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ABSTRACT 

 
Rapid Intensifications (RI) of tropical 

cyclones (TC) provide major error sources in 
the challenging task of TC intensity 
forecasting. There are many factors affecting 
the RI processes of TCs, and identifying the 
combination of conditions most favorable to RI 
development is very time consuming when 
using traditional statistical data analysis 
methods. Data mining techniques have been 
implemented in the analysis of RI of TCs, and 
a simpler combined condition is identified, 
which gives a higher RI probability than a 
more complex condition from ordinary 
statistical analysis. Moreover, the data mining 
technique can be used to identify the “optimal” 
RI conditions when the number of affecting 
factors is given. The variation of RI 
probabilities with the factor numbers leads to a 
saturation stage, and individual cases are 
traced back for the cases with the globally 
most favorable RI conditions. In this paper, we 
will report the most recent findings through the 
data mining technique based on the data for 
SHIPS (Statistical Hurricane Intensity 
Prediction Scheme), an operational statistical-
dynamical hurricane intensity forecasting 
model.  

Key words: hurricane intensity, rapid 
intensification, data mining, association rules.  

 
1. INTRODUCTION 

 
Forecasting tropical cyclone (TC) 

intensity changes, rapid intensification (RI) in 
particular, is a challenge. As Kaplan and 
DeMaria [2003] defined, a TC undergoes RI if 

its intensity (defined by the maximum wind) 
has increased at least 30 knots (15.4 m/s) 
over a 24-hour period. The favorable factors 
for TC intensification have been broadly 
studied. Those factors include warm ocean 
eddies [Shay et al., 2000; Hong et al., 2000; 
Wu et al., 2007], the contraction of an outer 
eyewall [Willoughby et al., 1982; Willoughby 
and Black, 1996; Lee and Bell, 2007], an 
environment with low vertical shear [Gray, 
1968; Merrill, 1988; DeMaria and Kaplan, 
1994; DeMaria, 1996; Frank and Ritchie, 
1999, 2001; Zeng et al., 2007, 2008], 
interactions between the upper-level trough 
and a TC [Molinari and Vollaro, 1989, 1990; 
DeMaria et al., 1993], dissipative heat [Jin et 
al., 2007] and even cloud microphysics [Wang, 
2002] and isotopic concentrations [Gedzelman 
et al., 2003].  

Most of the previous studies were largely 
focused on only one of three categories of 
factors: ocean characteristics, inner-core 
processes, and environmental interactions, 
and it is well known that intensity changes 
depend on a combination of those factors 
[Gray, 1968; Zhu et al., 2004]. Holliday and 
Thompson [1979] examined the rapidly 
intensifying northwest Pacific typhoons and 
observed that a sufficiently deep layer of warm 
water, the development at night time, and a 
smaller eye size were favorable for those RI 
typhoons. DeMaria and Kaplan [1994] studied 
Atlantic TCs and found that the TCs with a 
smaller size, with a greater potential to reach 
their maximum potential intensity, with a faster 
intensification history, and in an environment 
with low vertical shear and weak upper-level 
forcing exhibited the largest 48-hour 
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intensification rates. In a study of the RI 
process of Hurricane Opal (1985), Bosart et al. 
[2000] concluded that its RI was a result of a 
combination of several factors: enhanced 
upper-level divergence, low vertical shear and 
the enhanced heat and moisture from a warm 
Gulf eddy. Jones et al. (2007) discussed the 
detailed environmental and inner-core 
conditions controlling TC intensity with 
Hurricane Erin (2001) which underwent two 
different phases in its life as an example. They 
further divided the contributions from different 
parameters into five categories; climatology, 
SST-Potential, shear, (other) environment, and 
microwave. One interesting finding is that the 
contribution from shear is weak when Erin is 
not intensifying but significantly increases 
during the intensifying phase. 

Kaplan and DeMaria [2003] examined the 
large-scale characteristics of rapidly 
intensifying Atlantic TCs from 1989-2000 using 
the NHC HURDAT file and the SHIPS 
database, estimated the RI probability (RIP), 
and discussed the dependence of RI 
probability on a combination of factors. 

Following Kaplan and DeMaria [2003, 
hereafter KD03], Yang, Tang & Kafatos [2007, 
hereafter YTK07] explored an association rule 
data mining algorithm [Agrawal et al., 1993] to 
search for condition combinations favoring the 
RI process. Compared to statistical analysis, 
the technique of association rules can explore 
associations among multiple conditions 
without extra effort because it examines all 
possible combinations of frequent condition 
sets automatically. It provides an as complete 
as possible picture of the dataset to scientists 
so that the connections among multiple 
conditions will not be overlooked by a theory-
driven analysis approach. As a successful 

scientific data mining example, YTK07 not only 
identified the predictors giving an improved RI 
probability but also obtained this result with 
fewer predictors through a pruning process of 
association rules.  

Since the association rule data mining 
technique provides a comprehensive picture of 
the connections among multiple conditions, 
one can search for the “optimal” conditions for 
RI in a given set of predictors. In other words, 
if a set of conditions controlling the TC 
intensity changes is given, one can identify the 
conditions giving the highest RI probabilities 
when the number of factors is given among 
the selected set. The “optimal” results will 
suggest conditions which may be sufficient to 
make TCs undergo a RI process although the 
conditions are not necessary for all RI cases.  

 
2. DATA AND METHODS 
 

2.1. Data Sets 
 
The datasets for this study are the NHC 

HURDAT file [Jarvinen et al., 1984] and the 
SHIPS 1982-2003 database [DeMaria and 
Kaplan, 1994, 1999; DeMaria et al., 2005]. A 
detailed description of the variables in the 
HURDAT and SHIPS datasets can be found in 
KD03. The HURDAT file consists of 6-hr 
estimates of position and maximum sustained 
surface wind speeds for all named Atlantic 
TCs from 1851 to the present. The SHIPS 
database contains synoptic information for 
every 12-hr of all Atlantic TCs from 1982 to the 
present. In this study, the time period is limited 
to 1982-2003 due to the initial data availability. 
The authors noticed that the SHIPS database 
was recently updated to include information at 
6-hr intervals (DeMaria et al., 2005).  

Table 1. The eleven statistically significant predictors and the corresponding threshold values 
(reproduced based on Table 4 of KD03). The predictors DVMX, SHR, and SLYR in KD03 are 

renamed as PD12, SHRD, and PSLV here.  
Name Description Threshold 
PD12 Intensity change during the previous 12 hours. 4.6 m/s 
SHRD 850-200 hPa vertical shear. 4.9 m/s 
SST Sea surface temperature. 28.4 oC 
POT Maximum potential intensity (MPI) – initial intensity 47.6 m/s 
RHLO 850-700 hPa relative humidity. 69.7 % 
LAT Latitude 19.7 oN 
LON Longitude 63.2 oW 
USTM Zonal (u) component of storm motion. -3.1 m/s 
U200 200 hPa zonal (u) component of wind -0.6 m/s 
REFC 200 hPa relative eddy angular momentum flux convergence 0.9 m/s/day 
PSLV Pressure of the center of mass of layer for which the environmental 

winds best match the current storm motion. 
583.4 hPa 
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The two datasets are merged based on 

the methodologies described in KD03 and 
YTM07. As in KD03, 11 independent 
predictors from the original 34 attributes were 
selected.  These predictors are chosen 
because KD03 found that the mean initial 
conditions of these predictors for RI cases and 
non-RI cases are statistically different at least 
at the 95% significance level based on an 
unequal-variance, two-sided t test. In this 
work, the predictor (condition) set is limited to 
the 11 variables. To mine those attributes with 
the association rule algorithm, the continuous 
values of the attributes are converted into 
disjoint conditions, “High” or “Low” ranges.  
The initial threshold values are chosen to be 
the same as those provided in KD03, which 
was derived from the mean values of the RI 
samples [KD03]. Table 1 lists the predictors 
with the abbreviation names and the threshold 
values. 

After the merging and discretizing 
process, one has 22 predictors (11 parameters 
with 2 value ranges) associated with each TC 
case at every 6h. The TCs are categorized 
into either rapidly intensifying cases (RI) or 
non-rapidly intensifying cases (non-RI) based 
on the RI definition proposed in KD03; at least 
30 knots of intensity increase in 24 hours.  The 
data sets are also cleansed by removing items 
with missing values. After the cleansing, there 
are a total of 5505 valid records with 265 RI 
cases for this study. 

KD03 uses only SHIPS data from 1989 to 
2000. Since we have more data from 1982 to 
2003, we divided the data into 3 subsets: 
1989-2000, 1982-1988, and 2001-2003, and 
include the three sub-periods and the whole 
period in the study, as in YTM07. 

 
2.2. Association Rule Algorithm 
 
An association rule, first defined for 

market basket analysis, is a rule like “Z <= X, 
Y,” where items X and Y are called 
antecedents in the rule and Z is the 
consequent [Agrawal et al., 1993]. This rule 
expresses an association between items X, Y, 
and Z. It states that if a customer is picked 
randomly and the customer selected items X 
and Y, it is likely that the customer also 
selected item Z. The number of antecedents 
can range from one to the total number of 
items in a database. 

For data mining with the 11 selected 
predictors and the “high” and “low” value 
divisions, the antecedents in this case are the 
22 input features (11 variables with the “high” 
and “low” discretized values) and the 
consequent is “the TC underwent RI.” 
Therefore a closed frequent condition set 
containing “RI” and other persistent and 
synoptic attributes indicates an association 
among these attributes and the future rapid 
intensification.  

There are several parameters that 
measure the strength of an association rule. 
The most widely used parameters are support, 
which estimates the probability P({X,Y,Z}), 
confidence, which estimates the probability 
P(Z|{X, Y}), and lift (Silverstein et al. 1998), 
which measures the strength of  a rule defined 
as the ratio between the actual probability of 
the item set containing both the antecedent set 
and the consequent divided by the product of 
the individual probabilities of the antecedent 
set and the consequent, 
P({X,Y,Z})/[P({X,Y})*P(Z)]. An association rule 
is strong if it has a large support, a high 
confidence and a large lift.   

The version of the association rule 
algorithm we used in this study is implemented 
by Borgelt [2008]. The support value in this 
implementation is defined as P({X,Y}) instead 
of P({X,Y,Z}), and this definition P({X,Y}) is the 
same as those used in KD03 for description. 
Based on the definition above, one can tell 
that the confidence is actually the RI 
probability (RIP) corresponding to the selected 
conditions. 

  
3. RESULTS AND DISCUSSION 
 

As discussed above, the objective of this 
work is to identify the highest RI probability 
when the number of factors is fixed with a set 
of selected factors. Figure 1 shows the 
changes in highest RI probabilities with the 
number of the thresholds in the 22 predictor 
pool for different time periods. All data 
demonstrated the same trend: the highest RIP 
increases with the numbers of predictors 
initially but reaches the peak values when the 
number of predictors approaches five to seven 
(N=5-7). The highest RIP then decreases with 
further increases of the numbers of predictors. 
These results demonstrate that the multiple 
factors together are responsible for the RI 
process of TCs. However, the number of 
factors will saturate at certain numbers. After 
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that, the impacts of individual factors may 
cancel each other out, or may be replaced by 

other factors. 

 

 
Figure 1. The highest RI probability for different number of thresholds and multiple time periods. 

 
The most striking result in Figure 1 is that 

the data mining algorithms identify certain 
cases with a 100% RI probability. These 
“perfect” results take place only for the three 
specific subset periods but not for the whole 
period. This plausible result comes from the 
fact that the detailed “optimal” conditions for 
each subset period are different from each 
other, and as a result, the conditions and the 

RI probability for the whole time period are 
also different from those in individual time 
periods. For example, Table 2 lists the 
detailed conditions for the N=6 cases for 
different time periods. By carefully checking, 
one can see that no two groups give the same 
conditions although the RIP (confidence) is 
100% for all three short periods. 

 
Table 2. Optimal conditions when N=6 for different time periods. The numbers in parenthesis are 

the corresponding support and confidence values. 
Periods Detailed Conditions for N=6 

1982-2003 LON=L,REFC=L,PD12=H,LAT=H,POT=H,PSLV=H (0.1, 85.7) 

1982-1988 PD12=L,LAT=L,USTM=L,POT=L,SHRD=L,RHLO=H (0.2, 100.0) 

1989-2000 POT=L,SHRD=L,PD12=H,USTM=H,RHLO=H,PSLV=H (0.2, 100.0) 
2001-2003 PD12=L,LAT=L,POT=L,U200=L,SST=H,REFC=H (0.2, 100.0) 

 
As in YTK07, the RIP variation with the 

number of predictors in a given group for the 
N=6 case is plotted in Figure 2. In this plot, the 
“optimal” conditions mined for the 1989-2000 
time period is chosen. The relatively low RIP 
values for up to five predictors further 
demonstrated that the predictor combinations 
for optimal conditions for a given number of 
predictors change with the number. In addition, 
the results are sensitive to the subset periods 

as the RIP diversifies when all conditions are 
satisfied, from zero to 100%. Moreover, the 
case numbers are relatively small as shown by 
the support values in Table 2. Actually, the RI 
cases and the total cases satisfying all 
conditions for Figure 2 are 1/3 (1 RI cases in 
total of 3 cases) for the 1982-1988 sub-period, 
7/7 for 1989-2000, 0/4 for the 2001-2003, and 
8/14 for the whole time period, 1982-2003. To 
increase the confidence of the data mining 
results, we will focus on the results for the 
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whole time period, 1982-2003, in which we 
have a total of 265 RI cases out of 5505 TC 

cases (YTK07), in the following sections. 
 

 

Figure 2. The RIP variation with number of threshold values chosen from the set which gives the 
highest RIP (100%) when all (N=6) are satisfied for the 1989-2000 time period. That is, the 

condition set is (PD12=L, LAT=L, USTM=L, POT=L, SHRD=L, RHLO=H), as given in Table 2. 
 

Table 3 lists the optimal conditions for 
different numbers of thresholds (N) for the 
1982-2003 period along with the RIP and 
support values. The RIP is also plotted in 
Figure 3 as the dashed line. By carefully 
studying the condition combination in Table 3, 
one may find that new conditions are simply 
added to the existing conditions to achieve the 
optimal condition combination when the 
number increases from one to three. In other 

words, when only one condition is satisfied, 
“PD12=H” gives the highest RIP. The optimal 
condition combination with N=2 is “PD12=H” 
and “SHRD=L,” and then adding “RHLO=H” 
gives the optimal conditions for N=3. This 
result shows that there exist dominant factors 
for RI process, and when they take effects 
together, the chances of RI is significantly 
higher. 

 
Table 3. The “optimal” condition combination for the highest RI probabilities for the 1982-2003 

period. 
N RIP Conditions Support 

1 11.1   PD12=H         23.2 

2 23.1   PD12=H     SHRD=L    6.5 

3 33   PD12=H    RHLO=H SHRD=L    1.7 

4 50 LAT=L   POT=L    SHRD=L   USTM=H 0.4 

5 75 LAT=L   POT=L PSLV=H   SHRD=L   USTM=H 0.2 

6 85.7 LAT=H LON=L PD12=H POT=H PSLV=H REFC=L      0.1 

7 80   PD12=H POT=L PSLV=H  RHLO=H SHRD=L SST=H  USTM=H 0.2 

8 80 LAT=L LON=H PD12=H POT=L PSLV=H REFC=L   SST=H  USTM=H 0.2 

9 66.7 LAT=L  PD12=H POT=H PSLV=L REFC=H RHLO=L SHRD=H SST=H U200=L  0.1 
10 35.7 LAT=H LON=H PD12=L POT=H PSLV=L REFC=L  SHRD=L SST=H U200=L USTM=L 0.3 
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However, this incremental feature is not 
valid when N increases from three to four. 
Suddenly, the conditions reshuffle, and only 
“SHRD=L” remains in the new combination 
with N=4. In the mean time, the support 
(related to the case number) drops to quite a 
small number when compared with the 
corresponding values for cases with N=1-3. 
When the cases change from N=4 to N=5, the 
incremental feature reappears by adding 
“PSLV=H.” But conditions reshuffle again 
when the cases change from N=5 to N=6. 

As shown in Figure 3, when N increases 
from 6 to 7 and further, the RIP starts 
decreasing and the condition combinations 
listed in Table 3 show more changes in either 
parameters or parameter value ranges. 
Therefore, it is difficult to expect the 
combinations with large numbers of conditions 
(N>6) give much physical explanation to the 
TC intensification physics. As a result, the 
discussion in this paper is limited for up to six 
conditions (N=6), which also gives the highest 
RIP in all situations. 

 

 
Figure 3. The highest RIP for different sets of thresholds. 

Although the confidences of the mined 
rules or the RIP are high for most conditions 
as listed in Table 3, the supports or the case 
numbers are relatively low. For the highest 
RIP, 85.7% when six predictors are working 
together, we only have a 0.1% support or 
exactly seven cases satisfying the conditions, 
and six of them underwent RI. For all other 
cases with high RIP (>75%), the case number 
is at least ten.  

The low support (sample size) for the 
highest RIP leads one to suspect the 
usefulness of mined results, or the 
representation of a general rule. To see if the 
result is of general value, we trace back the 
seven cases to the original data to identify the 
corresponding TC cases.  

The seven cases are actually from four 
TCs as shown in Table 4. The cases for the 
same TCs at different times, i.e., for Hurricane 
Nana at 0h and 6h of October 17, 1990 and 
Hurricane Clau at 18h of September 5, 1991 

and at 0h and 6h of September 6, 1991, took 
place in consecutive times. Therefore, it is 
expected that the conditions at the given time 
spans did not change much. The only case in 
which the TC did not undergo a RI process is 
the case for Hurricane Karl at 0h on 
September 24, 1998. However, the intensity of 
Karl increased from 35 knots to 50 knots in 24 
hours and then to 75 knots in another 24 
hours. Karl continued the intensification 
process after that until 0h on September 27 at 
90 knots. Therefore, it is quite reasonable to 
say that the six conditions together are 
favorable to RI process in almost all cases. 
The fact that relatively large numbers of 
diversified TCs underwent RI when the above 
given conditions (the six predictor 
combination) were satisfied and the extreme 
high RIP lead us to believe that the results 
from data mining are significant. The results 
shed light for guiding future forecasting of RI 
processes. 
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Table 4. Specific TC cases satisfying the given condition combination (the case with N=6 in 

Table 3.) 
TC Name Year Date Hour

EARL 1986 9/11 6 
NANA 1990 10/17 0 
NANA 1990 10/17 6 
CLAU 1991 9/5 18 
CLAU 1991 9/6 0 
CLAU 1991 9/6 6 
KARL 1998 9/24 0 

As discussed before, another interesting 
result is the dramatic condition changes from 
N=5 to N=6 as shown in Table 3. The 
condition shift is not only on the affecting 
parameters, but also on the value ranges 
associated with specific parameters. Up to 
N=5, “LAT=L” and “POT=L” are favorable 
conditions for RI process. However, when 
N=6, the opposite values, i.e., “LAT=H” and 
“POT=H” are favorable to the RI process. 
Physically, it is difficult to explain the role of 
latitude in TC intensification in general and its 
role is indirectly reflected in the SHIPS model 
[DeMaria and Kaplan, 1999]. For POT, 
“POT=H” should be the reasonable condition 
for TC intensification because the higher the 
gap between the current intensity and the 
maximum potential intensity, the more likely 
the TC intensifies. Then, why does the POT 
value range change from one optimal 
condition to the other? The most likely reason 
is that the results are sensitive to the threshold 
value dividing the “High” and “Low” values of 
POT. 

In the data discretization process, the 
threshold value for POT is 47.7 m/s based on 
KD03. However, since RI is defined by a 30 
knot (about 15 m/s) wind increase in 24 hours, 

a more logical threshold for POT should be 15 
m/s. Therefore, with the same threshold 
values for other parameters except POT, the 
above data mining procedure is repeated to 
reveal the impact by changing the POT 
threshold value from 47.7m/s (KD03) to 
15.0m/s (physical). 

The results with the “physical” threshold 
values are shown in Figure 3 as the solid line 
and in Table 5. Clearly, there is no difference 
in the results for N=1-3 with either the KD03 
thresholds or the physical thresholds. For N>3 
cases, the largest RIP with the KD03 
thresholds are higher than the corresponding 
values with the physical thresholds except for 
the case N=9. The overall trends of the RIP 
variation with N are the same, too. The 
detailed conditions in Table 5 show that 
POT=H is not an important factor for the RI 
process when the physical threshold value is 
used. This is because the POT values are in 
the high range for most cases when the lower 
physical POT threshold is used. This result 
and the result based on KD03 thresholds 
suggest that neither of the threshold values for 
POT is optimal, and a value between those 
two could give better results.   

Table 5. The “optimal” condition combination for the highest RI probabilities for the 1982-2003 
period with the physical threshold values. 

N RIP Conditions support 

1 11.1      PD12=H                 23.2 

2 23.1     PD12=H          SHRD=L       6.5 

3 33     PD12=H       RHLO=H  SHRD=L       1.7 

4 41  LAT=L   PD12=H         SHRD=L     USTM=H 0.7 

5 63.6     PD12=H   PSLV=L   RHLO=H SHRD=L  SST=L     0.2 

6 72.7  LAT=L   PD12=H   PSLV=H   RHLO=H     U200=L USTM=H 0.2 

7 69.2     PD12=H   PSLV=H  REFC=L   SHRD=L SST=H U200=L USTM=H 0.2 

8 71.4 LAT=H  LON=L PD12=H POT=H PSLV=H REFC=L     SST=H U200=L   0.1 

9 66.7  LAT=L LON=H     PSLV=L REFC=L RHLO=L SHRD=H  SST=H U200=L USTM=L 0.1 

10 28.6 LAT=H  LON=L   POT=H PSLV=H REFC=L RHLO=L SHRD=H SST=H U200=H USTM=H 0.3 



 

 
4. DISCUSSION AND CONCLUSIONS 

 
Since the association data mining technique 
provides an as complete as possible picture of 
the relevant dataset, this technique helps us to 
identify the combination of conditions most 
favorable to RI development among many 
factors affecting the RI processes of TCs. One 
mined condition combination giving the 
highest RIP for the whole data set covering 
1980-2003 time period is (PD12=L, LAT=L, 
USTM=L, POT=L, SHRD=L, RHLO=H). 
Although the RIP is not a perfect 100%, the 
detailed information found by tracing back to 
individual TCs shows that the condition 
combination can be considered as a sufficient 
condition for the RI process. More physical 
studies should be carried out to investigate the 
complicated interactions among those 
favorable conditions.  
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