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Abstract— Information on ice cover extent over 
seas is crucial for ship navigation. Ice cover can 
also show interannual fluctuations and reflects 
climate variations. Ability of satellites to provide 
global observations at high temporal frequency has 
made them the primary tool for the ice cover 
monitoring. This study is a part of GOES-R 
Cryosphere application group effort to develop new, 
and improve existing, applications for the future 
GOES-R Advanced Baseline Imager (ABI). In this 
paper, a new approach was developed to minimize 
the effect of both observation and illumination 
angles on the ice mapping accuracy. A Bidirectional 
Reflectance Distribution Function (BRDF) was 
developed to simulate the reflectance of ice and 
water over the Caspian Sea. The ultimate objective 
of this research is to develop a daily ice 
concentration map. The estimation of the 
reflectance of water and ice is a step toward the 
achievement of this goal. The Northern region of the 
Caspian Sea has been selected for algorithm 
development and calibration. Artificial Neural 
Networks (ANN) have been used to simulate 
reflectance values for both water and ice from solar, 
azimuth and satellite angles. Data collected by 
SEVIRI instrument onboard of Meteosat Second 
Generation (MSG) satellite have been used as a 
prototype. The approach used in the algorithm 
development includes daily cloud-clear image 
compositing. The simulated reflectances were 
compared to observed values and have shown a 
satisfactory agreement. This implies that the BRDF 
model coupled with ANN technique can be used to 
simulate reflectance values. 

1. INTRODUCTION 
 

This study is a part of the future GOES-R mission. The 
ultimate objective of this research is to explore the 
potentials of the future GOES-R ABI in mapping sea ice 
and to develop an automated ice-mapping algorithm, 

which would make maximum use of ABI’s improved 
observing capabilities.  

The future GOES-R instrument will be a 12 channel 
Advanced Baseline Imager (ABI). Enhanced observing 
capabilities of the ABI may allow for improved retrievals 
of atmosphere, land surface and ocean properties and 
in particular, improved retrievals of the ice cover. 
Enhancements in the ice identification and mapping are 
expected primarily owing to additional spectral channels 
centered in the near-infrared, short-wave infrared and 
split-window infrared bands. A higher rate of 
observations and better navigation may also be 
beneficial and may contribute to the improvement of ice 
monitoring with ABI. Better image registration may also 
allow for tracking ice movement. In order to generate 
these advanced products proper satellite data 
processing and interpretation techniques and algorithms 
should be developed (Hillger 2006). 

Over the last decade, NOAA/NESDIS prepared and 
maintained daily ice maps of the Northern Hemisphere. 
These maps are generated from a multitude of 
spaceborne sensors on-board of geostationary and polar 
orbiting satellites. This include:  the Geostationary 
Operational Environmental Satellite (GOES), the 
European Meteorological Satellite (METEOSAT), the 
Japanese Geostationary Meteorological Satellite (GMS), 
and DMSP passive microwave data from SSM/I(Ramsay 
1998, 2000). 

Microwave data were primary used for ice mapping 
and monitoring because of their cloud penetration 
capability and the fact that they do not depend on 
daylight. Traditionally, SSM/I observations were used [1-
2], but recently AMSR-E data have also been used. The 
algorithms developed in NASA are particularly useful. 
Traditionally, SSM/I observations were used [1-2], but 
recently AMSR-E data have also been used. The 
algorithms developed in NASA are particularly useful. 

Satellite observations in the visible and infrared 
spectral bands have also been used for ice mapping 
(Kwok et al. 1995). A widely used approach to the 
atmospheric correction of satellite observations over 
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water consists in the use of physically-based models 
which explicitly account for the Rayleigh and aerosol 
scattering as well as water vapor, ozone and other 
atmospheric gases absorption. Application of this 
approach to ice cover identification and mapping from 
geostationary satellites may not be effective. First, 
accurate information on aerosol characteristics and large 
scale distribution is not generally available. Second, the 
existing atmospheric correction models can provide 
reliable results only for solar or satellite zenith angle 
below about 60 deg.  The latter limitation is serious since 
low-solar elevation conditions are typical for observations 
over ice covered areas. Besides that, areas affected by 
seasonal and perennial ice are located above 45-50 deg 
N and hence corresponding view angles for 
geostationary satellites at zenith angles exceed 50 deg.  

Therefore, in this study we have used an empirical 
approach to the atmospheric and angular correction. In 
this approach in order to characterize bidirectional 
properties of the top of the atmosphere reflectance we 
have used a linear combination of functions depending 
on observation geometry angles (solar-satellite relative 
azimuth along with solar and satellite zenith angles). This 
simplified approach cannot adequately represent 
bidirectional effects for all possible geometries. However, 
observation geometries involved in ice identification and 
mapping from geostationary satellites are limited to high 
solar zenith and satellite zenith angles, generally over 50 
deg. Thus for this particular application, the use of an 
empirical approach may be appropriate.  

This study is a first attempt to apply a Bidirectional 
Reflectance Distribution Function (BRDF) model for ice 
cover mapping. Moreover, an Artificial Neural network 
technique has been also utilized for model calibration 
and application. Artificial neural networks have been 
widely utilized in remote sensing applications 
(Benediktsson et al. 1990; Paola; Schowengerdt 1995).  
Multi-layer perceptron trained by backpropagation 
algorithm is the most common neural network used for 
image classification.  This type of neural network has 
been successfully applied to image processing and has 
shown a great potential in the classification of different 
types of remotely sensed data. In contrary to traditional 
techniques such as regression analysis, neural network 
uses its complex configuration to find the best nonlinear 
function between the input and the output data without 
any constraint of linearity or prespecified non-linearity 
(Ghedira et al. 2007; Ghedira et al. 2005).   

2. METHODOLOGY 
 

Data collected by SEVIRI instrument onboard of 
Meteosat Second Generation (MSG) satellite have been 
used as a prototype. Four channels were utilized: HRV 
(High resolution Visible: 0.6-0.9 µm), R01 (0.6 µm), R02 
(0.8 µm) and R03 (1.6 µm).   

The northern region of the Caspian Sea has been 
selected for algorithm development and validation. The 
surface area of the Caspian Sea is about 371,000 
square kilometers (figure 1). Ice conditions dominate 
during the winter in the northern region of the Caspian 
Sea. it is crucial to monitor ice extent and conditions 

since the Caspian Sea is an oil rich region (Kouraev 
2004). 

Similar to snow, the reflectance of thick ice cover is 
very high in the visible and drops substantially in the 
shortwave- and middle-infrared. This specific spectral 
signature provides the physical basis for ice identification 
from space. It will be primarily used in the new ice 
detection algorithm for GOES-R ABI. Clouds present the 
major factor hampering ice identification and mapping. 
As compared to polar orbiting satellite data, availability of 
frequent observations from geostationary satellites 
increases the chance to obtain a cloud clear view during 
a day and thus helps to reduce cloud gaps in the ice 
map. 

The proposed approach is based on combination of a 
BRDF model and an ANN technique. The output of this 
combination is a simulated value of reflectance. 
Reflectances of ice and water were estimated in this 
study. These reflectances are supposed to be generated 
by pure ice and water pixels, respectively. However, two 
necessary steps were performed before simulating ice 
and water reflectances as it is shown in flowchart of 
figure 2.  

Firstly, a sample of pixels of the Caspian Sea was 
manually selected. This sample was used for neural 
network training and model validation. Additional details 
about the neural network structure will be provided in the 
following sections. The selected pixels were completely 
covered by ice or water. Several clear-sky MODIS 
images have also been used to improve the identification 
of fully covered ice pixels. A sample of more than 12,000 
pixels was selected for both water and ice.  

Secondly, an automated approach for cloud 
detection was performed using a simple threshold 
method. The channel R03 (1.6 µm) was used to 
automatically detect cloudy pixels. 

In this work, the BRDF model describes an existing 
relationship between three angles i.e. satellite, solar and 
azimuthal angles and observed reflectance. 
Trigonometric functions such as the sine and cosine of 
these angles were also utilized in the BRDF model 
formula. The total number of inputs which are the three 
angles, their sine and cosine is 9 (equation 1).  
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where: SAT is the satellite angle; ARZ is the 
azimuthal angle and SOL is the solar angle and Robs is 
the observed reflectance. 

The main assumption of this work is that simulated 
reflectances do not depend on the ice or water features 
i.e. roughness, thickness or quality. So, we are assuming 
that these characteristics remain constant during a day 
and that observed reflectances are exclusively affected 
by the three angles variations: Azimuthal, Solar, Satellite. 

The ANN has been used, on the other hand, to 
model the relationship between angles as inputs and 
reflectances as outputs.  



In a multi-layer neural network, the nodes are 
organized into layers where each node transforms the 
inputs received from other nodes. The input layer 
serves as an entry for the vector of data presented to the 
network (Azimuthal, Solar, Satellite and their sines and 
cosines). The output layer serves to produce the neural 
network decision (simulated reflectance) for the pixel 
presented at the input layer. All layers between the 
input and output layers are referred to hidden layers. 
The best neural network architecture can only be 
determined experimentally for each particular problem. 

The number of hidden nodes should be large enough to 
ensure a sufficient number of degrees of freedom for 
the network function and simultaneously small enough 
to keep sufficient the generalization ability to the 
network. Several tests were conducted to determine the 
optimal number of hidden nodes. After several tests, a 
configuration of one hidden layer with 20 hidden nodes 
was selected.  

 

 

 

 
Figure 1 The Caspian Sea (http://en.wikipedia.org/wiki/Caspian_Sea) 

 

 



 

Figure 2 Flowchart  of ice and water reflectance estimation

3. RESULTS  
 

The cloud discrimination potentials of the near-
infrared channel can be also seen in Figure 3. This 
figure shows the reflectance of the four optical channels 
at 11:45 am local time. These data were collected on 
January 23rd 2007. 

 
Figure 3 Reflectance of four optical channels (Ghedira et al. 2007) 

As it was discussed above, simulations were carried 
out, according to the flowchart of Figure 2. Cloudy 
pixels were detected and eliminated. Then, the neural 
network was trained. The primary goal of this training 
step is the estimation of the weights connecting the nine 



input-layer nodes (angles + trigonometric 
transformations) to the 20 hidden nodes, and then the 
ones connecting hidden nodes with the output layer 
containing the observed reflectance. Two separate 
neural networks with same structure have been trained 
to simulate ice and water reflectances. 

Figures 4 and 5 show the simulated reflectances for 
ice and water respectively. Firstly, these results illustrate 
a satisfactory agreement between simulated and 
observed reflectances. The root mean squared errors 
(RMSE) for both ice and water, summarized in table 1, 
are non significant. However, RMSE values were 
systematically higher when ice reflectances are 
simulated. This can be explained by the fact that ice 
reflectance are highly affected by ice features such as 
roughness, thickness and presence of fractional ice. 
RMSE obtained with simulated water reflectances can 
be generated by the variation of water reflectance due to 
the atmospheric effect as well as to water properties 
such as high concentration in sediments, presence of 
river deltaic deposits and presence of fractional ice. In 
future work, the simulated reflectances will be used to 
retrieve these features.  

Overall, the simulated performances are acceptable 
and very encouraging. This implies that a combination 
of BRDF model and ANN allows simulating ice and 
water reflectances. 

 

 
Figure 4 Observed and simulated ice reflectances 

 

 

 

 
Figure 5 Observed and simulated water 

reflectances 

 

Table 1 Simulation performances and RMSE 
values 

 

4. CONCLUSION 
In this research, the SEVIRI instrument onboard 

Meteosat Second Generation (MSG) satellite was used 
as a prototype for the future GOES-R ABI. The rate of 
observations from SEVIRI (one image per 15 minutes) 
is the same as for GOES-R ABI. 

A neural-network-based model has been used to 
simulate water and ice reflectances over the Caspian 
Sea. Pixels geometry defined by the three solar, 
azimuthal and satellite angles were the primary input to 
the model. Trigonometric functions such as sine and 
cosine have also been considered. A fine tuning exercise 
allowed us to select an optimal structure of the used 
neural network.  

 The developed ice detection and mapping algorithm 
have been applied to MSG SEVIRI data and have been 
tested over the Caspian Sea. The algorithm has been 
assessed using observed reflectance values. The 
obtained acceptable results have shown that a neural-
network-based BRDF model has an interesting potential 
for ice mapping and monitoring from geostationary 
platforms. The simulated reflectances of water and ice 

 RMSE 
 ICE Water 

Training  5.09% 3.38% 
Validation 5.35% 3.63% 
Testing 5.22%  3.51% 
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will be used in future works for ice features 
determinations. 
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