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1. INTRODUCTION

Deterministic forecasts of tropical cyclone (TC) in-
tensity are typically verified by calculating a sum-
mary accuracy measure, such as mean absolute
error or mean squared error. These summary mea-
sures quantify, with a scalar value, the quality of the
relationship between a set of forecasts and the cor-
responding set of observations (i.e. “forecast qual-
ity”). While a useful simplification, representation
of forecast quality with a summary accuracy mea-
sure does not respect the complexity of the rela-
tionship between forecasts and observations. To
obtain a complete representation of forecast quality,
the joint probability distribution of forecasts and ob-
servations must be estimated. Here, such joint dis-
tributions are estimated for operational forecasts of
TC intensity (produced by the NHC, Decay-SHIPS,
SHIFOR and GFDL), using 5 recent years of At-
lantic basin forecasts and the corresponding best
track observations. Analysis of the joint distributions
shows that for all forecast systems/agencies, inten-
sity predictions tend to asymptote with lead time to-
ward the central tendency of the climatological in-
tensity distribution. It is argued that this behavior
is a response to the demand that operational TC
intensity forecast systems minimize the mean ab-
solute error of their predictions.

The organization of this paper is as follows. First,
mean absolute error verification and the results of
its application to operational TC intensity forecasts
are reviewed in Sec. 2. Subsequently in Sec. 3, es-
timates of the joint probability distributions of opera-
tional TC intensity forecasts and the corresponding
observations are presented. Sec. 4 links the first-
order nature of the joint distributions to the demand
of mean absolute error minimization. Finally, a brief
summary of the work described herein and conclu-
sions are contained in Sec. 5.
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2. MEAN ABSOLUTE ERRORS

Consider a verification data sample, denoted
{(fk, xk); k = 1, . . . , N}, consisting of N forecasts,
f , and the corresponding observations, x. In this
context, mean absolute error is defined as

MAE =
1

N

N∑

k=1

|fk − xk|. (1)

Fig. 1 shows the MAE for four operational TC in-
tensity forecast systems, at eight lead times rang-
ing from 0 to 120 hours (32 total verification data
samples). The forecast systems/agencies repre-
sented are the National Hurricane Center forecast-
ers (abbreviated “OFCL”, the official forecast), the
5-day Statistical Hurricane Intensity Forecast model
(SHF5), the Decay-Statistical Hurricane Intensity
Prediction Scheme (DSHP), and the GFDL/URI
coupled hurricane-ocean model (GFDL). For each
forecast system at each lead time, the verifica-
tion data sample is composed of intensity predic-
tions for Atlantic basin TCs (from the 2001 through
2005 seasons) and the corresponding “observa-
tions” from the best track analysis. To facilitate
fair comparison amongst the forecast systems, only
cases where all four forecasts exist and can be
compared against an existing best track observa-
tion are included in the verification data samples1.

Fig. 1 is the standard format for display-
ing/comparing the performance of TC intensity fore-
cast systems (e.g. Franklin cited 2007; Knaff et al.
2003; DeMaria et al. 2005; Bender et al. 2007, for
OFCL, SHF5, DSHP, and GFDL forecasts, respec-
tively). To first order, TC intensity forecast systems
are driven to produce the lowest possible line on this
plot, as the forecast system with the lowest MAE is
considered the “best”. Thus, efforts to improve of
the quality of predictions from an intensity forecast
system proceed with the goal of MAE minimization,

1Further details concerning the verification data samples (and
this work in general) can be found in the full manuscript entitled
“A case study of deterministic forecast verification: Tropical cy-
clone intensity”, available at web.mit.edu/jonmosk/www.



without explicit regard to other attributes of forecast
quality. To understand the consequences for overall
forecast quality of this MAE minimization approach
to intensity forecast system development, the joint
probability distributions of operational TC intensity
forecasts and the corresponding observations must
be analyzed.

3. JOINT PROBABILITY DISTRIBUTIONS

To fully appreciate the complexity of a verification
data sample, as embodied in a joint distribution
of forecasts and observations, it is useful to work
backwards from the familiar MAE expression of Eq.
1. The MAE takes the average of a collection of
absolute errors, {|ek| = |fk − xk|; k = 1, . . . , N},
resulting in a scalar value. Instead of taking this av-
erage, one could imagine plotting the relative fre-
quency distribution of the |ek| to investigate how
often each magnitude absolute error occurs in the
verification data sample. Better yet, the relative fre-
quency distribution of the ek could be plotted, to dis-
tinguish between errors of opposite sign, but the
same magnitude. However, this still leaves con-
siderable ambiguity about the relationship between
the forecasts and observations. In terms of er-
ror, (fk, xk) = (30 kt, 50 kt) is indistinguishable from
(fk, xk) = (130 kt, 150 kt), for example. To elimi-
nate this sort of ambiguity, one must consider the
joint relative frequency distribution of forecasts and
observations, rather than a relative frequency dis-
tribution of errors. This joint relative frequency dis-
tribution distribution serves as an easily-obtainable
estimate of the joint probability distribution, p(f, x),
and describes all the time-independent information
that a verification data sample has to offer about the
forecasts, the observations, and their relationship. It
is the fundamental instrument of the “distributions-
oriented” approach to verification (Murphy and Win-
kler 1987).

Simply plotting the joint distribution of forecasts
and observations can lead to useful insights about
forecast quality. In Fig. 2, the joint distribution of
OFCL forecasts and best track observations is plot-
ted at each of four different lead times. In each
panel, dots are drawn for all (f, x) with non-zero
relative frequency in the corresponding verification
data sample, with the colors representing the mag-
nitude of the relative frequency according to the
nonlinear scale detailed below Fig. 2. Note that the
joint distribution is discrete, such that (f, x) is in-
dicative of certain ranges of f and x; for example

(f, x) = (70, 85) represents 67.5 ≤ f < 72.5 and
83.5 ≤ x < 88.5. Like Fig. 2, Figs. 3–5 show the joint
distributions for the SHF5, DSHP, and GFDL, re-
spectively. All such joint distributions are estimated
based on the same verification data samples used
to calculate the MAEs shown in Fig. 1.

If a sample of deterministic forecasts were per-
fect, its joint distribution with the corresponding
sample of observations would show dots only along
the diagonal, f = x. Figs. 2–5 demonstrate that
this is not the case for any of the TC intensity fore-
cast samples, even at the 0 h lead time (because
operational analyses of intensity do not necessar-
ily match the best track values). At the 36 h lead
time, all four forecast samples show a widening of
the joint distribution about the (diagonal) major axis,
indicating a growing proportion of large forecast er-
rors. By the 72 h lead time, the joint distributions
have widened further about their major axes and the
major axes have rotated into a more vertical orien-
tation. Finally, at the 120 h lead time, the rotation of
the major axes into the vertical is more evident, and
if anything, the joint distributions have gathered in
towards their major axes rather than spreading out
further.

It is important to reiterate that the evolution of the
joint distributions in lead time described above is
common to all four forecast systems. Such evolu-
tion signifies the same type of deficiency in forecast
quality amongst the forecast systems: conditional
bias2 that grows in magnitude with lead time. The
clearest example of conditional bias is in the SHF5
forecasts at the 120 h lead time, as shown in Fig. 3d.
For high intensity observations the corresponding
forecasts are generally too low, and for low intensity
observations the corresponding forecasts are gen-
erally too high. This pattern of conditional bias is
present for all forecast systems for all positive lead
times shown in Figs. 2–5, and is ultimately indica-
tive of the influence of MAE minimization, as will be
described subsequently.

4. DIAGNOSING THE INFLUENCE OF MAE
MINIMIZATION

The conditional bias inferred from the joint distribu-
tions in Figs. 2–5 is a direct result of the changing
nature of the marginal distributions of forecasts with
lead time. Ideally, a marginal distribution of fore-

2Conditioning on the observation, specifically. This is called
type II conditional bias.
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casts,
s(f) =

∑

x

p(f, x),

would match the corresponding marginal distribu-
tion of observations,

t(x) =
∑

f

p(f, x),

implying that each intensity value is forecasted as
often as it is observed. In Fig. 6, marginal distribu-
tions of operational TC intensity forecasts (dashed
lines) are superimposed upon the marginal distri-
bution of observations (solid line), each panel for a
different lead time. For display purposes, continu-
ous approximations to the discrete marginal distri-
butions are shown. One can see that as lead time
advances, the marginal distributions of forecasts
sharpen relative to the marginal distribution of ob-
servations. This is because too many forecasts of
moderate intensity TCs are made while too few fore-
casts of strong and weak TCs are made (relative
to observed intensity occurrences), a phenomenon
that becomes more pronounced with lead time. The
sharpening of the marginal distributions of forecasts
is manifested in the joint distributions of Figs. 2–5 as
a rotation of the major axis from the diagonal into a
more vertical orientation and an attendant contrac-
tion of the distribution about the more vertical ma-
jor axis. Such an evolution of the features of the
joint distribution is necessary to accommodate the
sharpening of the marginal distribution of forecasts.

The sharpening of the marginal distributions of
forecasts as lead time advances is a ultimately a
consequence of MAE minimization. This can be un-
derstood by viewing deterministic TC intensity pre-
diction within the context of probabilistic TC inten-
sity prediction, the theoretically-correct approach.
Although there is uncertainty in the intensity of a
TC at the 0 h lead time, it can be confidently as-
serted that the true intensity is drawn from a prob-
ability distribution that is much sharper than the
climatological intensity distribution (approximated
by the marginal distribution of observations in Fig.
6d). For example, one might suppose that the true
intensity is drawn from a Gaussian with a small
(5 kt, perhaps) standard deviation, centered on the
operationally-analyzed intensity value. However, as
forecast lead time increases, uncertainty in the TC
intensity increases, eventually to the point where
it cannot be claimed that the probability of realiz-
ing any particular intensity value is different from

the climatological probability. Deterministic TC in-
tensity forecast systems have learned, through ei-
ther implicit or explicit means, to respond to this in-
herently probabilistic prediction context in a manner
that minimizes the expected absolute error of their
deterministic forecasts. The protocol is to always
forecast the median of the probability distribution
for intensity. At the 0 h lead time, this results in a
deterministic forecast of the operationally-analyzed
intensity (assuming a symmetric probability distri-
bution about that value, as in the example above),
and at very long lead time, this results in a forecast
of the median of the climatological intensity distribu-
tion. Hence, an absolute error-minimizing determin-
istic forecast trajectory starts at the operationally-
analyzed intensity value and asymptotes toward the
median of the climatological intensity distribution
as lead time increases. The sharpening of the
marginal distribution of forecasts with lead time in
Fig. 6 is a feature of a collection of the aforemen-
tioned type of deterministic forecast trajectories.

5. SUMMARY AND CONCLUSIONS

Here, deterministic TC intensity forecasts have
been verified using a distributions-oriented ap-
proach, which is based on analysis of the joint prob-
ability distribution of forecasts and observations.
Relative to summary accuracy measure verification,
distributions-oriented verification may seem cum-
bersome3, but it gives a much more complete pic-
ture of forecast quality. For operational TC inten-
sity forecasts, analysis of the joint distributions re-
vealed an increasing (type II) conditional bias with
lead time to be the primary deficiency in forecast
quality. The conditional bias was linked to a sharp-
ening of the marginal distribution of forecasts with
lead time, itself the ultimate result of the demand of
mean absolute error minimization imposed on de-
terministic TC intensity forecast systems. It is im-
portant to note that this result is common to all four
of the forecast systems/agencies evaluated here,
representing statistical models, a dynamical model,
and NHC forecasters. While differing substantially
in the methodology of forecast production, these
forecast system/agencies share the goal of minimiz-
ing the MAE of their intensity predictions.

In conclusion, it must be stressed that MAE mini-
mization is not inherently a “bad” way to drive the

3For example, the 16 joint distributions shown in Figs. 2–5
account for only half the lead time/forecast system combinations
for which the MAE is displayed in Fig. 1.
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improvement of forecast systems, even though it
condones conditionally biased forecasts. As with
any other summary measure, MAE is simply lim-
ited in its ability to represent the rich relationship
between forecasts and observations embodied in
the joint probability distribution. Ultimately it would
be best to evaluate the performance of forecast
systems based on distributions-oriented verification
techniques, but the complexity of probability distri-
butions (joint or marginal) hinders straightforward
objective comparison of those from competing fore-
cast systems4. Utilizing multiple summary mea-
sures covering different attributes of forecast qual-
ity (accuracy, unconditional bias, conditional bias,
etc.) is perhaps the next best option in forecast
quality assessment. In verification of TC intensity
forecasts, a summary measure of the information
content attribute of forecast quality is of particu-
lar interest. This measure, the mutual informa-
tion between the forecasts and observations (Del-
Sole 2005), quantifies the average amount of in-
formation a forecast provides about the observa-
tion, relative to prior knowledge of sample clima-
tology. Forecasts/observations of a dissipated TC
can be included in data samples verified with mutual
information, whereas such forecasts/observations
are necessarily excluded in MAE verification (as
f = 50 kt minus x = dissipated is not meaningful,
for example). Such mutual information verification
of data samples including forecast/observation re-
alizations involving TC dissipation is demonstrated
in Moskaitis (2008).
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Figure 1: Mean absolute error, as a function of lead
time, for the OFCL (red), SHF5 (light blue), DSHP
(dark blue) and GFDL (green) intensity forecast sys-
tems.
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(a) OFCL: 0 h lead time (b) OFCL: 36 h lead time

(c) OFCL: 72 h lead time (d) OFCL: 120 h lead time

Figure 2: Joint distribution of official NHC intensity forecasts and best track observations at lead times of (a)
0 h, (b) 36 h, (c) 72 h, and (d) 120 h. Dots mark all (f, x) for which there is non-zero relative frequency in the
corresponding verification data sample. The colors represent relative frequency magnitude, according to
the following scale: 0 < p(f, x) ≤ 0.0025, purple; 0.0025 < p(f, x) ≤ 0.005, dark blue; 0.005 < p(f, x) ≤ 0.01,
light blue; 0.01 < p(f, x) ≤ 0.015, green; 0.015 < p(f, x) ≤ 0.025, yellow; 0.025 < p(f, x) ≤ 0.05, orange;
0.05 < p(f, x) ≤ 1, red. The thin black line marks the diagonal, where f = x.
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(a) SHF5: 0 h lead time (b) SHF5: 36 h lead time

(c) SHF5: 72 h lead time (d) SHF5: 120 h lead time

Figure 3: As in Fig. 2, but for SHF5 model intensity forecasts.
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Figure 4: As in Fig. 2, but for the DSHP model intensity forecasts.
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Figure 5: As in Fig. 2, but for the GFDL model intensity forecasts.
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Figure 6: Marginal distributions of OFCL forecasts (dashed red), SHF5 forecasts (dashed light blue), DSHP
forecasts (dashed dark blue), GFDL forecasts (dashed green), and observations (solid black) at lead times
of (a) 0 h, (b) 36 h, (c) 72 h, and (d) 120 h. The black triangle marks the mean observation and the gray
triangle marks the median observation in each panel.
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