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Introduction
A problem common to meteorological and 
climatological datasets is missing data.
In cases where the individual observations are 
thought not important, or there are few missing 
data, deletion of every observation missing one 
or more pieces of data (complete case deletion) 
is common.  It has been assumed this is 
innocuous.
As the amount of missing data increases, tacit 
deletion has been shown to lead to bias in the 
remaining data and in subsequent analyses, 
such as data mining. 



Introduction (Cont.)
If the data are deemed important to preserve, 
some method of imputing the missing values 
may be used. 
The present analysis seeks to examine how a 
number of techniques used to estimated missing 
data perform when missing data exist for 
configurations where the relationships are 
nonlinear.  Previous work tested algorithms on 
nearly linear relationships.
In this work, different types of machine learning 
techniques, such as support vector machines 
(SVMs) and, artificial neural networks (ANNs) are 
tested against standard imputation methods 
(regression based EM algorithm).



Data Set

A nonlinear synthetic data set is generated using 
the following function with 10 variables:

where -1 < xi < 1 for i = 1,…, 10, with a 0.02 
increment, and ζ is the uniformly distributed 
noise between 0 and 0.5. 
The data set consists of 100 rows and 10 
columns. 
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Figure 1. A scatter plot matrix for the nonlinear synthetic 
data set.  Each row or column represents a variable.



Data Set (Cont.)

The data set is altered to produce missing data 
by randomly removing one or more data in four 
different percentages (1%, 2%, 5% and 10%) of 
missing data (see Table 1). 
For each percentage of missing data, we repeat 
the alteration process 100 times (replicates) in 
order to obtain stable statistics and confidence 
intervals. 
Since the data removed are known and retained 
for comparison to the estimated values, 
information on the error in prediction and the 
changes in the variance structure are calculated. 



Data Set (Cont.)
Table 1. Four different percentages of 
missing data with the corresponding 
number of rows with missing data. 

% of missing data       
(# of missing elements)

Average # of rows 
with missing data

1% (10 elements) 10

2% (20 elements) 15

5% (50 elements) 25

10% (100 elements) 50



Methodology

Support vector machines (SVMs) and 
artificial neural networks (ANNs) are 
machine learning algorithms used in this 
research to predict missing data. 
Several standard methods such as 
casewise deletion, mean substitution, 
simple linear regression, and stepwise 
multiple regression, are employed for 
comparison. 



 

No 

Yes 

Given a data set with missing data 

Separate the observations (rows) that do not contain any missing 
data (set 1) from the ones that have missing data (set 2).

Initialization (Iteration 1).  
• For each column in set 2 that has missing data, construct l 

regression functions using l bootstrap samples of set 1.  
• Predict the missing data for each column in set 2 using those 

regression functions. Hence, l predicted values are created. 
• Impute the missing data in set 2 with the average of those l 

predicted values (ensemble approach a.k.a. multiple imputation). 

Iteration 2.  
• Merge the imputed set from the previous step with set 1. 
• For each column in set 2 that has missing data, construct again l 

regression functions using l bootstrap samples of this merged set.  
• Predict the missing data for each column in set 2 using those 

regression functions. Hence, l predicted values are created. 
• Impute the missing data in set 2 with the average of those l 

predicted values (multiple imputation). 

The difference between the 
predictive values at current 

iteration and the ones at previous 
iteration < δmin

Stop 

Figure 2. 
Flowchart 
of multiple 
imputation.



Methodology (Cont.)

We use the mean squared error (MSE) to 
measure the difference between the actual 
values from the original data set and the 
corresponding imputed values. 
The difference of variance and covariance 
between the original data set and the 
imputed data set is measured using the 
mean absolute error (MAE). 



Experiments
We apply the multiple imputation methodology as 
described in Figure 2 to predict missing data with 10 
bootstrap samples to obtain the ensemble mean.
5 iterations are performed for SVR, ANN, stepwise 
regression, and simple linear regression experiments. 
Additionally, mean substitution and casewise deletion are 
used in the experiments.
The experiments are performed in the MATLAB 
environment using a Pentium M Centrino 1.8 GHz laptop 
with 1.23 GB RAM. 
The SVR experiments use LIBSVM toolbox (Chang and 
Lin, 2001) whereas the ANN, stepwise and simple linear 
regression experiments utilize the neural network and 
statistics toolboxes, respectively.



Experiments (Cont.)
For SVR experiments, different combinations of 
kernel functions (linear, polynomial, radial basis 
function) and C values (the tradeoff between the 
flatness of a regression function and the amount 
up to which the deviations larger than ε are 
tolerated) are applied to determine the 
parameters that give the lowest MSE. 
More flatness means we try to find the small 
weight of a regression function. 
The “best” SVR parameters use the radial basis 
function (RBF) kernel and ε-insensitive loss 
function with ε = 0.07, γ = 0.09 (the parameter 
that controls the RBF width) and C = 10. 



Experiments (Cont.)
For ANNs, we train several feed-forward neural networks 
using one hidden layer with different number of hidden 
nodes (from 1 to 10) and different activation functions 
(linear and tangent-sigmoid) for the hidden and output 
layers. 
The scaled conjugate gradient backpropagation network 
is used for the training function. 
To avoid overfitting, the training stops if the number of 
iterations reaches 100 epochs or if the magnitude of the 
gradient is less than 10-6. 
The neural network that gives the lowest MSE has 4 
hidden nodes with the tangent-sigmoid for the hidden 
layer and linear activation functions for the output layer.



Experiments (Cont.)
For stepwise regression, the maximum p-value that 
a predictor can be added to the model is 0.05 
whereas the minimum p-value that a predictor 
should be removed from the model is 0.10. 
Simple linear regression uses only one 
independent variable that has the highest 
correlation with the response variable to predict 
missing data. 
For mean substitution, the missing data in a 
variable are replaced with the mean of its variable. 



Results
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Figure 3. The average MSE for all methods after 100 
replicates with 95% confidence intervals for 1% missing data.



Results (Cont.)
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Figure 4. The average MSE for all methods after 100 
replicates with 95% confidence intervals for 2% missing data.



Results (Cont.)
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Figure 5. The average MSE for all methods after 100 replicates 
with 95% confidence intervals for 5% missing data.



Results (Cont.)
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Figure 6. The average MSE for all methods after 100 replicates 
with 95% confidence intervals for 10% missing data.



Results (Cont.)
Table 2. Reduction in MSE from Iteration 1 (initial guess) to other 
iterations for each method.

% missing 
data Iteration SVR ANN Stepwise 

Regression

Simple 
Linear 

Regression
Iter. 2 18.3% 13.5% 8.7% 0.2%
Iter. 3 20.2% 13.5% 7.2% -0.5%
Iter. 4 22.9% 14.4% 10.0% 0.4%
Iter. 5 23.9% 15.3% 7.9% 0.0%
Iter. 2 41.7% 34.2% 27.3% 23.0%
Iter. 3 45.9% 36.5% 26.7% 22.8%
Iter. 4 47.7% 36.5% 26.4% 22.5%
Iter. 5 48.5% 37.0% 27.2% 21.8%
Iter. 2 74.1% 64.1% 55.5% 23.0%
Iter. 3 79.9% 73.5% 58.3% 22.8%
Iter. 4 82.1% 75.6% 59.2% 22.5%
Iter. 5 83.3% 76.4% 59.9% 21.8%
Iter. 2 76.5% 67.3% 64.4% 38.9%
Iter. 3 85.0% 80.6% 70.5% 38.8%
Iter. 4 88.1% 84.4% 72.1% 38.4%
Iter. 5 89.6% 85.8% 73.1% 38.2%

10% missing 
data

1% missing 
data

2% missing 
data

5% missing 
data



Results (Cont.)
Table 3. Reduction in MSE from Stepwise Regression to SVR and 
ANN for each iteration.

% missing 
data Iteration SVR ANN

Iter. 1 72.1% 71.6%
Iter. 2 75.1% 73.1%
Iter. 3 76.0% 73.6%
Iter. 4 76.1% 73.0%
Iter. 5 76.9% 73.9%
Iter. 1 64.9% 71.1%
Iter. 2 71.8% 73.8%
Iter. 3 74.1% 75.0%
Iter. 4 75.0% 75.0%
Iter. 5 75.1% 75.0%
Iter. 1 20.0% 39.6%
Iter. 2 53.5% 51.2%
Iter. 3 61.5% 61.5%
Iter. 4 65.0% 63.9%
Iter. 5 66.7% 64.4%
Iter. 1 4.0% 16.2%
Iter. 2 36.7% 23.2%
Iter. 3 51.3% 44.8%
Iter. 4 59.1% 53.1%
Iter. 5 62.9% 56.0%

5% missing 
data

10% missing 
data

1% missing 
data

2% missing 
data



Results (Cont.)

Figure 7. A Bar chart with 95% confidence intervals 
illustrating the difference of variance between the original 
and imputed data set at Iteration 5. 
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Results (Cont.)
Table 4. Reduction in MAE from Stepwise Regression to 
SVR and ANN at Iteration 5 for the difference of 
variance between the original and imputed data set. 

% missing 
data SVR ANN

1% missing 
data 50.0% 50.0%

2% missing 
data 50.0% 50.0%

5% missing 
data 42.0% 46.0%

10% missing 
data 35.3% 36.5%



Results (Cont.)

Figure 8. A Bar chart with 95% confidence intervals illustrating the 
difference between the lower triangle of the covariance matrix of the 
original data set and the one of the imputed data set at Iteration 5.
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Results (Cont.)
Table 5. Reduction in MAE from Stepwise Regression to 
SVR and ANN at Iteration 5 for the difference between 
the lower triangle of the covariance matrix of the original 
data set and the one of the imputed data set.

% missing 
data SVR ANN

1% missing 
data 40.0% 40.0%

2% missing 
data 60.0% 60.0%

5% missing 
data 47.1% 41.2%

10% missing 
data 38.5% 34.6%



Results (Cont.)

Table 6. Computation time for each 
method substituting missing data.

Computation time for 1 run in sec.
1% missing 

data
2% missing 

data
5% missing 

data
10% missing 

data
SVR 1.51 1.73 2.07 2.50

ANN 152.95 174.73 216.10 229.63

Stepwise Regression 2.89 3.86 4.08 4.86

Simple Linear Regression 1.01 1.36 1.59 1.85

Mean Substitution 0.25 0.26 0.32 0.33

Method



Conclusions
Most obvious: multiple imputation using machine 
learning algorithms (SVR and ANN) is superior 
to all other methods. In general, we find a 60 –
75% improvement over the traditional use of an 
iterated stepwise linear regression imputation in 
reducing MSE of the estimate.
Compared to analysis shown last year, the use 
of an ensemble mean, via 10 replicates, makes 
the results of multiple iterations clear: for very 
small amounts of missing data (1%) a single 
iteration is sufficient.  As the amount of 
missing data increases, additional iterations 
are required for the results to stabilize.



The analysis of the MAE introduced into the variance-
covariance matrix shows improvements with machine 
learning methods.  The insertion of the mean value has 
a negative impact on the variance estimates in excess 
of casewise deletion when > 2% of the data are missing.  
This arises as the same value is getting inserted in many 
instances, so the variance is underestimated.
Beyond that, SVR and ANN lead to a 35 – 50% 
improvement in MAE over the traditional method.
For the covariances, casewise deletion is always worst, 
followed by mean substitution, simple regression, 
multiple stepwise regression, ANN and SVR.  However, 
ANN and SVR are statistically indistinguishable.
For the modest number of inputs in this experiment, 
SVR is more efficient computationally by two orders of 
magnitude.  One experiment (100 replicates) takes ~ 3½
min. for SVR and ~ 330 min. (5½ hrs) for ANN.
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