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ABSTRACT 

Covariance inflation plays an important role within ensemble Kalman filter (EnKF) in 

preventing filter divergence and handling model errors. However the inflation factor needs to be 

tuned and tuning a parameter in EnKF is expensive. Wang and Bishop (2003), followed by 

Miyoshi (2005), adaptively estimated the inflation factor from the innovation statistics. Although 

the results were satisfactory it is clear that this inflation factor estimation method relies on the 

accuracy of the estimated observation error covariance, which in practice is not perfectly known. 

In this study we propose to estimate the inflation factor and observational errors simultaneously 

within the EnKF. Our results for the Lorenz-96 model show that without accurate observation 

error statistics, a scheme for adaptively estimating inflation alone does not work appropriately. 

By contrast, the simultaneous approach works very well in the perfect model scenario and in the 

presence of random model errors or small systematic model bias. For an imperfect model with 

large model bias, our algorithm may require the application of an additional method to remove 

the bias. 
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1. INTRODUCTION 

Data assimilation algorithms seek to find the optimal combination of model forecast 

(“background”) and available observations to generate improved initial conditions (“analysis”) 

for numerical weather predictions. Most assimilation schemes are based on the linear estimation 

theory in which the background and the observation are given weights proportional to the inverse 

of their specified error covariances. As such, the accuracy of a data assimilation scheme relies 

highly on the accuracy of the estimation of the error statistics of both the background and the 

observations. It is a common experience that Observing System Simulation Experiments 

(OSSEs) give better forecasts than real observation experiments. This is generally attributed to 

the fact that in OSSEs the model errors are neglected, but another important difference between 

OSSEs and real observation experiments is that the observation error statistics are perfectly 

known in the OSSEs but not in real forecast experiments.    

In the past decade, ensemble based Kalman filters (EnKF) have become more mature. 

These methods have been implemented in various models, from simple research models (e.g., 

Whitaker and Hamill, 2002) to sophisticated operational models (e.g., Houtekamer et al., 2005), 

and from global-scale (e.g., Whitaker et al., 2007) to regional-scale models (e.g., Snyder and 

Zhang, 2003; Zhang et al., 2006), due to their ease of implementation and their ability to 

estimate the flow-dependent background and analysis error covariances. In practice, the flow-

dependent background error covariance estimated from the ensemble perturbations in EnKF 

usually underestimates the true forecast error partly due to the limited number of ensemble 

members and to the presence of significant model errors, making the filter eventually diverge. 

Multiplicative and additive covariance inflation schemes (Anderson and Anderson, 1999; 

Corazza et al., 2002) are the easiest and prevailing techniques to deal with the covariance 

underestimation. However the amplitude of these inflation algorithms requires considerable 

tuning in order to obtain good performance of the filter. Tuning a parameter in EnKF is 

expensive, since it requires many forecast-analysis cycles. Even worse, it becomes infeasible if 

the inflation factor is regionally and/or variable dependent. Wang and Bishop (2003) adopted the 

maximum likelihood parameter estimation theory of Dee (1995) to estimate online the inflation 

factor from the innovation statistics ])1[( RHHPdd +!+=
TbT

trace  in their ensemble forecast 

scheme. Miyoshi (2005) reported the use of a similar method to estimate the covariance inflation 

factor within the EnKF data assimilation scheme. Although both studies reported satisfactory 

results, it is obvious that these estimations of the inflation factor rely on the assumption that the 
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observational error covariance R  is known. This assumption is valid for simulated observations 

but not for real observations. When assimilating real data, additional methods may be needed to 

obtain the correct statistics of observation errors if we want to apply the inflation estimation 

scheme above. In fact, Miyoshi and Yamane (2007) reported the adaptive inflation did not work 

when assimilating the real data by using the observational error standard deviations as in JMA 

operational system. 

Recent diagnostic work (e.g., Desroziers and Ivanov, 2001; Talagrand, 1999; Cardinali et 
al., 2004; Chapnik et al., 2006) suggests that the innovation (observations minus background) 

and other analysis cycle statistics can be used to diagnose both observation and background 

errors. A formulation on the cost function of such diagnostics has been proposed and tested in a 

variational framework. Building on these works, Desroziers et al. (2005) (DEA05 hereafter) 

developed a set of diagnostics based on the combinations of observation-minus-analysis, 

observation-minus-background and background-minus-analysis  statistics to adaptively tune 

observation and background errors. Here we adapt one of these diagnostics for estimating 

observation error variance into the EnKF.  

As will be discussed later, adaptive estimation of inflation requires accurate observation 

error statistics, and conversely, an accurate estimate of observation error relies on the use of an 

optimal inflation factor in an EnKF. In this study, we propose to estimate the inflation factor and 

observation errors simultaneously within the analysis cycle, for which we use the Local 

Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007) as one efficient representative 

among many EnKF schemes. We will use the diagnostics of DEA05 to estimate the observation 

errors, and the Wang and Bishop method (or other diagnostics of DEA05) to estimate the 

inflation factor. We compute the estimates of observation errors and inflation factor at every 

analysis cycle but allow the system to slowly evolve until it converges to the optimal value for 

observation error variance and the optimal range for the inflation factor.  

This paper is organized as follows: Section 2 describes the algorithms to adaptively 

estimate inflation and observation error variance separately and propose the simultaneous 

approach. Section 3 reviews the local ensemble transform Kalman filter. In section 4, our 

simultaneous approach is implemented on a low-order model and the results are shown in the 

perfect model scenario and in the presence of model errors. A summary and discussion are 

provided in section 5. 
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2. SIMULTANEOUS ESTIMATION OF COVARIANCE INFLATION AND 

OBSERVATION ERRORS  

2.1 Adaptive estimation of covariance inflation  

For a system with correctly specified covariance of background errors b
P  and of the 

observational errors R , assuming these errors are uncorrelated, the well-known relationship  

RHHPdd +>=<
!!

TbT

bobo
                         (1)                            

is satisfied (e.g., Houtekamer et al. 2005). Here the innovation vector 
bo!

d  is the difference 

between observations o
y  and their corresponding background )( b

xh , whereh is the non-linear 

observation operator projecting the background b
x to the observation space and H  is the linear 

tangent matrix of h  operator. The brackets represent an average over many cases or statistical 

expectation. This classical innovation statistics shown in equation (1) provides a global check on 

the specification of b
P andR .  

DEA05 proposed another diagnostic to check the specified background error covariance 
b
P in variational data assimilation scheme,   

< d
a!b
d
o!b

T
>= HP

b
H

T                          (2) 

where d
a!b

is the difference between the analysis and the background (analysis increment) in 

observation space, i.e., )()( ba

ba
HH xxd !=

!  

Unlike 3DVAR or 4DVAR, in which the background error covariance b
P is assumed to be 

constant, in the ensemble filter b
P  is updated from the background ensemble every analysis 

cycle as Tbb

k

K

k

bb

k

b

K
)()(

1

1

1

xxxxP !!
!

= "
=

, where k indexes the ensemble member and K  is 

the ensemble size, and the overbar is the ensemble mean. However, this background error 

covariance tends to underestimate the true background error covariance partly due to sampling 

errors associated with the use of a small ensemble size, as well as the presence of model errors, 

and as a result the filter gives too much credence to the background. This can compound the 

underestimation in the next cycle, and as a result may lead to filter divergence. Multiplicative 

covariance inflation (Anderson and Anderson, 1999) is a simple and widely used method to 
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address this problem by ‘inflating’ the prior ensemble: the background error covariance is 

increased by a factor greater than one,      
bb
PP )1( !+"                              (3)   

Here ! is referred to as a covariance inflation factor that needs to be tuned for a good 

performance of the ensemble filter. However, tuning the inflation parameter is expensive, and 

furthermore, there is no reason why the inflation should be assumed to be constant. Wang and 

Bishop (2003) proposed adapting equation (1) to estimate the inflation factor in ensemble 

forecasting. Plugging (3) into equation (1) and considering only the diagonal term, they 

estimated the inflation factor !  online by 

1
)(

)(~
!

!
="

!!

HHP

Rdd

b

bo

T

bo

Tr

Tr                           (4) 

where Tr denotes the trace of a matrix.  

Similarly, by plugging (3) into equation (2), we obtain another equation to estimate the 

inflation factor: 

1
)(

~
!="

!!

HHP

dd

b

bo

T

ba

Tr
                            (5) 

We denote equation (4) and (5) as OMB2 and AMB*OMB methods, respectively. An 

accurate estimate of !  from these two methods requires a correct observation error covariance 

R. This is obvious for equation (4) but is also implicitly true for (5), since
ba!

d itself is based on 

the use of the (generally incorrect) specified R. In order to estimate online the inflation factor 

using either OMB2 or AMB*OMB method, an additional method is necessary to estimate R if it is 

not known accurately.  

2.2 Adaptive estimation of observation errors 

DEA05 showed that the relationship: 

< d
o!a
d
o!b

T
>= R                              (6)                       

is valid if the matrices specified in 1)( !
+= RHHPHHPHK

TbTb  are the true covariances for 

background and observation error, where K is the Kalman gain, and 
ao!

d (
bo!

d ) are the 

difference between the observation and analysis (background) in observation space. This is a 

diagnostic providing a consistency check on observation error covariance but it also depends 

implicitly on the background error covariance. One application of this relationship is to diagnose 
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observation error variance offline (after the analysis cycle has been completed) or to estimate it 

on-line (within the cycle). For any subset of observations i  with 
i
p  observations, it is possible 

to compute the variance 

i

b

j

o

j

a

j

p

j

o

jiiboi
T

aoio pyyyyp
i

/))((/)()()~(
1

2
!!== "

=

!! dd#              (7) 

where o

j
y  is the value of observation j and a

j
y , b

jy  are their analysis and background 

counterparts.  

We denote equation (7) as the OMA*OMB method. The accuracy of this method relies on 

ao!
d  and

bo!
d  which in turn depend on the observation and background errors covariances, and 

therefore on the inflation factor in EnKF. 

2.3 Simultaneous estimation  

As we have shown, adaptive estimation of inflation requires knowing the observation error 

variance 2

o
! while an accurate estimate of 2

o
! relies on using an optimal inflation factor. When 

neither the optimal inflation factor nor the true 2

o
! are known and both of them need to be 

estimated this becomes a nonlinear problem. In this study, we propose to estimate the inflation 

and observation error variance simultaneously within the EnKF at each analysis step and allow 

the system itself to gradually converge to the optimal value (or range of values) for the 

observation error variance and the inflation factor.  

2.4 Temporal Smoothing 

We estimate the observation error variance and inflation parameter adaptively at each 

analysis time step. However, in the numerical examples shown in section 4 with a low-order 

model the number of samples available at each step is relatively small, introducing large 

sampling error. To reduce this problem, we use adaptive regression based on a simple scalar 

Kalman Filter (KF) approach usually used to postprocess model output (e.g., Kalnay, 2003, 

Appendix C) to accumulate past information and make observation error variance and inflation 

gradually converge to the optimal value while still allowing for time variations. This approach 

can be considered as a temporal smoother and was used by Miyoshi (2005) in estimating the 

inflation. We regard the estimated values directly obtained from equation (7) or (4) or (5) as an 

“observed” estimate o
!  (of either  !!o  or 

 
!!
o

2 ) for the current time step. Instead of directly 
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using it as the final estimate for that time step, we use the simple scalar KF approach to best 

combine o
!  and f

! , the value derived by persistence from the previous time step, to get a 

new estimate denoted as the analysis a
! : 

fo

offo
a

vv

vv

+

+
=

!!
!                             (8) 

where !
f / ! o denotes the forecast/observational error variance weights for the adaptive 

regression. The error variance of  a
!  is given by 

f

of

f
a v

vv

v
v )1(

+
!=                            (9) 

Assuming persistence as the forecast model for the estimated variable, and allowing for 

some error in the “persistence forecast” (Kalnay, 2003, Appendix C), we have: 

t
a

t
f

!! =+1                               (10) 

v
f

t+1 =!v
a

t                               (11) 

where !  (> 1.0) is a parameter which allows the slow increase of the forecast error. Although 

two additional control parameters, the observation error variance !
o  and error growth 

parameter ! have been introduced here, Miyoshi (2005) showed the final estimate is not 

sensitive to their values. Following Miyoshi (2005), we use ! o =1.0 and ! =1.03 in this study.  

 

3.  LETKF DATA ASSIMILATION SCHEME 

The LETKF belongs to the family of ensemble square-root filter in which the observations 

are assimilated to update only the ensemble mean and the ensemble perturbations are updated by 

transforming the background perturbations through a transform matrix. Specifically, in the 

LETKF, the analysis mean is given by 

)]([)(
~ 1 boTbabba

h xyRHXPXxx !+=
!                  (12) 

where a
x , b

x are the ensemble mean of analysis and background respectively, and Xa
, X

b  the 

analysis and background ensemble perturbations (matrices whose columns are the difference 

between the ensemble members and the ensemble mean). The analysis ensemble perturbations 

are updated by: 
2/1]

~
)1[( aba

K PXX !=                            (13) 
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using the symmetric square root, and where a
P
~ , the analysis error covariance in ensemble 

space, is given by 

[ ]11 )()()1(
~ !

!
+!=

bTba
IK HXRHXP                      (14) 

of dimension KK ! , usually much smaller than the dimension of both the model and the 

number of observations. As a result, the LETKF performs the analysis in the space spanned by 

the forecast ensemble members, which greatly reduces the computational cost. More details 

about the LETKF are available in Hunt et al. (2007) and Szunyogh et al. (2007). 
 
4.  IMPLEMENTATION ON THE LORENZ-96 MODEL 

We test our approach in the Lorenz 96 model (Lorenz, 1996; Lorenz and Emanuel, 1998) 

which has been widely used to test data assimilation methods:  

Fxxxx
dt

dx

iiii

i
+!!=

!+!
)( 211                       (15) 

where, ,,1 Ni !=  and the boundary is cyclic. As in Lorenz (1996), we choose N=40 and F=8.0 

in which case this model behaves chaotically. Equation (15) is solved with a 4th-order Runge-

Kutta scheme using a time step of 0.05 non-dimensional units that corresponds to about 6 hours 

in the atmosphere as shown by Lorenz and Emanuel (1998). 

4.1 Perfect model experiments  

First we test our approach in the perfect model scenario in which the multiplicative 

inflation is used to prevent filter divergence due to small ensemble size. We generate the ‘true’ 

state by integrating the Lorenz-96 model for 2000 analysis steps. Normally distributed random 

noise with variance 2

o
! =1 is then added to the ‘truth’ to generate the observations. Each state 

variable is observed so that no interpolation is needed. We assimilate these observations every 

analysis cycle using the LETKF with K=10 ensemble members. Following Ott et al. (2004), we 

use a cutoff-based localization with a local patch l =6 which covers 13 model grids. Since the 

normally distributed noise is uncorrelated with each other and the error variance is 1, the true 

observation error matrix is diagonal, i.e., IIR ==
)(

2

tot
! . 

The LETKF is used to assimilate observations at each analysis step and for a total of 2000 

steps, but results are only reported for the last 1000 steps.  
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a. Correctly specified observation variance 

We first assume that the observation error variance is perfectly known, i.e., the specified 

value is 
)(

2

so
! =

)(

2

to
! =1. In this case we do not estimate the observation error variance, but 

attempt to estimate on-line the inflation parameter using this correctly specified observation error 

variance. We found that the “observed” inflation  
!!
o  directly obtained from either OMB2 or 

AMB*OMB has large oscillations at each analysis step due to sampling insufficient number of 

observations and the relative small background error variance in these perfect model experiments, 

so that the results are very sensitive to the denominator in equation (4) or (5). Some extremely 

unrealistic values of  
!!
o might occur, making the temporal-smoothing strategy itself not 

sufficient to handle the sampling error problem. To avoid the possibility of such unrealistic 

estimation of !~  that could ruin the estimation, we impose reasonably wide upper and lower 

limits in the “observed” inflation  
!!
o , e.g., 2.0

~
1.0 !"!#

o  before applying the simple scalar 

KF smoothing procedure.  The final estimation of !~  after smoothing is then used to inflate the 

background ensemble spread. In a more realistic data assimilation system with a much large 

number of available observations, Wang and Bishop (2003) have shown the “observed” inflation 

 
!!
o calculated directly from OMB2 remained within a reasonable range. In that situation, there is 

no need to prescribe a range for  
!!
o but time-smoothing of the estimates might still be desirable. 

As for the estimation of observational error variance, we only apply the temporal-smoothing 

strategy since no large oscillations were found in the “observed” 2

o
! presumably because there is 

no division by a potentially small number in equation (7).  

Table 1 shows that OMB2 and AMB*OMB methods produce similar results with estimated 

!  around 0.04 and an analysis error of about 0.20. These results are very similar to the best 

tuned constant inflation obtained from many tuning trials. The experiments in Table 1 will serve 

as a benchmark for the latter experiments where 2

o
!  is not perfectly specified. 

!  method 
)(

2

so
!  !  RMSE 

OMB2 1 0.044 0.202 

AMB*OMB 1 0.042 0.202 

(tuned) constant 1 0.046 0.201 
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Table 1: Time mean of adaptive inflation !  and the corresponding analysis RMS error, 

averaged over the last 1000 steps of a 2000-step assimilation in a perfect model scenario and in 

the case when the observational error variance is perfectly specified (
)(

2

so
! =1). For comparison, 

the value of best-tuned constant inflation and its resulting analysis error are also shown. 
 

b. Incorrectly specified observation error variance 
In reality we do not exactly know the true value of the observation error variance, and the 

specified value used in the analysis is only an estimate. In our second experiment with the 

Lorenz-96 model we use an erroneously specified 
)(

2

so
!  which is either one quarter or 4 times 

the size of the true 
)(

2

to
! , equivalent to one-half or twice the true observational error standard 

deviation. With a large 
)(

2

so
! =4.0, the estimated !  is smaller than its optimal value (Table 7), 

therefore the LETKF gives too much weight to the background and not enough to the 

observations, resulting in a very degraded analysis. 

In the case of 
)(

2

so
! =0.25

)(

2

to
!  we noticed that the estimated !  is the upper-limit 0.2 of the 

prescribed possible range, 2.0
~

1.0 !"!#
o  (Table 7). This happened because the “observed” 

inflation  
!!
o  at each single analysis time step was always larger than 0.2, and was then forced to 

be 0.2. As a result it did not represent the value estimated from equation OMB2 or AMB*OMB. 

Our experience indicates that 2.0
~

1.0 !"!#
o  is a reasonable range of !  when 2

o
! is 

correctly specified, but there is no reason to assume that the inflation should remain within this 

normal range in an abnormal experiment. Removing this constraint we obtained a value for !  

of 7.70 (6.81) with the estimation method OMB2 (AMB*OMB) and the resulting analysis  RMS 

error of 0.80 (0.79) much worse than the optimal value of 0.2.  

 
!  method )(

2

so
!  !  RMSE 

OMB2 0.2 0.265 

AMB*OMB 

 

0.25 0.2 0.262 

OMB2 0.021 1.635 

AMB*OMB 

 

 4.0 0.033 1.523 
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Table 2: Time mean of adaptive inflation parameter !  and the resulting analysis RMS 

error, averaged over the last 1000 steps of a 2000 step assimilation in a perfect model scenario 

and in the case when the specified observation variance 
)(

2

so
!  is either 1/4 or 4 times the true 

)(

2

to
!  but without attempting to estimate and correct it. The inflation factor is constrained to be 

within an interval 2.0
~

1.0 !"!#
o . See text for the results when this constrained is removed. 

 

 
c. Simultaneous estimation of the inflation and the observation error variance 

We have seen that neither OMB2 nor AMB*OMB work appropriately when estimating the 

inflation parameter if the specified observation error variance is substantially wrong. In the third 

experiment, we estimate the observation error variance and inflation simultaneously by using 

OMA*OMB and OMB2 (or AMB*OMB) followed by the simple KF method. 

We start our experiment with an initial miss-specification of the observation error variance. 

Table 8 shows that even if the initial specification of the observation error variance 
)(

2

inio
!  is 

poor (one-quarter or four times the true 2

o
! ), the OMA*OMB method has the ability to correct it. 

The time mean of estimated !
o

2  over the last 1000 analysis step is essentially the same as the 

true 2

o
! . With the corrected R matrix, we obtain a reasonable adaptive inflation !  of about 0.04 

for all the cases in Table 8. The resulting analysis RMS errors are also similar to that of the 

benchmark. The results are not sensitive to the initial incorrect value of 
)(

2

inio
! , since 2

o
!  is 

gradually corrected and reaches its ‘true’ value after an initial transition period no matter what 

initial value is specified.  

We have shown that the estimation of adaptive inflation alone does not work with 

incorrectly specified observation error variance. By estimating the inflation and observation 

errors simultaneously, our method has the ability to retrieve both their ‘true’ values. We now 

check whether OMA*OMB can retrieve a correct observation error variance if the inflation is 

wrongly specified. From the previous experiments we know the optimal inflation factor is about 

0.04. If we fix it and under-specify it to be 0.01, we get an estimated 2

o
!  =10.33, confirming 

that the estimations of inflation factor and observation errors depend on each other. Unless one 

of them is accurately known, both of them need to be simultaneously estimated. 
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R method !  method 

)(

2

inio
!  !

o

2   !  RMSE 

OMB2 1.002 0.046 0.208 

AMB*OMB 

 

0.25 1.003 0.043 0.205 

OMB2 1.000 0.046 0.202 

 

 

OMA*OMB  

 AMB*OMB 

 

4.0 1.000 0.043 0.203 

 

Table 3: Time mean of adaptive inflation parameter ! , the estimated observation error variance 

!
o

2 and the resulting analysis RMS error, averaged over the last 1000 steps of a 2000 step 

assimilation in a perfect model scenario, with simultaneous estimation of both the inflation and 

the observation error variance which is initially miss-specified. 

 

4.2 Imperfect model experiments  

We have tested our approach in the LETKF with the simulated observations and shown its 

ability to retrieve both the true observation error variance and the optimal inflation parameter in 

a perfect model scenario. In this section we focus on a more realistic situation by introducing 

model errors. Recall that our method is based on the assumption that the estimated matrices b
P  

and R  in 1)( !
+= RHHPHHPHK

TbTb  agree with the true covariances for background and 

observation. In the perfect model scenario, the required inflation is small and the inflated 

background error covariance with a reasonable number of ensemble members can usually 

approximate well the true background error covariance, but this is not the case for an imperfect 

model in the absence of additional methods to correct model error, when only the covariance 

inflation algorithm is used to account for the effect of model errors. In this case the inflated 

background error covariance may not be good enough to represent the true background error 

covariance. Our goal in this section is to test whether our on-line estimation algorithm will still 

work well in a more realistic situation with model errors. 

a. Random model errors  

First, we study our scheme in the presence of random model errors in which the real 

atmosphere is assumed to behave like a noisy version of the numerical forecast model. The 
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evolution of the ‘true’ atmosphere is simulated by adding the zero-mean random noise to the 

Lorenz-96 model at each model time step: 

dx
i

dt
= x

i!1
(x

i+1
! x

i!2
) ! x

i
+ F + a " #

i
                 (16)       

where )1,0(~ N
i

! and a  is a constant factor. Our forecast model is the standard Lorenz-

96 model shown in (12), so that we now have (unbiased) random model errors. Since more 

uncertainties are involved in the imperfect model experiments, we increase the ensemble size 

from 10 to 20. Table 9 shows the estimated values of observation error, adaptive inflation and 

their resulting analysis errors for different amplitudes a  of the random model error. As 

benchmarks, we manually tuned the system to find the optimal time-constant inflation (case A), 

and estimated on-line the inflation using the ‘true’ observation error variance (case B). For case 

C, we simultaneously estimated the values of observation error and adaptive inflation. To handle 
sampling errors in cases B and C, we did temporal-smoothing for all the cases with different !  

values, and set the lower limit of “observed” 
  
!

o

2  to 0 whena =100 (corresponding to very large 

random errors). We have seen in the perfect model experiments that our method is not sensitive 

to the initial specification of the observational error variance or to the method used to calculate 

the “observed” inflation parameter, so that we only test our method with 
)(

2

inio
! =0.25 and use 

the OMB2 method to estimate the inflation parameter.  

As shown in Table 4, all three cases give similar results, with the required inflation and the 

resulting analysis error increasing with the amplitude of the model random errors. When the 

observation error is perfectly known (case B), adaptive inflation reaches an analysis error similar 

to that obtained tuning a constant inflation. With wrongly specified initial observation error 

information (case C), we estimate it on-line together with the estimation of inflation, and the 

‘true’ 
  
!

o

2
= 1 is also well approximated. The resulting analyses are as good as those from the 

best-tuned inflation. These results indicate that the adaptive algorithm simultaneously estimating 

inflation and observation errors is able to produce successful assimilations over a wide range of 

random model errors. Manually searching for the optimal time-constant inflation factor (case A) 

requires a considerable number of iterations for each value ofa . 
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Error 
amplitude 
(random) 

A: true !
o

2 =1.0  

(tuned) constant !  
 

B: true !
o

2 =1.0  

  adaptive !  
  

 C:  adaptive!
o

2   

     adaptive !  
 

a   !   RMSE  !  RMSE !   RMSE !
o

2  

4 0.25 0.36 0.27 0.36 0.39 0.38 0.93 

20 0.45   0.47 0.41 0.47 0.38 0.48 1.02 

100 1.00 0.64 0.87 0.64 0.80 0.64 1.05 

 

Table 4: Case A: best-tuned constant inflation using true observation variance and the resulting 

analysis RMSE; Case B: time mean of adaptive inflation using true observation variance and the 

resulting analysis RMSE; Case C: time mean of simultaneous adaptive inflation and observation 

error, and the resulting analysis RMSE. Each case is tested for a wide range of a , the amplitude 

of random model errors. Results are averaged over the last 1000 analysis steps. 

 

b. Systematic model bias 

For our final experiment, we introduce a systematic model bias. In the linear estimation 

theory, basis of most data assimilation schemes, both background and observation errors are 

assumed to be unbiased. However in reality the background is usually biased due to the  use of 

an imperfect model, and ideally the model bias should be estimated and subtracted from the 

biased forecast. Here we violate the assumption that background is unbiased in order to check the 

behavior of our method in a more realistic situation with model bias. 

We generate the model bias as in Baek et al. (2006) by adding a constant sine function to 

the forcing term in the Lorenz-96 model. 

iiiii

i
Fxxxx

dt

dx
!" #++$$= $+$ )( 211                      (17) 

where )
1

2sin(6.1
N

i

i

!
= "#  describes the spatial structure of the model bias and 

! determines its size. In Baek et al. (2006) ! =1, corresponding to a model bias of  
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)
1

2sin(08.005.0)
1

2sin(6.1)
1

2sin(6.1
N

i

N

i
t

N

i
b
i

!
="

!
=#

!
= $$$ . This is a relatively small bias 

compared with the observation noise (1.0 in our experiments). Here we examine a wider range of 
model bias by applying different coefficients ! . As in Baek et al. (2006) and in our 

experiments with random model errors we also test our method with 20 ensemble members.  

 Table 5 shows the analysis results obtained from the best-tuned inflation (case A), 

adaptive inflation using the ‘true’ observation error variance (case B), adaptive inflation and 

adaptive observation error variance (case C), in the presence of model bias. A lower limit of 

“observed” 
  
!

o

2  is set to 0 when! =4 and ! =7 for cases B and C. In general, the three cases 

give similar analysis accuracy for small and medium size of model bias. When the bias 
amplitude increases to ! =7, the simultaneous approach does not work well giving a relatively 

large estimate of observational error variance and analysis error. The best tuned inflation yields 

the best results. The mean values of adaptive inflation in case B are always smaller than the best 

tuned inflation (Case A), presumably because the ensemble does not “know” about model errors. 

 

Error 
amplitude 
(bias) 

A: true !
o

2 =1.0  

(tuned) constant !  

 

B: true!
o

2 =1.0  

  adaptive !  

  

 C:  adaptive!
o

2   

     adaptive !  

 

!   !   RMSE  !  RMSE !   RMSE !
o

2  

1 0.35  0.40 0.31 0.42 0.35 0.41 0.96 

4 1.00  0.59 0.78 0.61 0.77 0.61 1.01 

7 1.50 0.68 1.11 0.71 0.81 0.80 1.36 

   
Table 5: As Table 9, but in the presence of a constant model bias with different amplitudes ! . 

 

To further explore the less successful results with large model bias, we compare the 

forecast ensemble spread (after inflation) with the ‘true’ forecast error (ensemble mean minus the 
true state) averaged over all 40 variables for all three cases when the model bias is large, 7=! . 

Let us first focus on case A and B.  
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 A: true !
o

2 =1.0 

 (tuned) constant !  

 

B: true !
o

2 =1.0  

  adaptive !  

  

 C: adaptive!
o

2   

   adaptive !  

 

!
o

2  1.00 1.00 1.36 

!  1.50 1.11 0.81 

Error 0.94 0.99 1.11 

Spread 1.16 0.98 0.95 

 

Table 6: Time mean of observation error variance (!
o

2 ), adaptive inflation (! ), the ensemble 

forecast mean rms error (note that we show forecast error rather than analysis error as in Table 
5) and the ensemble forecast spread, for the case with a model bias of 7=! . Case A: best tuned 

constant inflation; B: adaptive inflation estimated with true observation error variance; C: 

simultaneous estimation of both!
o

2 and! .  

 

As shown in Table 6, even though the spread agrees quite well with the forecast error in 

case B compared to that in case A, the analysis error (Table 5) and forecast error (Table 6) in 

case B are bigger than those with best tuned inflation (case A). This apparent contradiction can 

be attributed to the fact that inflating the background error with a uniform inflation factor is not 

good enough to parameterize large model bias. Recall that multiplicative inflation assumes that 

the model error is in proportional to the forecast spread, which implies that the model errors and 

the forecast errors have the same error structures, but for large biases this is not a good 

assumption. A systematic bias with a sine-function in space, as in our experiments, cannot be 

well represented by the dynamical growing error. The adaptive inflation estimation scheme 

OMB2 does not know about the spatial structure of model error since it only uses information 

about the trace of covariance rather than its structure. Thus 1
)(

)(~
!

!
="

!!

HHP

Rdd

b

bo

T

bo

Tr

Tr
produces a 

single value of inflation optimal when spatially averaged but not for individual grid points. Thus, 

although the spatially-averaged spread in Table 6 for case B is consistent with the forecast error, 

it is not optimal for the analysis. The tuned inflation result is expected to be the best because the 
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inflation factor is repeatedly tuned in terms of the resulting analysis error. The best tuned result 

overcomes the errors in modeling bias structure by over-inflating the ensemble covariance to 

give more weights to the observations.  

As a result, the best-tuned inflation is always larger than the adaptive inflation. The bigger 

the model bias, the bigger the over-estimation (Table 5). These results are consistent with those 

of Anderson (2007) where an adaptive inflation from a hierarchical Bayesian method was 

compared to the best tuned time-constant inflation. With the suboptimal inflation from OMB2 

(actually under-estimating the best tuned inflation) it is not surprising that the results in case C 

are even worse when the observational error are also estimated because the suboptimal inflation 

could affect the accuracy of the estimated 
  
!

o

2  which further gives a poor feedback to the 

adaptive inflation. This failure happens when model bias is large. In order to get the best 

estimation of both !
o

2  and the inflation factor, an additional method is required to remove the 

model bias. The reader is referred to Dee and da Silva (1998), Baek et al. (2005), Danforth et al. 
(2007), and Li (2007) for several successful methods to estimate the bias. 
 

5. SUMMARY AND DISCUSSION 

The accuracy of an analysis system depends on the use of appropriate statistics of 

observation and background errors. For ensemble-based Kalman filter, tuning the covariance 

inflation parameter is expensive, especially if this parameter depends on space and on the type of 

variables. The online estimation method can objectively estimate the covariance inflation 

parameter but requires accurate information on observational errors. In this study, we estimate 

observational errors and the inflation coefficient for the background error simultaneously within 

LETKF. The results with Lorenz-96 model show that the estimation of inflation alone does not 

work appropriately without accurate observation error statistics, and vice-versa. By 

simultaneously estimating both inflation and observation error variance on-line, our approach 

works impeccably in a perfect model scenario, as well as with random model errors and a small 

bias. The estimated observation error variances are very close to their true value, and the 

resulting analyses are as good as those obtained from the best tuned inflation value. When the 

forecast model has a large systematic bias, our simultaneous estimation algorithm with a globally 

constant inflation factor tends to underestimate the observation error variance and results a sub-

optimal analysis. This is not surprising, since the covariance inflation has a very different 

structure than the model bias and cannot represent it well. 
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In the experiments in this study, we have used a globally uniform inflation factor, which is 

clearly not a good assumption in reality where the observation is non-uniformly distributed. With 

a spatially dependent inflation, we may be able to better deal with irregularly observing network. 

Tuning the spatial-dependent inflation is not feasible in practice, whereas the adaptive inflation, 

if successful, could be easily implemented.  

Although here we only presented the results of our approach in a low-order model where 

only one type of observations is available, an additional series of experiments using a more 

realistic global primitive equations model known as SPEEDY (Molteni, 2003; Miyoshi 2005) 

has shown that the approach is also able to retrieve the true observation error variances for 

different types of instruments when assimilating wind, temperature and pressure observations 

with errors of different size and units (Li, 2007).  

We also note that in this study we have focused on multiplicative covariance inflation, but 

that our simultaneous approach is equally applicable to adaptively estimate the scale of the 

additive noise in additive inflation schemes (Corazza et al, 2002, Whitaker et al., 2007). 

We have addressed the issue of observation error variance but the presence of observational 

error correlations is another potential problem, especially when dealing with satellite 

observations. We plan to extend our approach to estimate off-diagonal terms in the observation 

error covariance and investigate whether this approach will be able to adaptively estimate the 

observation error correlations as well as their variances. 
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Table 6: Time mean of adaptive inflation !  and the corresponding analysis RMS error, 

averaged over the last 1000 steps of a 2000-step assimilation in a perfect model scenario and in 

the case when the observational error variance is perfectly specified (
)(

2

so
! =1). For comparison, 

the value of best tuned constant inflation and its resulting analysis error are also shown. 
 

!  method 
)(

2

so
!  !  RMSE 

OMB2 1 0.044 0.202 

AMB*OMB 1 0.042 0.202 

(tuned) constant 1 0.046 0.201 

 

 

 

 

 

 

Table 7: Time mean of adaptive inflation parameter !  and the resulting analysis RMS error, 

averaged over the last 1000 steps of a 2000 step assimilation in a perfect model scenario and in 

the case when the specified observation variance 
)(

2

so
!  is either 1/4 or 4 times the true 

)(

2

to
!  

but without attempting to estimate and correct it. The inflation factor is constrained to be within 

an interval 2.0
~

1.0 !"!#
o . See text for the results when this constrained is removed. 

 
!  method )(

2

so
!  !  RMSE 

OMB2 0.2 0.265 

AMB*OMB 

 

0.25 0.2 0.262 

OMB2 0.021 1.635 

AMB*OMB 

 

 4.0 0.033 1.523 
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Table 8: Time mean of adaptive inflation parameter ! , the estimated observation error variance 

!
o

2 and the resulting analysis RMS error, averaged over the last 1000 steps of a 2000 step 

assimilation in a perfect model scenario and in the case of simultaneous estimation of both the 

inflation and the observation error variance which is initially miss-specified. 

 
R method !  method 

)(

2

inio
!  !

o

2   !  RMSE 

OMB2 1.002 0.046 0.208 

AMB*OMB 

 

0.25 1.003 0.043 0.205 

OMB2 1.000 0.046 0.202 

 

 

OMA*OMB  

 AMB*OMB 

 

4.0 1.000 0.043 0.203 

 

 

Table 9: Case A: best tuned constant inflation using true observation variance and the resulting 

analysis RMSE; Case B: time mean of adaptive inflation using true observation variance and the 

resulting analysis RMSE; Case C: time mean of simultaneous adaptive inflation and observation 
error, and the resulting analysis RMSE. Each case is tested for a wide range of! , amplitude of 

random model errors. Results are averaged over the last 1000 analysis steps. 
 

Error 
amplitude 
(random) 

A: true !
o

2 =1.0  

(tuned) constant !  
 

B: true !
o

2 =1.0  

  adaptive !  
  

 C:  adaptive!
o

2   

     adaptive !  
 

!   !   RMSE  !  RMSE !   RMSE !
o

2  

4 0.25 0.36 0.27 0.36 0.39 0.38 0.93 

20 0.45   0.47 0.41 0.47 0.38 0.48 1.02 

100 1.00 0.64 0.87 0.64 0.80 0.64 1.05 
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Table 10: As in Table 9, but in the presence of a constant model bias with different amplitudes 
(! ). 

Error 
amplitude 
(bias) 

A: true !
o

2 =1.0  

(tuned) constant !  

 

B: true!
o

2 =1.0  

  adaptive !  

  

 C:  adaptive!
o

2   

     adaptive !  

 

!   !   RMSE  !  RMSE !   RMSE !
o

2  

1 0.35  0.40 0.31 0.42 0.35 0.41 0.96 

4 1.00  0.59 0.78 0.61 0.77 0.61 1.01 

7 1.50 0.68 1.11 0.71 0.81 0.80 1.36 

 

Table 6: Time mean of observation error variance (!
o

2 ), adaptive inflation (! ), the ensemble 

forecast mean rms error (note: here we show forecast error rather than analysis error in Table 5) 
and the ensemble forecast spread, with a model bias of 7=! . Case A: best tuned constant 

inflation; B: adaptive inflation estimated with true observation error variance; C: simultaneous 

estimation of both!
o

2 and! . Results are reported as an average over the last 1000 steps of a 

2000-step assimilation. 

 

 A: true !
o

2 =1.0 

 (tuned) constant !  

 

B: true !
o

2 =1.0  

  adaptive !  

  

 C: adaptive!
o

2   

   adaptive !  

 

!
o

2  1.00 1.00 1.36 

!  1.50 1.11 0.81 

Error 0.94 0.99 1.11 

Spread 1.16 0.98 0.95 

 


