
trained from the larger data set used in the 
subset search. For the dynamic weighting test, 
we used the same subset of diagnostics but 
trained a new logistic model for each forecast 
time. We found that on average there was 
almost no difference in the approaches; static 
weighting produced an average TSS of 0.46, 
and dynamic weighting produced an average 
TSS of 0.466.  
 
We replicated the February 2007 real-time 
simulation of zero-hour forecasts using SVMs 
and the chosen diagnostic subset listed in 5.1.  
In general, the SVM models need more training 
data than do the logistic regression models. 
Through preliminary trials, we found that SVM 
performance increased from 0.4 to 0.46 as we 
increased the amount of training data from two 
days’ to five days’ worth. Performance stabilized 
and even decreased slightly with more than five 
days worth of training data. However, we have 
only tested the dynamic weighting option thus 
far. In this trial, the found that the SVM model, 
using five days of training data, produced an 
average TSS of 0.467. For further comparison, 
we reran the test using the original ten 
diagnostics used in the current GTG algorithm 
(see Sharman et al. 2006) and found an average 
TSS of 0.4. We also treated the current GTG 
forecast value as an additional diagnostic and 
added to the SVM subset (chosen by the 
search). This increased the average TSS to 
0.499.  
 
The next step in comparing SVM and logistic 
regression techniques to the current GTG 
algorithm is to compare the amount of 
forecasted turbulence and the spatial accuracy 
of the forecasts. Ultimately, GTG is a graphical 
tool for aviation. It is important to note that both 
SVMs and logistic regression models used thus 
far are only binary classifiers; the current GTG 
algorithm categorizes CAT into light, moderate 
and severe intensities. Nevertheless, Figure 3 
shows a sample forecast for GTG, logistic 
regression and SVM, respectively. The SVM’s 
spatial pattern is more similar to that of GTG, but 
both overforecast turbulence significantly.   
 
 
 
 
 
 



 
REGION TSS SET OF 

DIAGNOSTICS 
West 0.465 ETI1, 

STABinv,AGinv, 
netRI, TempG, 
SIGW10 

East 0.562 CP, ETI1, 
Frntg, UBF 

>=30000ft 0.447 ETI1, AB, 
TempG, Stone, 
SIGW10 

<30000ft 0.607 ETI1, Ri, 
TempG, 
NCSU1, 
SIGW10 

High west 0.441 NGM1, VWS, 
NCSU1, 
SIGW10 

High east 0.516 Frntg, AGinv, 
DIV, RoL 

Low west 0.614 ETI1, Frntg, 
AGinv, UBF, 
TempG 

Low east 0.519 PVORT, 
TempG 

Table 1. Sets of CAT diagnostics found for 
different regions of the CONUS by subset 
selection searches using TSS derived from 
SVMs as the heuristic function. 
 
 
5.3 Regionalization  
 
Thus far, we have conducted regionalization 
studies using SVMs only, on 2005-2006 data. 
We employed subset searches for each of these 
regions: west of 100W meridian, east of 100W, 
above and below 30000ft, and by both 
geography and altitude (e.g., east of 100W and 
below 30000ft: low east). We plan to further 
refine and divide regions in the near future, but 
for this study, we have simply isolated the 
mountainous terrain, and the mountain-wave 
turbulence, in the west region.  When the 
hillclimbing searches terminated, a final TSS 
was calculated from the chosen subsets’ 
classification performances on the holdout data 
set. Results are in Table 1.  
 
We found improvement in forecast accuracy in 
almost every region. In addition, the fact that 
different diagnostics were chosen in the different 
regions indicate that diagnostics can perform 
differently in different areas of the country, 

reflecting the geographic differences in the 
large-scale atmospheric processes they 
represent.   
 
 
6. FUTURE WORK 
 
Our initial study supports the idea that 
developing specialized forecasts for different 
regions of the CONUS (Continental U.S.) can 
improve overall turbulence forecasting accuracy.  
We have shown promise in our machine 
learning approaches globally, and plan to 
replicate our global model approach for six-hour 
forecasts globally and zero- and six-hour 
forecasts regionally. Our next steps are to 
develop an approach for defining several 
geographic regions that may further improve 
forecasting accuracy with their own sets of 
diagnostics, and to explore regionalizing the 
forecast by altitude. While SVMs and logistic 
regression provided a general classification 
algorithm for this study, other algorithms such as 
random forests may be suitable, also. In 
addition, we must devise a way to merge all the 
regional forecasts together to make one 
coherent CAT forecast for the CONUS.  
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