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1. INTRODUCTION 
 
Forecasting severe weather requires forecasters 
to process a significant number of parameters 
(Doswell et al. 1996) and to identify patterns 
associated with severe weather. Doswell (1986) 
pointed out the need for humans in the forecast 
process to perform both diagnostic and 
prognostic tasks.  High speed computers and the 
ability to diagnose and integrate large datasets 
facilitate using automated algorithms to aid in 
performing these tasks. These algorithms can 
provide alerts based on patterns and past history 
of a potential weather event.  
 
A severe weather pattern classifier was 
developed by Root et. al (2007) in which a 
clustering algorithm was employed to 
objectively identify anomaly patterns or 
fingerprints associated with severe weather.  
They showed some skill in predicting severe 
weather events based on these anomaly patterns. 
Though less sophisticated than that approach this 
paper describes a methodology employed at a 
local forecast office to accomplish a similar task. 
 
It will be shown here, that by using data mining 
techniques predictors can be developed to assist 
forecasters in anticipating severe weather events. 
A serious question is whether or not integrating 
large databases and using AI algorithms is 
sufficient to adequately describe severe weather 
predictors based on what we already know.  This 
paper attempts to accomplish this and will 
present a severe weather alert system developed 
by analyzing previous severe weather events and 
existing grid re-analysis datasets with AI 
algorithms.  
 
2. DATA and METHODS 
 
i. datasets  
The National Climatic Data Center (NCDC) 
severe weather data base was used to identify 
severe weather events. The area of study was 
confined to the Mid-Atlantic region. The Storm 
Prediction Center (SPC) dataset was also used 
for comparative purposes. This provided a set of 

severe weather events based on time and 
geographic location. The types of severe weather 
included convectively produced severe winds 
(winds>50Kts), hail (size>0.75 inches), and 
tornadoes (F1-F5).  Events from 1979-2007 were 
used in this study since this corresponded to the 
gridded data set period.  
 
The gridded data used for this study was the 
North American Regional Reanalysis (NARR: 
Messinger et. al). This facilitated obtaining data 
variables within 32km of any severe weather 
report and provides a robust set of variables. The 
NARR variables extracted are presented in Table 
1. This list represents a small subset of variables 
available for study. The NARR data has 3-hourly 
resolution which facilitated time matching within 
1.5 hours of any event. Brooks et al. (1994) used 
proximity soundings to evaluate severe weather 
parameters and limited cases to where a 
sounding was available within 5 hours and 300 
km of the observed severe weather. The NARR 
allows for the retrieval of closer proximity data 
in both space and time. 
 
ii. Methodology 
 
Severe weather events were extracted from the 
severe weather database. Initially, reports within 
50 km of State College were collected and used 
to compare to the NARR variables. This 
produced too few cases.  The severe weather 
collection method was revised to obtain a more 
robust dataset. Thus, the search area was 
expanded to include the Mid-Atlantic region, 
which comprised of Pennsylvania and its 
surrounding states. 
 
The Mid-Atlantic severe data set produced 1443 
tornadic events, 5366 hail events, and 21,772 
wind events.  For each event, the time, latitude, 
and longitude were saved.  The event time was 
rounded to the nearest 3 hour time interval in 
order to match the NARR data set.  NARR data 
was then extracted for the variables listed in 
Table 1 to build the training dataset. 
 



Figure 1. Decision tree for tornadic events produced by WEKA.  Each node (ovals and circles) show the 
variable and the criteria used to produce the decision. Rectangles show terminal decisions for tornadic or non-
tornadic events. For each event type forecast, the  number of correctly and incorrectly forecast events is shown. 
For example, for MSLP less than or equal to 1011.7 hPa and PW less than or equal to 16.5 mm 47 non-tornadic 
events were correctly forecast and 7 events were incorrectly forecast.  

The Waikato Environment for Knowledge 
Analysis (WEKA:Witten and Frank, 2005) was 
used to develop decision trees and neural 
networks from the tornado, hail, wind, and 
combined severe weather dataset  WEKA 
employs Quinlan’s C4.5 decision tree algorithm 
(Quinlan, 1993) and an implementation of a 
neural network.  Several variables in WEKA can 
be adjusted to increase pruning and to prevent 
over fitting.  This produces a decision tree that is 
more robust and able to generalize well on new 
unseen data.  It also produces a smaller tree that 
can easily be turned into an operational program 
for alerting forecasters to the possibility of 
severe weather, similar to the system presented 
by Root et al. (2007).  The neural network 

implementation has similar tunable variables to 
prevent over fitting. 
 
In order to use WEKA to train on the data a 
comparable number of non-event days were 
required. For simplicity, non-event days were 
obtained by picking times 24 hours prior to each 
observed event. An improvement would require 
ensuring no severe weather was observed on that 
date.  
 
3. RESULTS 
 
Tables 2 & 3 show the skill scores and sizes of 
the resulting decision trees by severe weather 
type.  The overall results are promising and 
imply gridded data can be used to alert 



forecasters to the potential for severe weather 

events approximately 80% of the time. The 
strongest signal was associated with tornadic 
events which had slightly higher correctly 
classified events, a higher critical success index 
(CSI), and the higher CSI for detecting non-
events.  
 
The rest of this section will focus on analyzing 
the decision tree logic for each event to ensure 
the results truly represent the state of the 
atmosphere when producing the severe weather.  
 
i. Tornadic events 
 
Figure 1 shows the decision tree for tornado 
events.  The first branch of the tree is based on 
the value of mean sea-level pressure. The 
majority of tornadoes were correctly predicted 

on the left side of the tree. The mean sea level 

pressure (MSLP) and precipitable water (PW) 
allowed for quick retrieval of 636 events, based 
on the combination of surface pressure less than 
1007 hPa and PW values greater than 16.5 mm.  

Figure 2 As in Figure 1 except for severe thunderstorms producing hail. 

 
Similar to past studies, the 500 hPa winds 
(Giordano and Fritsch 1990) helped retrieve an 
additional 104 events with 81 northwest flow 
events. The helicity, convectively available 
convective energy (CAPE), and low and mid-
level winds helped to identify over 300 
additional events.  
 
The right hand branch of the tree, with MSLP 
greater than 1011.7 hPa excelled at predicting 
non-tornadic events. Tornadic events were 
generally much harder to obtain in this portion of 
the tree. The simplest branch was associated with 



strong 700 hPa southerlies and high Precipitable 
Water (PW).  This branch identified 27 
tornadoes 2 levels down indicating a 
considerable amount of logic processing was 
required to capture tornadic events down this 
branch.  Similar to the left side, PW, winds, and 
helicity played critical roles in describing the 
tornadic events deep down this tree. This 
represented a difficult logic progression for a 
human to make, though it contained many of the 
signals forecasters often examine when 
predicting severe weather. For example, the 
concept of the lifting condensation level (LCL) 
height (Markowski et al 2000) and its 
relationship to the strength of the rear flank 
downdraft (RFD) helped to identify 59 additional 
tornadic events at such a deep level in the tree. 
  
ii. Hail events 
 
The decision tree for Hail events is shown in 
Figure 2.  Unlike the tornado tree, in this tree 

CAPE was the most influential predictor in 
distinguishing hail events from non-hail events. 
It should be noted that the threshold values were 
quite small (265JKg-1).   
 
The majority of the non-hail events (1865) 
appear on the left side of the tree with the lower 
values of CAPE.  The hail events that appear on 
the left side may indicate problems with the 
severe weather dataset or cooler mid-level 
conditions under northwest flow.  The weak v-
wind components at 500 mb, strong u-wind 
component and the relatively cool 850 hPa 
temperatures may suggest cooler conditions 
associated with northwest flow severe weather 
events.   
 
The right side of the tree contains the majority of 
hail events (4984) compared to the left side 
(476).  This side of the tree describes an 
atmosphere of high instability and shear.  One 
level down, the 500 hPa v-wind obtains 900 hail 

Figure 3 As in Figure 1 except for severe thunderstorm wind events. 



events.  The majority of hail events (1570) are 
obtained 5 levels down and were associated with 
moist, unstable air and strong southwest flow as 
indicated by the low lifted indices and strong u,v 
wind components at upper levels.   
 
With weaker winds at the u-wind 500 hPa  
decision point, the hail events are more difficult 
to discern.  These conditions likely represent the 
weakly sheared pulse thunderstorm environment.  

These events require more unstable conditions 
associated with higher heat and humidity.  One 
portion of the right branch differs somewhat 
from the rest and leads to a specific type of 
severe thunderstorm.  It shows hail events at the 
bottom of the tree associated with high 

instability and deep low-level warmth with LI’s 
less than -4.2 and 850 temperatures > 13.7 C.  
Following the decision tree beneath these levels 
reveals the weakly sheared environments 
associated with true pulse thunderstorms. 
Moisture and mid-level instability are important 
indicators of this event type (Medlin, et. al., 
2006).   
 
For hail events, the strongly forced events are 
easily uncovered by WEKA. However, many of 
the weakly forced events required complicated 
decisions, ideally suited for an AI alert system. 
 
 
iii. Convective wind events 
 
Figure 3 shows the decision tree to distinguish 
between severe convective wind events and non-
events.  Overall, the key decision is based on 
CAPE, similar to that found for hail, and the 
majority of non-events are found on the left 
branch. This decision tree has a complex right 
side associated with higher CAPE and a simple 
left side that quickly identifies a large number of 
non-events (6849 successfully classified with 
only 51 non events misclassified) only 2 levels 
down from the root node.   
 
The right side of the tree defines the majority of 
severe wind events where CAPE values are 
higher.  There appear to be two types of 
convective wind scenarios.  One branch is 
associated with a relatively deep low pressure 
system with MSLP less than 1011 hPa and 
quickly captures 8334 events when the 500 u-
wind is strongly southerly (u-wind > 25), the 500 

hPa height is greater than 5648 m and the 850 
hPa height is greater than 1395 m.  Further down 
this branch weaker mid and upper level winds 
combined with very unstable air (LI < -3) hint at 
the possibility of a pulse severe storm 
environment. 

Type Number 
of 

Instances 

Percent 
Correctly 
Classified 

Percent 
Incorrectly 
Classified 

Number 
of Leaves 

MAE RMSE 

Tornado 2584 81.9 18.1 23 0.2515 0.3737 
Hail 9040 76.4 23.6 27 0.3222 0.4109 
Wind 35167 77.2 22.8 29 0.3235 0.4047 
Table 2. Size of decision tree and various skill scores for tornadic, hail, and severe 
wind events for the Mid Atlantic region.  Mean Average Error (MAE) and Root 
Mean Square Error (RMSE) are also shown. 
 

Parameter Level or Layer 
Precipitable Water Column 
Mean Sea Level 

Pressure 
Surface 

CAPE Column 

CIN Column 
Helicity Column? Or 0-

3km? 
Lifted Index Surface based?
LCL Height Arbitrary 

Geopotential 
Height 

1000, 925, 850, 
700, 500 mb 

Temperature 1000, 925, 850, 
700, 500 mb 

Wind U-
component 

1000, 925, 850, 
700, 500 mb 

Wind V-
component 

1000, 925, 850, 
700, 500 mb 

Table 1. Parameters extracted from 
the NARR data for each severe 
weather event and used in the 
training data set. 
  



 
The rightmost branch under the MSLP node 
shows moist, unstable conditions, and strong 
winds are required to generate convective winds 
when surface pressures are greater than 1011 
hPa. One branch quickly gets 3165 events when 
the LI is less than -2.9 and the 500 hPa u-winds 
are greater than 29.8kts and the CIN is greater 
than -36.2JKg-1.  This branch confirms the idea 
that most strong severe weather in the Mid-
Atlantic Region events occur with strong 
instability and a convective cap that must be 
broken in order to release deep-moist convection.   
With weaker 500 hPa winds, another 1070 
events can be obtained with cold 700 hPa 
temperatures.  The remainder of this branch 
describes an environment for the classic pulse 
severe storm.    Very high heat and moisture at 
low levels are indicated by the high PW values, 
Lifted Index, and low level temperatures.  At 
mid and upper levels relatively weak winds and 
cold temperatures were present.  These factors 
contribute to slow-moving deep, moist 
convection.  Similar useful predictors associated 
with pulse severe storm environments were also 
shown in Figure 2. 
 
 
4. CONCLUSIONS 
 
A decision tree was used to identify atmospheric 
predictors for 3 types of severe weather in the 
Mid-Atlantic region: tornadic, hail, and severe 
winds. Overall, the decisions trees showed  

meteorologically consistent results and the 
initial trees suggest some AI logic could aid 
forecasters in searching out and identifying 
useful information in complex severe 
weather situations. 
 
The decision tree appeared to show the most 
skill at identifying tornadic environments 
with a CSI of 0.83.  This skill is most likely 
due to the combination of favorable 
atmospheric parameters that come together 
to produce a strong signal.  Generally, 
tornadic events in the Mid-Atlantic region 
result from a strongly forced synoptic 
environment and thus a strong signal is 
present during most of these events. The 
signal is characterized by low pressure; high 
low-level heat and moisture; strong winds to 
produce favorable environmental shear and 
helicity; and a thermodynamic profile that 
favors deep, moist convection. 

 
Decision tree skill is slightly lower for hail and 
severe wind events.  The tree shows that hail 
events have two distinct types: strongly forced 
with high shear and weakly forced, where higher 
PW and mid-level cool temperatures are needed 
to identify pulse severe events. These harder to  
identify events are ideally suited for AI 
applications to aid forecasters. 
 
The wind events are similar to hail events and 
are associated with two types of scenarios:  a 
highly sheared environment and a low-shear, 
highly-buoyant atmosphere. Again, in the lower 
sheared environment the AI approach may aid 
forecasters in identifying these events.  
 
Decision trees confirm the current ideas and 
methodologies long used by operational 
forecasters in identifying synoptic scale severe 
weather characteristics. In these cases, the alert 
system could lend increased confidence to 
forecasters in their identification of a potential 
severe weather day.  What cannot be overlooked 
is the ability for the decision tree to easily 
identify non-events. Some of the non-event logic 
is elegantly simplistic. The alert system could be 
tuned to give forecasters more confidence in a 
low probability event day.  
 
Subtle nuances for identifying severe events are 
shown by the more complex decision tree logic.  
An automated classification and alert system 
using decision tree logic may prove helpful in 
identifying severe weather events associated with 

Type Event 
Type 

POD FAR CSI 

Tor 0.799 0.161 0.832 Tornado 
 
 

Non-Tor 0.839 0.201 0.807 

Hail 0.773 0.246 0.759 Hail 
 
 

Non-Hail 0.754 0.227 0.769 

Wind 0.787 0.243 0.764 Wind 
Non-
Wind 

0.757 0.213 0.781 

Table 3. Event vs. Non-Event skill scores for 
tornadic, hail, and severe wind events for the 
Mid Atlantic region.  Probability of Detection 
(POD), False Alarm Rate (FAR), and Critical 
Success Index (CSI). 
 



weak synoptic scale conditions.  In addition to 
the alert for such potential the system should 
produce some indication of what predictors, not 
normally used, triggered the alert so that 
forecasters can investigate the potential further.  
The decision tree could run on operational model 
guidance as new model data comes into the 
forecast office.  The output of the decision tree 
could be used to display a pop-up window at the 
forecaster’s workstation alerting them to the 
potential of severe weather for that particular 
forecast valid time.   In addition, the output 
would let forecasters know which predictors and 
threshold values led to this decision so that they 
could investigate those predictors further.  
 
 
5. References 
 
Brooks,H.E., C.A. Doswell III, and J. Cooper 

1994: On the environments of tornadic and 
non-tornadic mesocyclones. Wea. and 
Fore.,9,606-618. 

 
Brooks, A. R. Anderson, K. Riemann, I. Ebbers, 

and H. Flachs, 2005: Climatological aspects 
of convective parameters from the 
NCAR/NCEP reanalysis.  Atmos. Res., 
submitted. 

Doswell, C.A. III (1986): The Human Element in 
Weather Forecasting, Nat. Wea. Dig., 11, 6-
17. 

 
Doswell,C.A III, Harold E. Brooks, and Robert 

A. Maddox (1996): Flash Flood Forecasting: 
An Ingredients-Based Methodology Wea.  
And Fore, 11, 560-581. 

 
Hall, T., H.E. Brooks, and C.A. Doswell III 

(1999): Precipitation forecasting using a 
neural network. Wea .and  Forecasting, 14, 
338-345.  

 
North American Regional Reanalysis. Fedor 

Mesinger,  Geoff DiMego,  Eugenia 
Kalnay,  Kenneth Mitchell,  Perry C. 
Shafran,  Wesley Ebisuzaki,  Dušan Jović,  
Jack Woollen,  Eric Rogers,  Ernesto H. 
Berbery,  Michael B. Ek,  Yun Fan,  Robert 
Grumbine,  Wayne Higgins,  Hong Li,  Ying 
Lin,  Geoff Manikin,  David Parrish, and 
Wei Shi Bulletin of the American 
Meteorological Society    
Volume 87, Issue 3 (March 2006) pp. 343–

360  
DOI: 10.1175/BAMS-87-3-343 

 
Ian H. Witten; Eibe Frank (2005). Data Mining: 

Practical machine learning tools and 
techniques, 2nd Edition. Morgan Kaufmann, 
San Francisco. Retrieved on 2007-06-25. 

 
Markowski P. M., J. M. Straka, and E. N. 

Rasmussen, 2000: Surface thermodynamic 
characteristics of rear flank downdrafts as 
measured by a mobile mesonet. Preprints 
20th Conf. on Severe Local Storms, Orlando, 
FL, Amer. Meteor. Soc., 251–254 

 
McCaul, E.W. Jr., C. Cohen and C. Kirkpatrick 

(2005): The sensitivity of simulated storm 
structure, intensity, and precipitation 
efficiency to environmental temperature, 
Mon. Weather Rev. 133, pp. 3015–3037. 

 
Medlin, Jeffrey M., and Jack Cullen (2006):  A 

Theromdynamic Investigation of the Early 
Afternoon Wet Microburst Pre-Storm 
Environment over Southern Alabama and 
the Western Florida Panhandle.  National 
Wea. Dig., 30, 61-67. 

 
Quinlan, R., 1993. Programs for Machine 

Learning.  ISBN:1-55860-238-0 Morgan 
Kauffman, 1993 

 
Witten Ian H. and Eibe Frank, 2005.  Data 

Mining.  Practicle Machine Learning Tools 
and Techniques. 2nd Ed. Morgan Kaufmann 
Publishers.  500 Sansome Street, Suite 400, 
San Fransisco, CA 94111 

 

http://www.cimms.ou.edu/%7Edoswell/human/Human.html
http://www.cimms.ou.edu/%7Edoswell/human/Human.html
http://www.cimms.ou.edu/%7Edoswell/Methodology/Flash_Floods.html
http://www.cimms.ou.edu/%7Edoswell/Methodology/Flash_Floods.html
http://www.nssl.noaa.gov/%7Ebrooks/hall/neural.html
http://www.nssl.noaa.gov/%7Ebrooks/hall/neural.html
http://www.cs.waikato.ac.nz/%7Eml/weka/book.html
http://www.cs.waikato.ac.nz/%7Eml/weka/book.html
http://www.cs.waikato.ac.nz/%7Eml/weka/book.html
http://en.wikipedia.org/wiki/2007
http://en.wikipedia.org/wiki/June_25

