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1. Introduction 
 
     Human activities result in increased carbon 
consumption and emission of CO2 to the atmosphere 
and the impact on climate change due to global warming 
is serious. Understanding the carbon sources and sinks 
is important for the future of human life on the earth.  
Since the released CO2 in the atmosphere must either 
go to the land, ocean, or just remain in the atmosphere, 
the capacity of each reservoir to absorb and store 
atmospheric CO2 can give us invaluable information.  In 
addition, the interaction and feedback between the 
behavior of these reservoirs and changing climate 
cannot be neglected so the problem is not simple. 
     In order to understand and predict atmospheric CO2 
in terms of climate change, it is necessary not only to 
consider the anthropogenic carbon use but also to 
understand the biogeochemical processes interacting 
with climate.  For this purpose, the role of numerical 
modeling is essential. Thus, this study focuses on the 
development of coupled system of atmosphere-
vegetation that allows simulating how these two systems 
interact with each other, and whether an advanced data 
assimilation scheme, LETKF, can be used to estimate 
simultaneously the standard atmospheric variables and 
CO2 measurements in order to estimate surface fluxes of 
CO2. 
  
2. SPEEDY Model with Atmospheric CO2
 
     The SPEEDY model (Molteni, 2003) is an 
atmospheric general circulation model (AGCM) with 
simplified physical parameterization schemes that are 
computationally efficient, but that maintain the basic 
characteristics of a state-of-the-art AGCM with complex 
physics.  It has triangular truncation T30 with 7 sigma 
levels.   
     The original version of SPEEDY has five dynamical 
variables including zonal (U) and meridional wind (V) 
components, temperature (T), specific humidity (q), and 
surface pressure (Ps).  To use the model for this study, 
two variables have been added; one is an atmospheric 
CO2 which has only two processes of advection and 
diffusion and the other is a surface flux of carbon (Cflux) 
which is a source and sink of the atmospheric CO2. 
Chemical processes for CO2 have been ignored.  
     To verify the realism of SPEEDY results, the mean 
atmospheric CO2 concentration on the surface layer of 
our model was compared to that of the NCAR CCM 1
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(Fung, 2006), a state-of-the-art model (Fig. 1).  Although 
SPEEDY has only seven vertical layers and other 
simplifications, it has produced results reasonable 
enough to justify using it for this research.  Since the 
horizontal and vertical resolution is much coarser in 
SPEEDY than NCAR CCM, the mixing of SPEEDY 
seems to be relatively strong compared to NCAR CCM. 
 
3. VEGAS and SLand Models 
 
     The terrestrial carbon model VEgetation-Global-
Atmosphere-Soil, VEGAS, (Zeng, 2005), which is 
coupled to the physical land surface model Simple-Land, 
SLand (Zeng et al., 2000a) is used in this research.  The 
VEGAS simulates the dynamics of vegetation growth 
and competition among different plant functional types 
which include broadleaf tree, needleleaf tree, cold grass, 
and warm grass.  The SLand models the first order 
effects relevant to climate simulation.  Here, SLand is 
turned on if it is over the land; over oceans and ice we 
use the original method of the SPEEDY to calculate 
surface flux of heat and moisture. 

 
Figure 1 Annual mean for the third year of simulated 
atmospheric CO2 concentration (ppmv) on the surface 
layer (a) by SPEEDY, (b) by NCAR CCM, and the vertical 
cross section of it (c) by SPEEDY, (d) by NCAR CCM 
 
4. Coupling of SPEEDY and VEGAS 
 
     In order to account for the interaction of carbon 
between biosphere and atmosphere, VEGAS with SLand 
were coupled to SPEEDY (Fig. 2).  At first, the spin-up 
run with only SLand-Vegas for 200 years was forced by 
9-year mean of variables (heat and moisture on the 
surface) from SPEEDY.  Then, the coupled spin-up was 
continued for 30 years so that the source and the sink of 
carbon over the land under the atmospheric environment 
of SPEEDY have been estimated (Fig. 3).  Over ocean, 
the surface fluxes of carbon are given by the monthly 
prescribed fluxes of Takahashi et al. (2002). 
 
5. Implementation of LETKF on SPEEDY Model with 

CO2 and CFlux 



     LETKF (Hunt, 2005, Hunt et al., 2007) is an 
advanced ensemble Kalman filter data assimilation 
scheme.  It is a square-root ensemble filter in which the 
observations are assimilated simultaneously to update 
the ensemble mean while the ensemble perturbations 
are updated by transforming the forecast perturbations 
through a transform matrix term as Bishop et al. (2001) 
introduced.  The analysis is done independently at every 
grid point using observations from a local region. 
     The analysis in this study has seven variables, U, V, 
T, q, Ps, CO2, Cflux and we use 20 ensemble members 
for the forecast run.   

 
Figure 2 Concept of coupling: variables in the interfaces 
among three systems 
 
6.  Experimental Design 
 
     While the coupled system (SPEEDY-VEGAS with 
SLand) generates the truth or nature run, from which 
observations are derived, the SPEEDY with six 
prognostic variables including CO2 is used as the 
forecast model in which the Cflux over land is updated 
only by the analysis, which means the forecast model 
does not have a dynamical forecast equation for the 
surface flux (the forecast of Cflux over land during the 
analysis cycle is persistence).    Like the nature run, the 
forecast model also uses over ocean the monthly-
prescribed carbon flux of Takahashi et al. (2002).   
     From the truth, the observations of variables were 
generated by adding Gaussian random perturbation.  
The standard deviation of those random perturbations 
depends on the scale of each variable; 1 m/s for U and V, 
1 K for T, 0.1 g/kg for q, 1 hPa for Ps, 1 ppmv for CO2, 
10-9 kg/m2/s for Cflux.  The observations of the 
atmospheric variables are located at the distribution of 
rawinsonde of which coverage is about 5.7 % globally 
while those of CO2 and Cflux are uniformly distributed at 
every other grid so that the coverage is about 25%.  The 
initial condition for the ensemble forecast at 
00Z01JAN2002 has been made by adding 20 random 
perturbations to the truth which were also at randomly 
chosen time. 
     In order to see how the background error covariance 
of the atmospheric variables effects on that of carbon 
related variables (CO2 and Cflux), we designed two 
types of experiments: One is the univariate data 
assimilation in which CO2 and Cflux are updated by 
these two and not affected by other atmospheric 
variables.  The other is the multivariate data 
assimilation so that all the dynamical variables are 
included in one vector. 

 
Figure 3 Seasonal pattern of the simulated surface CO2 flux 
(kg/m2/s) by the coupled system; (a) DJF, (b) MAM, (c) JJA, 
and (d) SON. 
 
7. Results 
 
 7.1 RMSE  
 
     In general, the multivariate data assimilation has less 
root mean square errors (RMSE) than the univariate one 
and the predominance is significant for CO2 (Fig. 4).  
This means that the better information of the 
atmospheric variables can improve the CO2 forecast 
either.  Cflux in the multivariate case also has better 
result than that of the univariate one till the middle of 
February.  However, we found that the RMSE of most 
variables are growing after one month.  That is because 
our nature and forecast does not have the same physics 
for calculating the surface flux; the nature run has used 
SLand because of the coupling with VEGAS but the 
forecast model does use the intrinsic scheme of the 
SPEEDY instead of SLand.  Thus, the difference 
between two runs gets too large to assume a perfect 
model experiment. 
 
 7.2 Model bias 
 
     In order to solve the problem due to the model bias 
shown in the previous section, we first calculated the 
model bias (Fig. 5) which is subtracting the forecast from 
the truth.  The bias is especially apparent over the land. 
 
8.  Summary and discussion 
 
     This study is a component of a project for CO2 data 
assimilation with LETKF/CAM3.5 system (PIs: Eugenia 
Kalnay/Inez Fung). The CAM3.5 is very complex and 
expensive whereas the SPEEDY and the VEGAS are 
simple but realistic, having only an intermediate 
complexity.  The coupled system of SPEEDY-VEGAS 
has produced reasonable results and LETKF has been 
also implemented successfully.  Thus, we have 
developed a tool good enough to do experiments testing 
methods for CO2 data assimilation with a relatively 
inexpensive simulation system. 



    Preliminary results are encouraging, but in order to 
proceed, we plan to handle the model atmospheric 
biases that arise from the difference between the nature 
and the forecast model following the method that Li 
(2008) introduced, and use realistic observations of CO2 
and fluxes.  
 

 
Figure 4 RMSE of (a) U, (b) T, (c) V, (d) q, (e) CO2, (d) Cflux 
on the lowest layer of analysis, where red symbols indicate 
the results of the univariate data assimilation and blue the 
multivariate one. 
 

 
Figure 5 The model bias of (a) T, (b) q over the land, and (c), 
(d) same variables over the ocean. 
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