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1 .  INTRODUCTION 

Even with the advanced technology of forecasting 
and current infrastructure to mitigate the loss from 
natural hazards, people suffer from devastating 
hurricanes every year. Although Nature or a natural 
system creates such storms, humans can still forecast 
and respond to them. A forecasting system predicts the 
natural system, and a transportation system reacts to it. 
The interactions of these human systems with each 
other and with the natural system are illustrated in Fig. 1. 
A government official or other decision maker (DM) who 
is in charge of the response to emergencies has to 
decide the relative amounts to invest in a forecasting 
system, the transportation system, or infrastructure for 
protection from the natural hazard. 
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Fig. 1. Roads Radar system 

 
Investing all available resources in the improvement 

of forecast accuracy may not be optimal, nor may doing 
likewise for an evacuation system. Investing in a mix of 
the two strategies is more likely to minimize diminishing 
returns. Determining an optimal mix entails 
understanding the interplay between a transportation 
system and a forecasting system.  

We use dynamic programming (DP) to model this 
multi-stage hurricane-evacuation decision problem and 
a Markov Chain to model the revision of a DM’s belief 
about strike probability and landfall intensity.  

2 .  LITERATURE REVIEW 

This work has links to several areas, including 
dynamic programming, dynamic decision-making, 
Bayesian updating, Markov Chain process, and cost-
loss ratio.  

Dynamic programming has been applied to 
decision problems where the sequential decision 
process enters a state that governs the system’s 
behavior until it leaves that state. Without dynamic 
programming, such decision problems can be 
computationally infeasible. Howard (1966) showed that 
dynamic programming based on the Markov process 
has application in a wide variety of situations, including 
maintenance and repair, financial portfolio balancing, 
inventory and production control, equipment 
replacement, and directed marketing. 

If the decision involves not only selection among 
alternatives but also determination of timing, a static 
decision model is inadequate. Ahn and Kim (1998) 
formulated the action-timing problem with Bayesian 
updating and derived decision rules based on the 
observation or information. They used sequential 
Bayesian revision for the action-timing problem and 
demonstrated its value using simulation. Their work 
provides a decision rule based on the information or 
observation at each stage, rather than on the revised 
belief. They consider only two alternatives: “accept” the 
current observation or “reject” in favor of another 
observation.  

There have been many studies about the value of 
improving forecast accuracy. Murphy and Ehrendorfer 
(1987) explored the relationship between the quality and 
value of imperfect forecasts. They used the Brier score 
as a measure of forecast accuracy, but they found that a 
scalar measure such as the Brier score cannot 
completely and unambiguously characterize the quality 
of the imperfect forecasts. Their research showed the 
relationship between forecast accuracy and forecast 
value represented by a multi-valued function—an 
accuracy/value envelope. 

Mjelde et al. (1993) used a structure called a 
“forecast matrix” to represent various scenarios for 
climate forecast quality. A stochastic dynamic 
programming model was used to obtain the expected 
value of the various scenarios. They attempted to 
quantify forecast quality through two measures: entropy 
and variance of the forecast. They showed that the 
entire structure of the forecast format interacts to 
determine the economic value of that system. 

Considine et al. (2004) examined the value of 
hurricane forecasts to oil and gas producers rather than 
the general population. Unlike the general population, 
the producers of crude oil and natural gas in the Gulf of 
Mexico respond to the threat of hurricanes by 
evacuating offshore drilling rigs and temporarily ceasing 
production. The researchers estimated the value of 
existing as well as more accurate hurricane forecast 
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information to show the value of improving forecast 
accuracy. They used a probabilistic cost-loss model to 
estimate the incremental value of hurricane forecast 
information for oil and gas leases in that area over the 
past two decades. Their research showed that forecast 
value dramatically increases with improvements in 
accuracy. They simulated a 50% improvement in 48-hr 
forecast accuracy, which they assumed would double 
the strike probability given a strike forecast, to 0.60. 
They used a critical threshold of the forecast of weather 
conditions important to the rig operator at the drilling 
location, such as wind speed and wave height, to 
distinguish a strike forecast from a no-hit forecast.  

Regnier and Harr (2006) deal with the decision to 
prepare for an oncoming hurricane using a discrete 
Markov model of hurricane travel that is derived from 
historical tropical cyclone tracks and combined with the 
dynamic decision model to estimate the additional value 
that can be extracted from existing forecasts by 
anticipating updated forecasts. They used variable 
hurricane preparation cost, which is defined as a 
fraction of the maximum loss, increasing linearly or 
exponentially after a critical lead-time. They used a 
discrete Markov model for multi-period decision making 
with respect to a sequence of more than two forecasts 
with improving accuracy for a single event. Simulation 
was used to compare the expense in different cases.  

Czajkowski (2007) developed a dynamic model of 
hurricane evacuation behavior in which a household’s 
evacuation decision is framed as an optimal stopping 
problem where every potential evacuation time prior to 
the actual hurricane landfall presents the household with 
the choice either to evacuate or to wait one more period 
for a revised hurricane forecast. Czajkowski used a 
Markov Chain to represent the revision of hurricane 
status and used a state variable named “risk index” for 
the transition matrix. Since the risk index primarily 
reflects the mean of forecasted intensity of the hurricane, 
it contains little information about the uncertainty of the 
forecast. 

Regnier (2008) viewed the hurricane evacuation 
problem from the perspective of public officials with the 
authority to order hurricane evacuation. She used a 
stochastic model of storm motion derived from historic 
tracks to show the relationship between lead-time and 
track uncertainty for Atlantic hurricanes, using a discrete 
Markov model. She showed that being able to tolerate 
no more than a 10% probability of failing to evacuate 
before a striking hurricane (a false negative) implies that 
at least 76% of evacuations will be false alarms. She 
also showed that reducing decision lead-times from 72 
to 48 hours for major population centers could save an 
average of hundreds of millions of dollars for the region 
surrounding each target in evacuation costs annually, 
assuming 460 miles of coastline evacuated. 

None of the many contributors to the dynamic 
action-timing decision problem has considered the 
optimal investment decision based on the improvement 
of track and intensity forecasts and of evacuation speed. 
By modeling these factors, we will derive the optimal 
investment policy. 

The literature dealing with forecast verification and 
value is extensive. See Katz and Murphy (1997) and 
Jolliffe and Stephenson (2003) for an overview, for 
example. In this paper we adopt the distribution-oriented 
framework proposed by Murphy and Winkler (1987; 
1992). 

3 .  MODEL 

If evacuation incurred no cost, that would be the 
best policy under even the slightest possibility of a 
hurricane. In reality, the decision whether to evacuate 
may incur the cost of a false positive or a false negative. 
If the decision can be deferred, then more information 
can be collected, which could improve the likelihood of 
making the best decision. However, information 
gathering can be costly and delayed evacuation could 
bring about catastrophic loss. Therefore, the DM would 
be advised to re-evaluate the value of deferring a 
decision as additional information and a revised 
estimate on the future event become available. 

In our model, we presume to know when the storm 
may strike the target, denoted as stage N, the final 
stage in our model. Once stage N is reached, the storm 
either has struck the target or will never strike it.  

3.1 Dynamic programming model 
McCardle (1985) suggested a dynamic 

programming model to handle multi-stage information 
acquisition and the technology adoption decision 
problem. Even though the nature of his problem is 
different from that of our problem and his model is not 
quite suited to our problem, his basic approach using 
the dynamic programming to the multi-stage decision 
matches with our problem. Therefore, we use dynamic 
programming to model this problem. At every stage, the 
DM has three alternatives: Ignore, Act, or Wait. If the 
DM decides to ignore the approaching hazard, he 
ceases to collect updated information about the hazard 
or to take any protective action. This incurs no cost until 
the final stage. If the hurricane does not strike the target 
at stage N, the cost remains zero. However, if the 
hurricane does strike the target at the final stage, there 
is loss.  

If at stage j, the DM decides to ignore the upcoming 
hazard and to stay, the loss of LN(tj) occurs with 
probability sj. Here, sj is the DM’s current estimate of the 
strike probability, which is subject to Bayesian updating 
as additional information is collected. Therefore, the 
expected loss when the DM chooses to ignore is sj LN(tj).  

If at stage j, the DM decides to take action 
immediately, cost of the protective action is incurred. 
Also, there can be some loss at stage N if the protective 
action is not perfect or early enough. The loss level is a 
function of action timing and the landfall intensity of the 
hurricane. The loss occurs with probability sj. 

If the DM decides to defer the decision and wait for 
any new information, the cost of gathering more 
information, monitoring the situation, or having 
resources ready for immediate action can be incurred. 
In many cases, the cost of deferring the immediate 
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decision could be negligible compared to the other costs. 
If the DM decides to defer the decision, the optimal 
decision at the next stage depends on the additional 
information and the DM’s revised estimate based on the 
information. The optimal decision at the next stage can 
be “Ignore,” “Act,” or “Wait,” depending on the revised 
belief. 

Let Vj(sj,tj) be the anticipated expense from 
following an optimal policy at stage j, when sj is the 
DM’s current belief on the strike probability and tj is the 
DM’s current estimate of the landfall intensity based on 
the Saffir-Simpson Hurricane Scale. This leads to the 
following dynamic programming functional equation: 
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The right hand side of the first equation has three 
parts. The first part is the expected expense when 
“Ignore” is selected, given sj and tj. The second part is 
the expected expense when “Act” is selected, given sj 
and tj. The third part is the expected expense when 
“Wait” is selected. γ is the cost of gathering additional 
information by waiting one more period. 

+1( , )j j jV s t  is the 

expected value from following an optimal policy at stage 
j+1 given the DM’s estimate of sj and tj at stage j. 

− −1 1( ,N N NV s t )  or terminal value of 
+1( , )j j jV s t  is the value of 

decision “Ignore” at stage N-1 because if “Wait” is 
selected at stage N-1, the DM has no choice but to face 
the outcome. 

+1,j js sp  is the transition probability of strike 

probability from sj at stage j to sj+1 at stage j+1. 
+1,j jt tq  is 

the transition probability of landfall intensity from tj at 
stage j to tj+1 at stage j+1. Transitions of the two state 
variables, that is, strike probability and landfall intensity, 
are assumed to be independent of each other. 
Therefore, the joint probability of the transitions of the 
two state variables is the product of the two transition 
probabilities. 

If the hurricane strike is highly probable and its 
intensity is high, the optimal decision will be “Act” in 
general. However, even though hurricane strike is 
certain, the optimal decision would be “Ignore” if the 
cost of prevention exceeds the loss avoidance. 

3.2 Expense structure 
We assume that the expense from the hurricane 

includes the cost of protective action including 
evacuation and the loss from the hurricane striking. 
These quantities depend on the timing of evacuation. If 
evacuation starts at stage j, an irrevocable cost Cj is 
incurred. If the hurricane hits the target, a level of loss is 
incurred that is usually related to the number of people 

who have not evacuated. The loss level is also related 
to the storm’s strength. Therefore, loss level can be 
defined as a function of evacuation timing and landfall 
intensity of the hurricane (which would be zero if the 
hurricane never hits the target). 

If, at stage j, people decide to stay throughout the 
remaining stages, there will be no immediate cost. If the 
hurricane hits the target, loss level is a function of 
landfall intensity of the hurricane, since the number of 
human lives and properties unprotected in the target 
does not change. If the hurricane does not hit the target, 
then no expense is associated with the hurricane. The 
expenses in different cases are summarized in Table 1. 
Table 1. Expense table 

Outcome 
Decision Hit Not Hit 

Evacuate at j Cj + Lj(tj) Cj 
Do not evacuate LN(tj) 0 
 
In Table 1, Cj is the cost of evacuation if people 

start evacuating at stage j. Therefore, Cj is a function of 
action timing. Lj(tj) is the loss level when people start 
evacuation at stage j and the hurricane of intensity tj 
strikes the area at stage N. LN(tj) is the loss level when 
at stage j, people decide to stay through stage N and 
the hurricane of intensity tj strikes the area at stage N.  

Our model does not place any restriction on the 
non-negative functions Cj and Lj(tj), but our first example 
assumes that the cost of evacuation is constant and the 
loss from the hurricane is an increasing linear function 
of timing of evacuation if the intensity is ignored. Fig. 2 
shows an example of such an expense function. The 
cost of evacuation is always 1, no matter when it begins. 
Loss from hurricane strike is lowest if evacuation starts 
at stage 0. Starting evacuation any later than stage 0 
provides insufficient time to fully protect life or property. 
Our model assumes that the DM can make a decision 
only at discrete points of time and the protective action 
can be started only at the points, not in between. 
However, even if the action is started between any 
consecutive stages, the percentage fully protected is 
proportional to the remaining time before the final stage.  
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Fig. 2. Expense as a function of evacuation timing 

 
The level of loss is closely related to the timing of 

action and the landfall intensity. We can define the loss 
as a function of action timing and landfall intensity as 
follows: 

= ∈ − ≤L max
max

( ) {0,1, , 1, } 0j
j j N j

tjL t L j N N t t
N t

≤             (2) 
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In this definition, j is the stage index and N is the 
final stage or the stage of landfall. LN is the highest level 
of loss, which is incurred when nobody evacuates until 
landfall and the most intense hurricane strikes the target, 
in this example. If the landfall intensity of the hurricane 
is highest, say category 5, then the loss level is 100% of 
the amount determined by the action timing. If the 
landfall intensity is insignificant, then the loss level is 0% 
of what is determined by the action timing. 

In this equation, tj is the DM’s estimate of the 
landfall intensity of the hurricane when the DM is at 
stage j. tmax is the maximum intensity the hurricane can 
have, say category 5. Therefore, maximum intensity is a 
necessary condition for the loss level to reach LN. In this 
example of loss function, the loss level is maximal when 
tj has maximum value and current stage is N. However, 
action timing of N is not necessarily a necessary 
condition of the maximum loss level in general, because 
earlier action could result in a worse outcome.  

3.3 Markov Chain model 
We use a Markov Chain to represent the revision of 

a DM’s estimate of the key parameters. Given prior 
value of the state variable, how the DM updates that 
variable upon arrival of information is determined by 
transition probability matrices, which represent the 
distribution of the posterior estimate of a state variable 
given the prior estimate. We use two state variables: Sj 
and Tj. Each has a corresponding transition matrix. 
Transition probabilities 

+1,j js sp  and  are represented 

by different transition probability matrices. Each element 
of the matrix represents conditional probability of state 
transition given prior state. When a tropical storm is 
detected, a DM’s initial estimate of strike probability and 
the intensity of the storm if it hits the area may be based 
on forecasts from The Weather Channel (TWC), 
National Hurricane Center (NHC), National Weather 
Service (NWS), or local weather forecaster; opinions of 
experts in related fields; historic data; or previous 
knowledge and experience. If a DM decides to defer 
immediate decision and wait until the next stage, new 
information can influence the DM’s prior belief. This 
process recurs at each stage. 

+1,j jt tq

For example, at stage 1, p.2,.3 means the transition 
probability that the DM’s prior estimate of strike 
probability at stage 1 is revised from .2 to .3 at the next 
stage. Likewise, q2,3 means the transition probability that 
the DM’s prior estimate of landfall intensity at stage 1 is 
revised from 2 to 3 at the next stage. 

Our model assumes that the DM’s belief is 
consistent such that E[Sj+1|Sj=sj] = sj and E[Tj+1|Tj= tj] = tj. 
In other words, if the DM’s prior estimate is θ, the mean 
of possible posterior beliefs is also θ. 

The DM’s estimates of strike probability and of 
landfall intensity are revised at each stage, independent 
of each other. However, the transition matrices will not 
be identical for all stages if the transition probabilities 
differ depending on stages or lead-time before landfall. 
For example, in early stages, the DM’s prior estimate of 
strike probability does not change much. Therefore, the 

variance of the transition distribution is small. However, 
if landfall is imminent, the DM’s prior estimate of strike 
probability moves toward 1 or 0 instead of staying close 
to the prior value. 

3.4 Strike probability and its variance 

 

Fig. 3. Cone of uncertainty (image from National 
Hurricane Center) 

 
Fig. 3 is an image that shows the track forecast of a 

hurricane. This unique graphic is called “forecast cone,” 
“track forecast cone,” “cone of uncertainty,” “cone of 
probability,” “cone of error,” and “cone of death.”(Broad 
et al. 2007) The cone in the figure covers 67% of 
possible track of the hurricane center. We will call the 
cone “uncertainty cone” and the cone circle “uncertainty 
circle” hereafter. In the early stages, the range of 
possible prior value of state variable Sj is limited. 
Generally, when the hurricane center is far from the 
shore, strike probability for an on-shore target is very 
low. If the hurricane center is close to the target and the 
target is still in the uncertainty cone, strike probability is 
much higher. In other words, strike probability is low 
when the area of error circle, where the target is in, is 
large, and it is high when the area is small. Therefore, 
the strike probability can be roughly defined as a 
constant times a target area divided by the area of the 
uncertainty circle. As we can see in Figure 3, the radius 
of each uncertainty circle is almost proportional to the 
distance from the current hurricane center or remaining 
time until strike as shown in Table 2. Since the variance 
is the square of standard deviation and the area of 
uncertainty circle is a constant times the square of the 
radius, we can infer that the variance of strike probability 
is proportional to the reciprocal of the square of 
remaining distance or periods.  
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Table 2. Radii of NHC forecast cone circles for 2007, 
based on error statistics from 2002-2007 (table 
adapted from NHC) 

Forecast periods 
(hours) 

2/3 Probability Circle, Atlantic Basin 
(nautical miles) 

12 39 
24 69 
36 99 
48 124 
72 179 
96 252 

120 326 
 
Regnier (2008) determined the range of conditional 

strike probabilities at four different target locations as a 
function of lead-time. Her graph shows that as lead-time 
declines, the strike probability of striking storms 
increases and converges to one and that of non-striking 
storms decreases to zero. However, a striking storm 
and a threatening but non-striking storm may have 
similar initial strike probabilities. Dispersion of strike 
probability is proportional to the reciprocal of the lead-
time. When lead-time is great, such as more than 30 
hours, it is usually difficult to determine whether a storm 
will be striking or non-striking. 

On the other hand, the uncertainty cone in Figure 3 
can be simplified and compared for different lead-times 
as in Fig. 4. 

 
Fig. 4. Cone of uncertainty for different lead-times 

 
In Fig. 4, we assume that the hurricane moves in a 

straight line. As the hurricane center approaches the 
target location, the area of the circle in the 
corresponding uncertainty cone decreases while the 
area of the target remains constant. The gray circle is 
the target location, typically a coastal city within the 
initial uncertainty cone. Green and red dots represent 
the hurricane center as it moves. The dashed green 
circle represents the possible locations of the hurricane 
center in four periods from when the hurricane center is 
at the green dot. The dashed red circle represents the 
possible locations of the hurricane center in one period 
from when the hurricane center is at the red dot. 

Assume that the actual landfall locations are 
normally distributed around the center of the uncertainty 
circle on the vertical black dashed line and that the 
radius of the uncertainty circle is the standard deviation. 
Then the strike probability p(S) is calculated as follows: 
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where a and b are the relative locations of the 
boundaries of the target area from the center of the 
uncertainty circle, Φ( ) is the standard normal 
cumulative distribution, μ is the mean, and σ is the 
standard deviation of the landfall location distribution. 
For example, if standard deviation is 4 when lead-time is 
four periods, standard deviation is 1 when lead-time is 
one period, and radius of the target is .4, the strike 
probabilities for the target located at the center of the 
uncertainty circle when lead-time is four periods and 
one period are calculated as follows: 
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If we select all the possible targets in the initial 

uncertainty circle, in which lead-time is 4 periods, and 
plot the strike probabilities for each target, the shape 
looks as in Fig. 5. When lead-time is 4 periods, the 
target in the middle and the one at the boundaries have 
similar strike probabilities between 0.05 and 0.08. 
However, when the lead-time is 1 period, strike 
probability differs a lot depending on the target location. 
Strike probabilities for the targets that are still in the 
shrunk uncertainty circle increase noticeably. But, strike 
probabilities for the targets which are far from the 
shrunk uncertainty circle approach 0. 
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Fig. 5. Distribution of strike probabilities for 
different lead-times 

 
The range of strike probabilities for all the targets is 

plotted in Fig. 6. When lead-time is 4 periods, strike 
probabilities for all the targets are distributed in a small 
range between 0.05 and 0.08. As the lead-time 
increases, the probabilities become more and more 
dispersed. When the lead-time decreases to 1 period, 
the strike probabilities for the same targets become 
much more dispersed. Strike probability for boundary 
targets approaches 0 and strike probability for the 
targets in the middle increases sharply. In other words, 
when lead-time becomes shorter, strike probabilities 
become more widely dispersed.  

⎞
⎟
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Fig. 6. Range of strike probabilities as a function of 
lead-time 

 
When the lead-time becomes longer, the area of 

the uncertainty circle becomes larger and the area of 
the target location becomes smaller, implying low 
chance of strike.1 When the lead-time becomes shorter, 
the area of the uncertainty circle becomes smaller and 
the area of the target becomes larger compared to the 
uncertainty circle, but it does not necessarily lead to 
high chance of strike. If the target location is within the 
final uncertainty cone like the lowest dot in Figure 4, 
strike probability grows sharply when landfall is 
imminent. However, if the target shifts outside the 
uncertainty cone due to the hurricane direction change, 
strike possibility drops toward 0.  

As implied from Fig. 5 and 6, the variance of strike 
probabilities for the targets increases sharply as the 
lead-time approaches 0. Fig. 7 shows the variance as a 
function of lead-time. It shows that three fourths shorter 
lead-time makes the variance over 150 times bigger.  
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Fig. 7. Variance of strike probabilities for the targets 

 
This result matches the work of Regnier (2008) very 

well. This observation implies that the variance of strike 
probability increases as lead-time decreases even 
though it varies depending on the location of the target 
relative to the hurricane track. The observation also 
implies that as the strike probability for a target in the 
cone increases, variance of strike probabilities for any 
target also increases. Since the area of the uncertainty 
circle is proportional to the square of radius and the 
variance of strike probability is the square of standard 
deviation, we can infer that the variance of strike 
                                                           
1 According to National Hurricane Center (NHC), strike 
probability is the chance of the center of the hurricane passing 
within 65 nautical miles or 75 statute miles of the target location. 

probability is proportional to the reciprocal of the square 
of the uncertainty circle radius. If we assume that the 
angle of the uncertainty cone doesn’t change as the 
hurricane moves, we can infer that the radius of the 
uncertainty cone is proportional to the lead-time before 
landfall. Then, we can define the variance of strike 
probabilities at stage j as follows: 

σ = ∈ −
−

L2
2 {0,1, , 2, 1}

( )
S

j
K j N N

N j
−                (3) 

In this definition, σ 2
j

 is the variance of strike 

probability at stage j and KS is a constant. 

3.5 Landfall intensity and its variance 
For a landfall intensity forecast, we use the same 

definition of α and β as in strike probability. DM’s 
estimation of landfall intensity changes over time but its 
variance does not change noticeably as we can see in 
Fig. 8. The figure is the transition probability matrices for 
landfall intensity, which have been created from 30 
hurricanes and tropical storms before year 2006. If lead-
time is 4 periods and DM’s belief on landfall intensity is 
Category 1, it changes to other categories with 
probability 0.2 at the next period. If the DM’s belief on 
landfall intensity is category 3, it changes to other 
categories with probability 0.4 at the next period. Any 
significant pattern of dispersion change over time is not 
observed in the figure. 

 
Fig. 8. Transition probability matrix of landfall 
intensity from 30 storms 
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Based on the observation, our model assumes a 

constant variance of the revision of landfall intensity 
forecast. Therefore, we use a constant variance KT for 
all stages as follows.  

σ = ∈ −L2 {0,1, , 2, 1}j TK j N N −  

Because the forecast of landfall intensity does not 
change dramatically when lead-time approaches 0, 
transition matrices have a nearly diagonal shape for all 
stages. 

3.6 How to manipulate transition matrices 
In order to make the transition probability matrices 

best represent the nature of the revision of DM’s belief, 
we need to manipulate the transition probability matrices. 
Furthermore, we need to represent the improved 
forecasting within transition probability matrices by 
controlling them. To control the matrices, we need to 
use a well-defined flexible probabilistic distribution that 
can be manipulated by a few parameters.  

Our model uses Beta distribution to do the job. The 
pdf function is defined as follows: 

α β

α β

α β

α β

− −

− −

= − ∈

= −∫

1 1

1 1 1

0

1( ) (1 ) [0,1]
( , )

        , where ( , ) (1 ) .

f x x x x
B

B t t dt

 

Beta density function can take on different shapes 
depending on the values of two parameters α and β. Its 
shape can be U-shaped, strictly decreasing or 
increasing, strictly convex or concave, straight line, 
uniform, or unimodal. In early stages of hurricane 
forecast, strike probability does not change a lot over 
time as we can see in Fig. 6 and the transition matrix is 
almost diagonal. At close-to-final stages, as we can see 
in Fig. 6, strike probabilities change noticeably toward 0 
or 1, rather than in between, and therefore the transition 
matrix has U shape in each row. Table 3 shows an 
example of such matrices. Initial transition probability 
matrix for strike probability looks like the left one in the 
table and it ends up with the right one at the end. In the 
left matrix, transition distribution in each row has 
symmetric bell-shape except very certain cases, i.e. 
prior belief of 0 and 1. In other words, it is highly 
probable that the DM’s belief on strike probability does 
not change after the transition of period. In the right 
matrix, transition distribution in each row has U-shape, 
except the very certain cases, because the transition is 
distributed at two extremes, not in between. This 
dramatic change of distribution can be made in Beta 
distribution. 

 
 
 
 
 
 
 

Table 3. Example of the first and the last transition 
probability matrices 

1
0 0 .2 .4 .6 .8 1  N 

N-1 0 .2 .4 .6 .8 1
0 .95 .05      0 1     0
.2 .05 .90 .05     .2 .8     .2
.4  .05 .9 .05   ···  .4 .6     .4
.6   .05 .9 .05   .6 .4     .6
.8    .05 .9 .05  .8 .2     .8
1     .05 .95  1 0     1

 
Another good feature of Beta distribution is that it is 

supported on a bounded interval [0, 1] and the model 
does not have to truncate unnecessary tails of transition 
distribution outside the valid range. 

How we generate transition probability matrix for 
each stage is explained here. We suppose the 
conditional transition distribution is Beta(α, β), the prior 
value of state variable is the mean μ of this distribution, 
and the variance defined in section 3.4 and 3.5 is the 
variance σ2 of this distribution. Since the mean of the 
conditional transition distribution should be same as the 
prior value of state variable and the mean of Beta(α, β) 
is α/(α+β), the equation α/(α+β) = μ  should hold. Since 
the variance of Beta(α, β) is αβ/((α+β)2(α+β+1)), put it 
as σ2 = αβ/((α+β)2(α+β+1)). Now, we can redefine α and 
β in terms of μ and σ2 as follows:  

μ μα μ
σ
−

= −
2

2
(1 )  

μ μβ μ
σ
−

= + −
2

2
(1 ) 1.  

Now, we can define the conditional transition 
distribution in terms of mean and variance. Since the 
parameters α and β should have positive value, there 
are restrictions on the range of acceptable values of μ 
and σ2. 

New information at near final stages gives big 
impact to the state variable sj, thus more dispersed 
transition distribution. So, we use changing variance 
which grows faster as it approaches the final stage. To 
calculate the variance at each stage, a number 
reciprocally proportional to the square of remaining 
periods before landfall is used with a scale parameter. 
In our model, variance at stage j is defined as KS/(N-j)2  
as in Equation (3), where KS is a scale parameter and N 
is the final stage when landfall is made. In early stage, 
say j = 1, the variance grows slowly. But it grows sharply 
as it approaches the final stage, say j = N-1. With the 
given mean and the calculated variance, transition 
distribution of each row of transition matrix at each 
stage is defined as a beta distribution and each 
transition probability is determined by the discretization 
of the distribution. 

If the prior value of state variable Sj is very close to 
0, because the target is far outside the uncertainty cone, 
or very close to 1, because the target is right on the 
estimated track of the imminent hurricane, the 
calculated value of α or β can be non-positive, which is 
not acceptable for beta distribution. To prevent this 
problem, our model has absorbing states for state 
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variable Sj. If the value of state variable Sj changes to 0 
or 1 after discretization, it cannot leave the state for the 
remaining stages. In other word, once the state variable 
has the value 0 or 1 the probability that it stays at the 
same state in the next stage is 1. Due to the absorbing 
states, transition probabilities associated with prior state 
0 and 1 has special values as follows: 

= =0,0 1,1 1p p  

= = = = = = = = = =L L0,.1 0,.2 0,.9 0,1 1,0 1,.1 1,.8 1,.9 0p p p p p p p p  

Other transition probabilities are defined as follows: 
+

−
= ∫

/2

, /2
( )j

i j
j

s ds

s s s ds
p f x dx  

In this equation, si is prior value of the state variable 
before the transition and sj is its posterior value after the 
transition. ds is the interval between the consecutive 
values of the state variable. f(x) is pdf function of beta 
distribution defined by si as mean and the calculated 
variance. For example, if ds is .1, p.1,.2 is defined as 
follows: 

= ∫
.25

.1,.2 .15
( )p f x dx . 

The mean of beta distribution is .1 in this example 
and the pdf function f(x) is defined accordingly.  

Likewise, if the prior value of state variable Tj is 
very close to 0, because the storm is thought to be 
dissipating, or very close to 5.5, because the maximum 
strength storm is very close to the target and does not 
seem to lose its power, the calculated value of α or β 
can be non-positive, which is not acceptible for Beta 
distribution. To prevent this problem, our model has 
absorbing states for state variable Tj. If the value of 
state variable Tj changes to 0 or 5.5 it cannot leave the 
state. In other word, once the state variable has the 
value 0 or 5.5 the probability that it stays at the same 
state in the next stage is 1. Due to the absorbing states, 
transition probabilities associated with prior state 0 and 
5.5 has special values as follows: 

= =0,0 5.5,5.5 1q q  

= = = = = = = = = =L L0,.5 0,1 0,5 0,5.5 5.5,0 5.5,.5 5.5,1 5.5,5 0q q q q q q q q
 

Other transition  probabilities are defined as follows: 
+

−
= ∫

/2

, /2
( )j

i j
j

t dt

t t t dt
q g y . dy

dy

In this equation, ti is prior value of the state variable 
before the transition and tj is its posterior value after the 
transition. dt is the interval between the consecutive 
values of the state variable. g(y) is pdf function of beta 
distribution defined by ti and the calculated variance. For 
example, if dt is .5, q1,2 is defined as follows: 

= ∫
2.25

1,2 1.75
( )q g y . 

The mean of beta distribution is 1 in this example 
and the pdf function g(y) is defined accordingly.  

In the transition probability matrix of state variable 
Sj for close-to-final stages, transition distribution of each 
row approaches complete U-shape, which means 
perfect information, the calculated value of α or β can be 

non-positive, which is not acceptible for beta distribution. 
If this is the case, transition probabilities are calculated 
to keep the DM’s rationality as follows: 

 
= − =

= =

=

, 1 if 0

if 1

0 otherwise

is sj i j

i j

p s s

s s

.

 

By this definition, E[Sj|Si=si]=(1-si)0 + si·1 = si and 
the mean of transition does not change. Using our 
Markov Chain model, the pattern of the range of strike 
probability at each stage matches the work of Regnier 
(2008) very well as illustrated in Fig. 9. In this example, 
transition probabilities less than 0.1 are ignored to 
remove thin tails from each transition distribution. To 
discretize the value of strike probabilities, this example 
used 11 categories from 0 to 1. In this figure, DM’s 
belief on the strike probability starts from 0.1 and it does 
not change in early stages because the new information 
available at this time is not strong enough to impact the 
DM’s belief. As lead-time decreases, the new 
information becomes stronger and begins to influence 
the DM’s belief. As the final stage approaches, the new 
information gains more and more power and the DM 
becomes more certain about whether the hurricane will 
strike the target or not. At the final stage, the DM knows 
the outcome for sure. 
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Fig. 9. Range of strike probability at each transition 

 

3.7 Illustrative example 
Table 4 shows different combinations of strike 

probability and landfall intensity. Each combination 
shows its optimal policy at stage 0 using our model. In 
this table, “I” means that “Ignore” is the optimal decision, 
“A” means that “Act” is the optimal decision, and “W” 
means that “Wait” is the optimal decision.  

The table shows that “Ignore” is optimal when strike 
probability is very low or landfall intensity is very low, 
while “Act” is optimal when strike probability and landfall 
intensity are not very low.  

State variable Sj has 21 categories from 0 to 1; 
state variable Tj has 12 categories from 0 to 5.5. If the 
value of Tj is 0, it means the classification of the storm is 
tropical depression or negligible. 0.5 means the 
classification is tropical storm, which is less intense than 
category one hurricane. 1 means lower half range of 
category 1 hurricane and 1.5 means higher half range of 
category 1. Likewise, 2, 3, 4, and 5 means lower half 
range of category 2, 3, 4, 5, and 2.5, 3.5, 4.5, and 5.5 
means higher half range of each category. Each 
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category of Saffir-Simpson Hurricane Scale is separated 
into lower and higher category of each to avoid too 
coarse discretization in the transition probability 
matrices.  
Table 4. An example of optimal policies 

t0 
s0 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0 I I I I I I I I I I I I 
0.05 I I I I I I I I W W W I 
0.1 I I I W W W W A A A A A 

0.15 I W W W W A A A A A A A 
0.2 I W W W A A A A A A A A 

0.25 I W W A A A A A A A A A 
0.3 I W W A A A A A A A A A 

0.35 I W W A A A A A A A A A 
0.4 I W W A A A A A A A A A 

0.45 I W A A A A A A A A A A 
0.5 I W A A A A A A A A A A 

0.55 I W A A A A A A A A A A 
0.6 I W A A A A A A A A A A 

0.65 I W A A A A A A A A A A 
0.7 I W A A A A A A A A A A 

0.75 I W A A A A A A A A A A 
0.8 I W A A A A A A A A A A 

0.85 I W A A A A A A A A A A 
0.9 I W A A A A A A A A A A 

0.95 I W A A A A A A A A A A 
1 I W A A A A A A A A A A 

 
Table 5 is an example of optimal policies when the 

value of tj is fixed to 1.5. In this example, protective 
action is not worth the cost when the storm is imminent 
because the storm is not that strong. 
Table 5. An example of optimal policies given tj =1.5 
for all j 

j 
sj 

0 1 2 3 4 5 6 7 8 9 

0 I I I I I I I I I I 
0.05 W W W W W W W W W I 
0.1 W W W W W W W W W I 

0.15 W W W W W W W W I I 
0.2 W W W W W W W I I I 

0.25 W W W W W W W I I I 
0.3 W W W W W W W I I I 

0.35 W W W W W W W W I I 
0.4 W W W W W W W W I I 

0.45 W W W W W W W W I I 
0.5 W W W W W W W W I I 

0.55 A A A A A W W W I I 
0.6 A A A A A A W W I I 

0.65 A A A A A A A W I I 
0.7 A A A A A A A W I I 

0.75 A A A A A A A A W I 
0.8 A A A A A A A A W I 

0.85 A A A A A A A A W I 
0.9 A A A A A A A A W I 

0.95 A A A A A A A A A I 
1 A A A A A A A A A I 

 
Table 6 is an example of optimal policies when the 

value of sj is fixed to 0.15. In this example, protective 
action does not have a significant merit when near the 
final stage because strike probability is not that high. 

 
Table 6. An example of optimal policies given sj =.15 
for all j 

j
tj 

0 1 2 3 4 5 6 7 8 9 

0 I I I I I I I I I I 
0.5 W W I I I I I I I I 
1 W W W W W I I I I I 

1.5 W W W W W W W W I I 
2 W W W W W W W W W I 

2.5 W W W W W W W W W I 
3 A A W W W W W W W I 

3.5 A A A A W W W W W I 
4 A A A A A W W W W I 

4.5 A A A A A A W W W I 
5 A A A A A A W W W I 

5.5 A A A A A A A W I I 
 

4 .  FORECAST QUALITY AND EVACUATION SPEED 

4.1 How to control forecast quality 
We need to see what happens if forecast quality 

improves in our model. To do so, we should control our 
model to reflect the improvement. Then, how do we 
control the forecast quality of strike probability? Since 
forecast quality relates to transition probability matrices, 
our model controls it through the matrices.  

Think about the forecast of strike probability. In 
Figure 5, we can observe that the DM is more certain 
about the strike when the uncertainty circle is smaller, 
which occurs when the lead-time is shorter. Therefore, 
we can infer that, with better forecast of strike probability, 
we have narrower uncertainty cone, thus smaller 
uncertainty circle just like Fig. 6. In other words, 
narrower uncertainty cone distinguish more clearly 
targets in danger from safe targets. Smaller uncertainty 
circle implies more certainty about the hurricane strike 
and sharper forecast, i.e. 1 or 0 instead of in between. 
This leads to greater variance of the DM’s belief on the 
strike probability as implied in Equation (3). If the green 
uncertainty cone improves to the blue one, the radius of 
the uncertainty circle shrinks at a rate as illustrated in 
Fig. 6. Using a parameter rS, the definition of the 
variance in Equation (3) changes as follows: 

σ = = = < <
− − −

2
2

2 2 2 2

/ , 0 1
( ( )) ( ) ( )

S S S S
j S

S S

K K K r j N r
r N j r N j N j

≤ . 
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Fig. 10. Cone of uncertainty with different forecast 
quality 

   
In this definition, KS is the constant associated with 

the state variable Sj and rS is the forecast quality 
improvement parameter associated with Sj. If strike 
probability forecast is not improved, rS equals 1. If the 
radius of uncertainty circle shrinks to 70% through 
forecast improvement, rS is equal to 0.7 and the 
variance becomes KS/0.72 = 2.04KS, which is about 
twice the original variance of DM’s belief on strike 
probability. It means that the DM’s belief on strike 
probability becomes sharper and is distributed farther 
from the climatological average. 

Now, what about the forecast of landfall intensity? 
Unlike the forecast of strike probability, the forecast of 
landfall intensity does not change noticeably when lead-
time decreases to 0 as we talked in section 3.5. 
Transition matrix for landfall intensity has nearly 
diagonal shape and the transition distribution in each 
row has narrow bell-shape. If the forecast improves, the 
transition matrices will have looser diagonal shape and 
the transition distribution in each row has wider bell-
shape because bad forecast holds the DM’s belief close 
to the prior one while good forecast stimulates the DM’s 
belief to approach the true landfall intensity faster no 
matter what it is. In other words, good forecast gives 
much information to revise the DM’s belief while bad 
forecast does not. Therefore, we can control the 
forecast quality using variance. Using a parameter rT, 
the variance of landfall intensity forecast can be defined 
as follows: 

 . σ = < <2 / 0j T T TK r j N r ≤ 1

In this definition, KT is the constant associated with 
state variable Tj and rT is the forecast quality 
improvement parameter associated with Tj. If the landfall 
intensity forecast is not improved, rT  equals 1. If the 
intensity forecast is improved by 30%, rT  equals .7. 

4.2 How to control evacuation speed 
Evacuation speed relates to the expense function, 

which is the sum of evacuation cost and the loss from 
the hurricane, while forecast quality relates to transition 
probability matrices. If the effectiveness of evacuation or 
any protective action improves, lives and properties can 
be protected in shorter time. Let’s call the effectiveness 
“evacuation speed”. If evacuation speed improves, 
expense structure in Fig. 2 changes to the modified 
structure like Fig. 11. 

0
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6
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Stage (j)

Cj
Lj

 
Fig. 11. Example of expense function for improved 
evacuation speed 

 
In the expense structure in Figure 7, they can finish 

same level of evacuation within half the original time 
and they have more time until the critical time for 
evacuation decision thanks to the faster evacuation. 
Therefore, faster evacuation lowers the risk of false 
alarm or miss by allowing more time to collect more 
information before the evacuation decision. Using a 
parameter rE, we can redefine Lj as follows: 

 ⎧ ⎫−
= − <⎨ ⎬⋅⎩ ⎭

max maxmax 0, 0 1j E
E

N jL L L r
r N

≤ . 

In this definition, rE is the improvement parameter 
associated with evacuation speed or effectiveness of 
protective action. If evacuation speed does not improve, 
rE  equals 1. If evacuation speed improves by 30%, rE  
equals .7, which means same level of evacuation can 
be finished within 70% of the original time needed. If rE 
goes to zero, the evacuation becomes instantaneous 
evacuation. 

If we include the intensity in the definition of loss 
level, it becomes a function of action timing and storm 
intensity as follows: 

 ⎧ ⎫−
= − <⎨ ⎬⋅⎩ ⎭

max max
max

( ) max 0, 0 1j
j j E

E

tN jL t L L r
r N t

≤ . 

In this definition, we assume that the loss level is 
linearly related to the landfall intensity. 

4.3 Refined model with improvement parameters 
The refined model with the improvement 

parameters, explained in the previous sections, is 
summarized as follows: 

{ }γ += + ⋅ + 1( , ) min ( ), ( ), ( , )j j j j N j j j j j j j jV s t s L t C s L t V s t ,  

for ∈ ∈L{0,.05, ,.95,1}, {0,1,2,3,4,5}j js t  

+ +

+ +

+ +

+ +

+ +

+ + +

≡

=

+ +∑

∑∑

1 1
1 1

1 1
1 1

1 , , 1
,

, , 1 1 1

( , ) ( , )

( ,

j j j j

j j

j j j j

j j

j j j s s t t j j j
s t

s s t t j j j
s t

V s t p q V s t1 1

)p q V s t

 

− − − −=1 1 1 1( , ) (N N N N N NV s t s L t ) . 

Transition probability from si to sj for track forecast 
is represented by Beta(α, β) defined as: 

μ = is  

σ = < < ≤
−

2
2

2

/ ,0 1
( )

S S
j S

K r j N r
N j
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μ μα μ
σ
−

= −
2

2
(1 )  and μ μβ μ

σ
−

= +
2

2
(1 ) 1− . 

Transition probability from ti to tj for track forecast is 
represented by Beta(α, β) defined as: 

μ = it  

σ = < <2 / ,0j T T TK r j N r ≤ 1 

μ μα μ
σ
−

= −
2

2
(1 )  and μ μβ μ

σ
−

= +
2

2
(1 ) 1− . 

⎧ ⎫⎛ ⎞−⎪ ⎪= − <⎨ ⎬⎜ ⎟⋅⎪ ⎪⎝ ⎠⎩ ⎭
max

max

( ) max 0, 1 0 1j
j j E

E

tN jL t L r
r N t

≤ . 

In the definitions above, rS is the improvement 
parameter for track forecast, rT is the improvement 
parameter for intensity forecast, rE is the improvement 
parameter for evacuation speed. In the definition of 
variances, KS is the constant for the track forecast and 
KT is the constant for the intensity forecast. In the 
definition of Lj, tj is forecast of landfall intensity 
estimated at stage j, and tmax is the maximum level of 
intensity. 

4.4 Sensitivity analysis 
Using the refined model in the previous section, we 

can compare improvement of each key factor: track 
forecast quality, landfall intensity forecast quality, and 
evacuation speed. An example of the impact of 
improvement parameters change for forecast quality 
and evacuation speed is summarized in Table 7. In the 
table, V0(sj =.15, tj =1.5) is the anticipated expense from 
following an optimal policy at stage 0 in a situation that 
the DM’s current belief on the strike probability is 0.15 
and the DM’s current belief on the landfall intensity is 
1.5. Since all the expenses are relative values, the 
values of V0(sj =.15, tj =1.5) are also relative ones. The 
results show that estimated total expense from optimal 
decision policy is less sensitive to the change of the 
improvement parameters of forecast quality than that of 
evacuation speed. It is even less sensitive to the 
improvement parameter of intensity forecast than that of 
track forecast. If all the improvements are free and one 
unit percentage of improvement parameter is allowed, 
the improvement of evacuation speed is most effective. 
However, 10% change of improvement parameter does 
not necessarily mean 10% improvement. Therefore, we 
cannot conclude which improvement is more valuable 
than others. Also, since we don’t know the price of each 
improvement, we don’t have enough information to 
conclude which investment should be selected. 

 
 
 
 
 
 
 
 

Table 7. Impact of improvement parameter for 
forecast quality and evacuation speed 
Improvement 

of track 
forecast (1-rS) 

0% 10% 20% 30% 40% 50% 

V0(s0=.15, 
t0=1.5) .783595 .776202 .767512 .757352 .744546 .725601 

Improvement 
of V0 

0% .94% 2.05% 3.35% 4.98% 7.40% 

Improvement 
of intensity 

forecast (1-rT) 
0% 10% 20% 30% 40% 50% 

V0(s0=.15, 
t0=1.5) .783595 .779618 .774578 .768001 .759469 .748146 

Improvement 
of V0 

0% .51% 1.15% 1.99% 3.08% 4.52% 

Improvement 
of evacuation 
speed (1-rE) 

0% 10% 20% 30% 40% 50% 

V0(s0=.15, 
t0=1.5) .783595 .755466 .722158 .690528 .658597 .626029 

Improvement 
of V0 

0% 3.59% 7.84% 11.88
% 

15.95
% 

20.11
% 

5 .  PERFECT INFORMAITON AND 
INSTANTANEOUS EVACUATION 

If we assume delta property, the value of 
information at stage j in our model can be defined as 
follows: 

{ }
=

− +

( , ) value w/ info - value w/o info 

= ( , ) min ( ), ( )
j j j

j j j j N j j j j j

VoI s t

V s t s L t C s L t⋅
 

The value of Vj with perfect information shows the 
upper bound value it can have by improving information 
quality and the value of perfect information shows the 
most amount the DM is willing to pay for the information. 
Assuming delta property, the value of perfect 
information (VoPI) can be defined as follows: 

VoPI = value w/ perfect info - value w/o info. 
If we have perfect information, alternative “Wait” 

can no longer be optimal because we already have 
everything we can get by waiting. Figure 12 shows the 
decision tree when we have perfect information about 
storm track. The perfect information tells if the storm will 
hit the target or not for sure.  

 
Fig. 12. Decision  tree with perfect information about 
storm track 
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Likewise, the value of Vj with instantaneous 
evacuation shows the upper bound value it can have by 
improving evacuation speed. Assuming delta property, 
the value of instantaneous evacuation (VoIE) can be 
defined as follows: 

VoIE = value w/ instantaneous evacuation - value 
w/o instantaneous evacuation. 

We use “w/o instantaneous evacuation” instead of 
“w/o evacuation” since the problem cannot be defined 
without the option to evacuate. To compare the value of 
perfect information with VoIE, we define the additional 
value of perfect information as compared to the value 
with current level of information (ΔVoPI) as follows:  

ΔVoPI = value w/ perfect info - value w/ info. 
Therefore, assuming delta property, the additional 

value of perfect information about storm track at stage j 
in our model can be defined as follows: 

{ } { }
{ }
{ }

Δ = + + − −

= + + − −

= + −

( , ) min ( ), ( ) (1 )min 0, ( , )

min ( ), ( ) (1 )0 ( , )

min ( ), ( ) ( , )

j j j j N j j j j j j j j j

j N j j j j j j j j

j N j j j j j j j

VoPI s t s L t C L t s C V s t

s L t C L t s V s t

s L t C L t V s t

 
If we assume that the LN(tj) > Cj+Lj(tj), ΔVoPI can be 

simplified as: 

( )Δ = + −( , ) ( ) ( , )j j j j j j j j j jVoPI s t s C L t V s t               (4) 

If we have instantaneous evacuation available, we 
don’t have to collect any more information until we can 
observe the outcome: hit or not. In other words, if this is 
the case, we can obtain and use the perfect information 
at the final stage without additional cost for information 
gathering. With instantaneous evacuation, if we observe 
the landfall at the final stage, it is optimal to start the 
instantaneous evacuation. If we observe no landfall at 
the final stage, it is optimal to take no action. Therefore, 
if we believe at stage j that the hurricane will hit the 
target at probability sj, assuming delta property and 
LN(tj) > CN, the value of instantaneous evacuation 
estimated at stage j in our model can be defined as 
follows: 

 
{ } { }= + − −

= + − −

= −

( , ) min ( ), (1 )min 0, ( , )

(1 )0 ( , )
( , )

j j j j N j N j N j j j

j N j j j j

j N j j j

VoIE s t s L t C s C V s t

s C s V s t

s C V s t

  (5) 

If we compare Equation (4) and (5), we can see 
that ΔVoPI equals VoIE on condition that: 

LN(tj) > Cj+Lj(tj) 
LN(tj) > CN 
Lj(tj) = 0. 
Our model has perfect information about track 

forecast when the value of rS is very close to 0. Our 
model has instantaneous evacuation when the value of 
rE is very close to 0. Actually, it has instantaneous 
evacuation when the value of rE is less than or equal to 
1/N because rE needs to be small enough to make the 
loss function Lj(tj) equal to 0 for all  j < N. Our model can 
improve the intensity forecast by changing the value of 

rT but cannot have perfect information about landfall 
intensity just by changing the value of rT. 

The values of V0 with perfect information about 
strike probability forecast, landfall intensity forecast, and 
instantaneous evacuation are shown in the following. In 
the same setting, V0(s0=.15, t0=1.5) with perfect 
information about strike probability is 0.232066, which is 
70.38% improvement. V0(s0=.15, t0=1.5) with 
instantaneous evacuation is 0.412143, which is 47.40% 
improvement. V0(s0=.15, t0=1.5) with perfect information 
about strike probability and instantaneous evacuation is 
0.114854, which is 85.34% improvement. These 
percentages are the upper bounds of improvement of 
the value of V0 when improving track forecast, 
evacuation speed, or both. 
6 .  CONCLUSION AND FUTURE RESEARCH 

We designed the framework to show the value of 
improved forecast and improved evacuation speed in 
the dynamic multi-stage decision setting with example 
results. Using this framework, we can see how much 
value the improved evacuation can give, compared to 
the improved forecast. Improved forecast lowers the 
chance of false alarm or miss while faster evacuation 
gives more time to wait for more information without 
increasing the risk of loss from the hurricane. In our 
model, forecast quality and evacuation speed are 
controlled by improvement parameters rS, rT, and rE. The 
sensitivity analysis of the anticipated expense to these 
parameters shows that the improvement of evacuation 
speed has greater influence on the anticipated expense 
than forecast quality in the example. If cost of 
improvement or technical difficulty does not matter, 
investment in improving evacuation speed looks more 
attractive. However, we cannot derive a general result 
from the example. 

Before we make the final investment decision, we 
need to know how much change of a parameter value is 
equivalent to unit improvement of forecast quality and 
evacuation speed depending on their measures. The 
cost of each improvement will also be a key factor for 
the decision. Future research will consider how much 
change of the parameter value is equivalent to unit 
improvement of forecast quality and evacuation speed 
for different measures. In addition, more realistic cost 
function and prices for the improvements will be 
considered. By doing so, we will be able to answer the 
question more clearly: roads or radar. 
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