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1.  INTRODUCTION 

A major challenge for efficient flight planning and air 
traffic management is the accurate forecasting of 
weather that poses a danger to aviation.  In support of 
the Joint Planning and Development Office (JPDO) 
vision of a single, authoritative source of weather 
information for all users, the Federal Aviation 
Administration (FAA) has mandated research and 
development to combine the best available technologies 
used by several FAA-sponsored convective nowcast 
and forecast products into a single Consolidated Storm 
Prediction for Aviation (CoSPA, Wolfson et al. 2008).  
To achieve this goal, an objective technique is needed 
to compare the utility of various predictors and identify a 
subset that may be utilized in an efficient, skillful 
algorithm for storm prediction. 

In this paper, the authors examine the specific 
problem of combining various NWP model, radar, 
satellite and derived fields for forecasting thunderstorm 
initiation in a one-hour timeframe.  For this purpose, a 
machine learning method that creates random forests—
ensembles of weak, weakly-correlated decision trees—
is used to rank predictor importance and provide a 
benchmark for potential algorithm performance.  Using 
data collected over the summer of 2007, this technique 
suggests that the best set of initiation predictors varies 
based on day, hour, and location, presumably because 
of different weather characteristics.  Random forests are 
used to help identify meaningful “regimes” that may 
represent different types of convection, geographical 
locations or synoptic conditions.  Initial results suggest 
that forecasts tuned to each regime may be combined in 
a Takagi-Sugeno style algorithm based on fuzzy regime 
“memberships” to achieve both improved algorithm 
simplicity and performance.  In addition, output from a 
preliminary random-forest prediction algorithm is 
evaluated for two case studies.  Although this work is 
still in its early stages, the authors conclude that this 
approach shows promise and that applying a similar 
methodology to other elements of CoSPA development 
may be worthwhile. 

 
2.  THE PROBLEM 

Several automated convective nowcasting systems 
have been developed for aviation users in recent years, 
including NCAR’s National Convective Weather 
Forecast (NCWF; Megenhardt et al. 2004), NCAR’s 
AutoNowcaster (Saxen et al. 2004) and MIT Lincoln 
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Laboratory’s Corridor Integrate Weather System (CIWS; 
Evans and Ducot 2006).  Each of these systems has 
been developed for a particular application, and each 
has unique strengths.  For example, NCWF addresses 
convective initiation as well as growth and decay, and it 
produces probabilistic forecasts at the national scale; 
the AutoNowcaster, so far focused more regionally, 
enables human interaction as well.  Each system has 
been developed with the guidance of human experts, 
and uses some version of fuzzy logic expert system 
(Yager et al. 1987, Delanoy and Troxel 1993) to 
combine various sources of information to form a 
forecast.  In brief, these fuzzy logic systems encode 
expert-generated heuristics through transformations of 
the input data to form predictor fields, which are then 
combined using weights determined by input data 
quality or relevance to the perceived scenario.  Fuzzy 
logic is a relatively quick and straightforward way to 
build a forecast algorithm that exploits human expertise 
and understanding of the problem domain, and such 
algorithms often perform quite well.  In principle, it is 
possible to tune the data transformation functions and 
combination weights to optimize the fuzzy logic 
algorithm’s performance on a verification dataset.  
However, in the authors’ experience, this tuning is rarely 
done rigorously; instead, the algorithm parameters are 
most often tuned by hand based on a set of case 
studies.  Moreover, the fuzzy logic approach may make 
it difficult to evaluate the potential benefit of a new 
source of information: it must first be integrated into the 
existing algorithm, and if it doesn’t improve the 
algorithm’s skill, it isn’t immediately obvious whether 
that is because the information is not useful or the 
algorithm isn’t utilizing it efficiently.  

The present study is motivated by the FAA’s 
mandate to combine the component technologies used 
by the various convective nowcasting systems to create 
the best possible CoSPA forecast system.  There are a 
number of challenges in this undertaking.  In particular, 
it is desirable to objectively find a minimal set of the 
available predictor fields that provide near-optimal 
forecast skill, preferably without assuming a particular 
form for the algorithm that combines them.  A body of 
empirically-based techniques, variously called statistical 
analysis, data mining, or machine learning methods, is 
ideally suited to addressing this problem.  Such 
techniques “learn” a function that associates a set of 
potential predictor variables with the field being forecast 
(e.g., whether a storm will initiate at that pixel in the next 
hour), and provide a basis for ranking predictor 
importance, experimenting with different predictor sets, 
and developing an algorithm structure that recognizes 
and effectively treats different weather regimes and 
exploits different scales of predictability.  Such methods 
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can also be used to explore different forecast evaluation 
methods and definitions of “truth”.  And, of course, an 
empirically-based algorithm can be used to establish a 
performance benchmark: if a forecast logic using the 
same set of predictor variables does not perform at least 
as well, that may indicate that it is not using the 
available information efficiently.  Finally, if a new 
forecast component becomes available, e.g., from 
industry, this approach will make it relatively 
straightforward to evaluate whether it is likely to provide 
benefit and should be integrated into the forecast 
system.  In addition to the practical benefits, if all goes 
well, this process should uncover patterns and 
relationships that may help researchers better 
understand the underlying physical mechanisms. 

While the planned CoSPA system has a number of 
facets, the topic chosen for the present study is the 
quite difficult problem of predicting one-hour 
thunderstorm initiation.  If a machine learning approach 
demonstrates promise for this initiation nowcast 
problem, the authors plan to use it to address 
convective initiation, growth and decay in the 0-2 hour 
timeframe as well. 

 
3. RANDOM FORESTS 

The technique selected for the present study is 
random forests (Breiman 2001), a powerful, non-linear 
statistical analysis or machine learning technique that 
has previously proven useful for the problem of 
diagnosing regions of atmospheric turbulence that may 
be hazardous to aviation (Williams et al. 2007, Cotter et 
al. 2007).  Essentially, random forests are ensembles of 
weak, weakly-correlated decision trees that “vote” on 
the correct classification of a given input.  The use of an 
ensemble of such trees minimizes the risk of overfitting 
the training set, a significant and well-known problem 
with individual decision trees.  In constructing each tree 
of a random forest, one begins with a “training set” 
containing many instances of predictor variables along 
with an associated “truth” value (e.g., 0 or 1 depending 
on whether or not convective initiation did subsequently 
occur at the given pixel in the next hour).  A “bagged” 
training sample is selected by drawing a random subset 
of n elements from the n-member training set, with 
replacement after each draw. This means that, on 
average, each tree is trained on roughly 2/3 of the 
dataset, including duplicates.  Then, at each node of the 
tree, a subset of only m randomly-selected feature 
variables are chosen as candidates for splitting, 
contrasting with the usual practice of choosing the best 
split from all the feature variables.  A typical choice for 
m is the square root of the number of predictor fields.  
Because not all feature variables are used to train each 
tree, those not used for training (the so-called “out-of-
bag” samples) may be used to evaluate the 
performance of that tree.  This allows the random forest 
training process to estimate the importance of each 
variable based on the degradation in classification 
performance when the variable’s values are randomly 
permuted among the training instances.  Using this 
technique, the feature variables may be ranked in order 

of their importance to the random forest’s performance, 
providing a helpful starting point for performing selection 
of a minimal, skillful set of predictors. 

Once a random forest has been trained, the trees 
function as an “ensemble of experts” to make 
predictions.  For example, Figure 1 shows a conceptual 
diagram of a random forest with 100 trees.  When a new 
data point (or “feature vector”: a set of predictor field 
values at the point for which the forecast is being made) 
is presented, each tree will perform a classification.  
These classification “votes” are then compiled, and can 
be used to classify the point based on the consensus 
“winner”, or the vote distribution may be used to derive a 
probability for each possible class.  For example, if 40 
trees vote “0” (no initiation) and 60 vote “1” (initiation), 
one might be able to scale the 60% classification 
confidence for initiation into a probability, as described 
in a later section. 
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Figure 1: Conceptual diagram of a random forest, an 
ensemble of weak, weakly-correlated decision trees that 
“vote” on the classification of each data point. 

 
4. INITIATION “TRUTH” FIELD 

In order to use random forests to analyze a dataset 
or generate a predictive function, it is first necessary to 
establish a training dataset in which various data 
instances are associated with the desired class.  To 
generate the truth field for the one-hour convective 
initiation problem, it is necessary to identify zones of 
storm initiation and non-initiation.  This binary initiation 
“truth” field was generated by a combination of 
thunderstorm cell tracking software and spatial filters.  
Starting with the composite reflectivity field from NSSL 
(see Zhang et al. 2005) on a 4-km grid, the authors 
used cell tracking software called TITAN (Dixon and 
Wiener 1993) to identify the centroids and extents of 
new storm cells, where a storm was defined as a 
contiguous or near-contiguous region having composite 
reflectivity above 35 dBZ.  A small circular filter was 
then applied to expand the initiation region of interest 
about each initiation point.  A sample truth field is 
depicted in Figure 2.   

In order to isolate the storm initiation process, the 
authors also removed pixels associated with previously 
identified storm cells; these are depicted as gray areas 
in Fig. 2.  This enabled pixels associated with persistent 
convection to be eliminated from the subsequent 
analysis.   



 
Figure 2: Storm initiation “truth” field for 1800 UTC, 27 
Jun 2007.  Pixels associated with new storm initiation 
are pink and non-initiation pixels are simply black.  As 
explained in the text, pixels near previous convection 
(gray areas) are ignored in subsequent analyses.  The 
CoSPA domain is bounded by the green lines. 

 
5. INITIATION PREDICTOR FIELDS 

Random forests are well-suited for evaluating the 
potential skill of a large number of predictors, so as a 
first run, essentially all of the meteorological fields that 
were readily available during the summer 2007 were 
used to train the random forest.   In all, 18 predictors 
from several sources were incorporated.  For each pixel, 
the “feature vector” (or set of predictor fields) included: 

• Satellite-measured radiances at different 
wavelengths (visible, 3.9, 6.7, 11, 13.3 µm), an 
extrapolation, and a cooling rate field 

• Several RUC (e.g., relative humidity and 
Convective Available Potential Energy, CAPE), 
and METAR-derived fields (e.g. lifted index) 

• accumulated precipitation from radar data 
analysis 

• MIT-LL fields (e.g. boundary detection, air-mass 
storm identification). 

All of the predictor fields were interpolated to the same 
4-km grid as the truth field.  Additional fields in future 
operations will include wind shear, surface 
characteristics, and many others from the archive of 
2007 data and future data collection efforts. 

  

6. RANDOM FOREST TRAINING AND RESULTS 
 
6.1 Random forest prediction of initiation 

Using data collected in the 2007 convective season 
(June-August), the random forest technique was trained 
to use the 18 predictor fields described above to predict 
one-hour storm initiation at each pixel.   A 50000-pixel 
subset of the 2007 data was used to train a 200-tree 
random forest to classify each pixel as either a storm 

initiation location or a non-storm initiation point.  In order 
to speed up the training process, and because the non-
initiation points greatly outnumber the initiation points, a 
disproportionate percentage of initiation points were 
included in the training set so that the total number of 
initiation points and non-initiation points were roughly 
equal. 

Some data were purposefully withheld from the 
training set in order to have a set of independent cases 
on which to test the predictive skill of the trained random 
forest.  Figure 3 below shows the results of applying the 
trained random forest to one of these cases.  It shows 
the number of votes for storm initiation on 27 June at 
1800 UTC given the predictor values available at 1700 
UTC (one-hour lead time).   Note that  this is the same 
case shown in Fig. 2, and the white spaces correspond 
to pixels that have been removed due to the presence of 
pre-existing convection.  The number of votes can be 
thought of as a confidence in the prediction of storm 
initiation.  In this case, the greatest confidence (red) is 
along and just ahead of a cold front entering the 
northwest quadrant and in a broad area east of the 
Great Lakes.  Moderate values (orange) exist in 
scattered locations further south. 

How does this prediction do when compared to the 
storm initiation “truth” field (Fig. 2)?  Figure 4 shows the 
skill of the trained forest using traditional contingency 
table statistics (i.e. hits, misses, false alarms and correct 
nulls).  As the skill scores suggest, there is still much 
room for improvement; for example, the Gilbert Skill 
Score (GSS, also known as equitable threat score) is 
only 0.141.  However, considering the high resolution of 
the data grid and the difficulty of the initiation prediction 
problem, these scores suggest that the random forest is 
a promising approach.  As a post-processing exercise, 
one could calibrate the number of votes to be equivalent 
to probability using a reliability diagram that associates 
each possible number of votes with the conditional 
observed frequency of initiation.   

 

 
Figure 3: Case study results from a trained random 
forest used as a predictive algorithm, showing number 
of votes for storm initiation.  The embedded white zones 
correspond to previously-existing convective echo, 
which has been eliminated from this analysis. 



 

 
Figure 4: Case study results from a trained random 
forest used as a predictive algorithm, showing correct 
predictions of storm initiation points (green), missed 
points (blue), false alarms (red) and correct null 
forecasts at 1800Z 27 Jun 2007.  The prediction of 
storm initiation is based on the number of votes from 
each tree in the random forest, with the vote threshold 
calibrated in post-processing mode to eliminate forecast 
bias. 

In addition to providing a predictive algorithm the 
random forest provides an assessment of the 
“importance” of each predictor, as illustrated in Fig. 5 for 
this initial proof-of-concept run.  We expect these ranks 
to change as we refine the analysis process, add new 
predictors, and apply the predictors to a larger training 
set.  These importance lists may be used as a first step 
toward determining a subset of the predictors that 
produces a random forest with equal skill to the original, 
more complicated forest.  However, the ideal subset is 
not necessarily comprised of just the top-ranked 
predictors, which may not be uncorrelated.  A rigorous 
variable selection process will probably require forwards 
and/or backwards selection of progressively adding or 
subtracting predictors, training the random forest on the 
new predictor set, and re-evaluating it.  

 

 
Figure 5: Ranked importance of predictors in a 
preliminary random forest analysis.   This random forest 
of 200 decision trees was trained to identify storm 
initiation locations at a lead time of one hour based on a 
50000 member balanced training set sampled from 
summer 2007 data. 

 
6.2 Predictor importance variation in time 

  By training random forests on data collected at 
different times or on different days and comparing the 
variable importance lists, one can also track the 
importance of a predictor over time and consider 
whether the changes in variable importance are tied to 
distinct weather regimes.  If so, it may be worth training 
separate forests depending on the regime.  In the 
summer of 2007, random forests were used in this 
fashion to analyze predictor field importance for each 
entire day and for morning, afternoon, and evening 
subsets.  These early results suggested that the 
importances of stability fields (e.g. CAPE) are 
particularly sensitive to the phase of the diurnal cycle.  
Additionally, Fig. 6 illustrates how the importance of 
seven predictor variables changed over a two-month 
period.  Unfortunately, problems were discovered with 
how some of the fields used in this study were 
computed, so these results should be taken as 
illustrative only. 

 

 
Figure 6: The importance of seven predictors over a 
two-month period in the summer of 2007.   These 
results are from an early iteration of the random forest 
technique and should be only used as an illustration, not 
as a substantive result.  

 
6.3 Regime-specific forecasts 

Recent work has focused on developing techniques 
for automatically identifying regions influenced by large-
scale frontal forcing (i.e. areas where line storms are 
most likely to occur if convection initiates or is initiating).  
The authors identified polygonal line storm and air mass 
areas for several cases selected from the summer 2007.  
Additional training cases are needed, but a preliminary 
proof-of-concept is summarized in Figs. 7 and 8.  These 
plots show the results of two random forests applied to a 
test case on 10 July 2007.  One forest was trained to 
predict initiation in line storm regions, and the other was 
used to predict initiation in unorganized convection 
cases.  See Fig. 7 for an example of the human 
identification of data regions used to train them.  In this 
case study, the random forests predicted high 
probabilities of convective weather in distinct areas that 



largely mirrored the separation of weather types seen in 
the observations (Fig 8). In particular, the random forest 
trained on line-storm cases picks up the area of storm 
initiation right in the middle of the observed line storms.  
The random forest trained on unorganized convection 
cases highlights a different area, showing a large 
number of votes in the unorganized air-mass 
thunderstorm region observed further south and east, 
while almost entirely ignoring the line storm area.   
These results suggest training random forest initiation 
forecasts based on different weather types may help 
capture the distinct physical mechanisms in each 
regime.   

  

 
Figure 7: Human-drawn polygonal boundaries around 
regions of predominantly linear convection (dark blue) 
and unorganized convection (green).  A random forest 
trained on data from one of these regimes appears to 
exhibit better performance in that regime, suggesting 
that distinct regime-specific forecast logic may be 
beneficial.  

 
6.4 Takagi-Sugeno algorithm architecture 

In addition to the human-identified regimes 
identified above, random forest and other automated 
clustering techniques are being investigated as possible 
methods for identifying regimes.  Once a set of 
meaningful regimes is identified and a method is 
established for estimating regime memberships (e.g., 
using a separate random forest), a Takagi-Sugeno fuzzy 
logic “combiner” can be developed, tuned, and 
evaluated, with the goal of exceeding the performance 
benchmark established by a “naïve” random forest.  The 
idea here is that, instead of just training a random forest 
to recognize generic storm initiation, different random 
forests or fuzzy-logic modules would be applied to 
targeted areas based on the expected regime or 
convective mode.  The convective mode could be 
determined by an automated evaluation of radar echo 
structure (e.g., Williams and Abernethy 2008) or an 
independent random forest prediction of weather type, 
based on a training set of human-entered polygons, 
similar to those shown in Fig. 7.  

 

 

a)  

b)  

c)  

Figure 8: a) Test case on which the two regime-based 
random forests were run.  This particular day, 10 July, 
2007, saw an initiation of convection in a solid line 
across a wide span of the upper Midwest (WI to MO) 
around 1845 UTC (solid white contours).  The 2-h VIL 
forecast valid for the same time (color filled) had no 
chance to predict the new lines since it is based on 
extrapolation.   b) Vote count for storm initiation by the 
random forest trained on line storm regions.  The votes 
were cast based on 18 UTC conditions.   c) Vote count 
for storm initiation by the random forest trained to 
recognize unorganized convection initiation.  In this 
case the votes were based on conditions at 17 UTC.   



7.  CONCLUSION 

This paper has shown that the random forest 
machine learning approach provides a tool for 
identifying a set of skillful predictors for thunderstorm 
initiation as well as providing a performance benchmark.  
The random forest approach may also be used to help 
identify “regimes” in which special forecast logic 
provides improved skill.  It is anticipated that these may 
be exploited in a Takagi-Sugeno fuzzy logic 
architecture, in which regime memberships are 
estimated, the forecast logic for each regime is run, and 
the results are combined based on the membership 
values.  In the future, random forests may also be used 
to investigate how potential forecast performance is 
sensitive to the definition of “truth”, helping to determine 
reasonable forecast evaluation methods.  Finally, 
random forests could eventually be used as an element 
of the CoSPA forecast logic; for instance, real-time 
dynamic training or calibration of a random forest could 
be used to make the nowcast adaptable.  Thus, the 
random forest tool shows good promise for use in the 
development of CoSPA one-hour initiation forecasts, 
and seems likely to be helpful for developing forecasts 
of  growth and decay and additional lead-times as well. 
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