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1.  INTRODUCTION 

This paper discusses how random forests, 
ensembles of weakly-correlated decision trees, can be 
used in concert with fuzzy logic concepts to both classify 
storm types based on a number of radar-derived storm 
characteristics and provide a measure of  “confidence” 
in the resulting classifications.  The random forest 
technique provides measures of variable importance 
and interactions, as well as methods for addressing 
missing data, suggesting fruitful ways to transform the 
input data and to structure the final classification 
algorithm.  N-fold cross-validation is used as the basis 
for tuning the algorithm parameters. 
 
2.  THE PROBLEM 

This paper addresses a problem posed by the 2008 
Artificial Intelligence Competition organized by the 
American Meteorology Society Committee on Artificial 
Intelligence Applications to Environmental Science and 
sponsored by Weather Decision Technologies 
(Lakshmanan et al. 2008).  Two datasets were provided 
by the competition organizers: (1) a training dataset 
consisting of 1356 records containing numerical 
measurements of various thunderstorm cluster 
attributes accompanied by a storm type label specifying 
whether the storm had been identified by a human as 
“Not Severe” (NS), “Isolated Supercell” (IS), “Convective 
Line” (CL) or “Pulse Storm” (PS), and (2) a testing 
dataset consisting of 1069 feature records but without 
the storm type label.  The goal of the competition was to 
use statistical analysis, data mining, or machine learning 
techniques to create a function that would map the 
thunderstorm cluster attributes to the storm type and to 
use it to classify the instances in the testing dataset. 

This classification problem is drawn from a paper 
addressing the connection between storm types and the 
accuracy of operational tornado and severe 
thunderstorm warnings (Guillot et al. 2008).  Because it 
was not feasible to classify the more than 50,000 storms 
involved in that study, Guillot et al. trained a decision 
tree to classify storms automatically, then used those 
classifications to draw conclusions about warning 
accuracy.  On the dataset prepared for the AI 
Competition, a sample decision tree provided by the 
contest organizers for performing this classification 
produced a multi-category True Skill Score (TSS) of 
0.58 on the testing dataset, having the contingency 
table shown in Table 1.  Clearly, greater accuracy would 
be desirable. 
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Predicted ⇒ NS IS CL PS TOTAL 

True NS 498 0 3 68 569 

True IS 2 82 14 33 131 

True CL 4 28 41 22 95 

True PS 57 24 25 168 274 

Table 1: Contingency table for the sample decision tree 
run on the testing dataset, as provided by the contest 
organizers.  True classes are listed down rows, and 
predicted classes across columns. 

 
3.  PRELIMINARY DATA ANALYSIS 

The attributes associated with each instance in the 
training and testing datasets were derived from 
“clusters” of thunderstorm identified using a method 
described in Guillot et al. (2008).  These features 
include the following, in alphabetical order: 

AspectRatio (dimensionless) the ratio of the major to 
minor axis of an ellips fitted to the storm cluster 

ConvectiveArea (km2) the area that is convective 

LatRadius (km) North-South extent 

LatitudeOfCentroid (degrees) location of centroid 

LifetimeMESH (mm) maximum expected hail size 
over the storm’s entire past history 

LifetimePOSH (dimensionless) peak probability of 
severe hail over the storm’s entire past history 

LonRadius (km) East-West extent 

LongitudeOfCentroid (degrees) location of centroid 

LowLvlShear (s-1) shear closest to the ground as 
measured by radar 

MESH (mm) maximum expected hail size  

MaxRef (dBZ) maximum observed reflectivity  

MaxVIL (kg/m2) maximum vertical integrated liquid 

MeanRef (dBZ) mean reflectivity 

MotionEast (m s-1) speed in easterly direction 

MotionSouth (m s-1) speed in southerly direction 

OrientationToDueNorth (degrees) orientation of the 
major axis of the fitted ellipse  

POSH (dimensionless) peak probability of severe hail 
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Rot120 (s-1) maximum observed azimuthal shear over 
the past 120 minutes 

Rot30 (s-1) maximum observed azimuthal shear over 
the past 30 minutes 

RowName (dimensionless) storm ID 

Size (km2) storm size 

Speed (m s-1) storm speed 

Three of these attributes were not used in the following 
analysis due to a suspicion that any relationship 
between them and the storm type in the training dataset 
was specific to the training days and would not 
generalize well to the testing dataset; these were 
LatitudeOfCentroid, LongitudeOfCentroid and 
RowName.  Removing those fields from consideration 
left 20 candidate predictor variables. 

The first step of any statistical analysis or data 
mining effort is to examine the available data and 
identify any obvious contamination or inconsistencies.  
For example, we verified that LifetimeMESH ≥ MESH 
and Size ≥ ConvectiveArea.  However, it was not true, 
as one might have expected, that Rot120 ≥ Rot30.  
Furthermore, two values of Rot120 and one value of 
LowLvlShear were less than zero, and a number of 
values were flagged as bad or missing, as shown in 
Table 2.  There is no universally best way to handle 
such questionable or missing values; one approach 
might be to experiment with several substitution or 
imputation methods to see which gives the best results.  
In the present case, the authors chose to set negative 
values of MaxRef, MeanRef, Rot30, and Rot120 to zero.  
Moreover, OrientationToDueNorth was rotated 
somewhat, and missing values of VIL were replaced by 

( )
( )

4/7MaxRef/10

4/7MeanRef/10

MaxVIL = 0.0071 10

+0.0200 10
 (1) 

The form of this equation comes from a standard 
relationship between radar reflectivity and liquid water 
content, while the coefficients 0.0071 and 0.0200 were 
found from a least-squares best fit using the instances 
having good values of MaxVIL, MaxRef and MeanRef. 

Another step taken before using the data was to 
devise additional derived data fields which might be 
more simply related to the storm type and hence might 
facilitate creation of a simple, skillful predictive function.  
These included the following: 

fractAreaConvective = ConvectiveArea/Size 

delRot = Rot120 – Rot30 

delPOSH = LifetimePOSH – POSH 

delMESH = LifetimeMESH – MESH  

dirMotion direction of storm velocity vector 

MESHtimesPOSH = MESH × POSH 

MESHisbad boolean 0 or 1 depending on whether 
MESH is good or bad/missing 

POSHisbad boolean 0 or 1  

LifetimeMESHisbad boolean 0 or 1 

LifetimePOSHisbad boolean 0 or 1 

MaxVILfromRefl maximum VIL “equivalent” from 
equation (1) 

LatLonArea = LatRadius × LonRadius 

MaxRot = max(Rot30, Rot120) 

meanBothRefl = (maxRef + meanRef)/2 

meanBothVIL = (MaxVIL + MaxVILfromRefl)/2 

These derived variables were selected based on 
physical intuition and curiosity rather than any 
systematic methodology, though more principled 
methods, including a matrix of variable interactions 
provided by the random forest training procedure might 
have been used.  With these additions, there were 35 
candidate predictor variables. 

A final note regarding the data: the training dataset 
was observed to consist of 1356 instances divided into 
storm types as 526 NS, 222 IS, 208 CL, and 400 PS, for 
a frequency distribution of (0.388, 0.164, 0.153,    
0.295).  From the sample decision tree contingency 
table for the testing set (Table 1), it can be seen that the 
1069 instances in the testing set are distributed as 569  
NS, 131 IS, 95 CL, and 274 PS, for a frequency 
distribution of (0.532, 0.123, 0.089, 0.256).  Clearly 
there are relatively more non-severe cases and fewer 
convective line cases in the testing dataset, which could 
pose a challenge for generalizing from the training to 
testing dataset. 

 

 

Field Name Train Set Test Set 
AspectRatio 
ConvectiveArea 
LatRadius 
LifetimeMESH 
LifetimePOSH 
LonRadius 
LowLvlShear 
MESH 
MaxRef 
MaxVIL 
MeanRef 
MotionEast 
MotionSouth 
OrientationToDueNorth 
POSH 
Rot120 
Rot30 
RowName 
Size 
Speed 

0 
0 
0 

335 
802 

0 
6 

390 
0 

83 
0 

113 
113 

0 
910 
23 
4 
0 
0 

113 

0 
0 
0 

412 
740 

0 
15 

487 
2 

60 
2 

73 
73 
0 

799 
31 
12 
0 
0 

73 

Table 2: Number of values labeled as bad or missing  
(-99900) in the training and testing datasets, 
respectively. 



4.  RANDOM FORESTS 

The machine learning technique selected for 
producing the classification algorithm was random 
forests (Breiman 2001), which one of the authors has 
found to work well on other datasets (Williams et al. 
2007, Cotter et al. 2007).  Essentially, random forests 
are ensembles of weak, weakly-correlated decision 
trees that “vote” on the correct classification of a given 
input.  Because the decision trees are weak, they 
minimize the risk of overfitting the training set, a 
significant and well-known problem with individual 
decision trees.  On the other hand, since the trees are 
weakly correlated with one another, using a large 
number of them in an ensemble makes up for the 
weakness of the individual constituent trees and 
provides a powerful predictive model. 

In constructing each tree of a random forest, a 
“bagged” training sample is selected by drawing a 
random subset of n instances from the n-member 
training set, with “replacement” after each draw. This 
means that, on average, each tree is trained on roughly 
2/3 of the dataset, including many duplicates.  Then, at 
each node of the tree, a subset of only m randomly-
selected feature variables are chosen as candidates for 
splitting, contrasting with the usual decision tree practice 
of choosing the best split from all the feature variables.  
Because not all feature variables are used to train each 
tree, those not used (the so-called “out-of-bag” samples) 
may be used to evaluate the performance of that tree.  
This allows the random forest training process to 
estimate the importance of each variable based on the 
degradation in classification performance when each 
variable’s values are randomly permuted among training 
instances.  Using this technique, the feature variables 
may be ranked in order of their importance to the 
random forest’s performance, providing a helpful 
starting point for performing feature selection. 

Once a random forest has been trained, the trees 
function as an “ensemble of experts” to make 
predictions.  For example, Error! Reference source 
not found. shows a conceptual diagram of a random 
forest with 100 trees.  When a new instance (vector of 
attributes) is presented to the random forest, each tree 
will output a classification.  These class “votes” are then 
compiled, and can be used to classify the point based 
on the consensus “winner”, or the vote distribution may 
be used to assess the confidence of that prediction. 
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Figure 1: Conceptual diagram of a trained random 
forest, an ensemble of decision trees that “vote” on the 
classification of each data point (vector of attributes). 

5. TRAINING AND CROSS-VALIDATION 

A random forest may be quickly trained to create a 
predictive algorithm using a training set of labeled 
instances along with the default choice of m and the 
number of trees, T.  However, to ensure that the choice 
of m and T and the set of variables used are appropriate 
for the problem, it is helpful to perform tests in which a 
portion of the training dataset is withheld during the 
random forest training and then used instead to 
evaluate the trained random forest’s skill.  To ensure 
that this evaluation is meaningful, the random choice of 
holdout set, the random forest training, and the 
evaluation should be repeated numerous times, say N 
times, and is therefore called N-fold cross-validation. 

As noted earlier, the distribution of storm types is 
different in the training and testing datasets for this 
problem.  Therefore, the authors chose to select the 
random holdout sets to always have the same 
distribution of categories as the known distribution in the 
testing dataset, with the idea that the evaluation would 
then better reflect the random forest’s ability to 
generalize to that distribution.  Using this approach, 
different values of m and T were tried using a 20% 
holdout set, and the random forest’s TSS was 
evaluated.  These experiments suggested that the skill 
improved rapidly as T was increased from 10 to 50, then 
much more slowly with increases to 100 or 200 trees, 
and it was difficult to establish a statistically significant 
improvement for 500 trees.  Using 200 trees, various 
values for m were tried, and several different around the 
default number were found to have quite little impact on 
the skill.  Values of T = 1000 and m = 3 were chosen for 
the final random forest training run entered into the 
contest.   

The dependence of random forest performance on 
the set of predictor variables used was also examined; 
this process is illustrated in a bit more detail.  First, 
using a generous choice of T = 1000 to insure accuracy 
of the importance rank lists, the random forest was run 
using all the candidate predictor fields to produce a 
ranked list of variable importance.  The variable with the 
lowest importance rank was then removed, and the 
process repeated in a “backwards selection” process.  
For each set of variables, N-fold cross-validation was 
performed using T = 200 and a holdout set of 10% of 
the instances to evaluate the potential skill of a forest 
trained using those variables.   Classifications were 
obtained from the random forest vote distributions using 
two different approaches: the simple mode (taking the 
classification as the class with the most votes, or 
“winner”), and the mode after adjustment of the class 
votes for the difference in storm type distributions in the 
training and test sets.  The results are shown in Figure 2 
and Figure 3.  As expected, the random forest 
performance initially improved with the increasing 
number of variables used, though more slowly after 
about 15 variables; it appears to reach a maximum 
around 25 variables, and then stays about the same.  
Note that the second method, which adjusts the votes 
before taking the mode, does seem to perform 
somewhat better, with mean and median TSS around 



0.67 for 25 variables as opposed to 0.65 for the simple 
mode.  Because one generally wants to use the 
smallest number of variables that provide good 
classification to avoid the risk of unnecessary 
generalization error from an overly complex function, the 
final random forest training was performed using these 
25 variables, listed in order of the random forest 
“importance” rank from most to least important: 
meanBothVil, MaxVIL, MaxRef, meanBothRefl, 
MaxVILfromRefl, MESH, LifetimeMESH, MeanRef, 
LifetimePOSH, delMESH, LowLvlShear, AspectRatio, 
MESHisbad, LatRadius, LatLonArea, Size, Rot30, 
POSH, LonRadius, Speed, OrientationToDueNorth, 
MotionSouth, Rot120, MotionEast, and ConvectiveArea.  
The final random forest classification was tried with both 
the simple mode and the mode of the distribution-
adjusted votes.  Although the distribution adjustment 
seemed to work best in cross-validation tests, the 
simple mode produced a distribution of classes that 
better matched the known distribution of the test set, 
and therefore the simple mode classification was 
submitted to the contest. 
 

 
Figure 2: Random forest skill as a function of the 
number of predictor variables, for simple mode category 
selection and sets of variables selected as described in 
the text.  The median, mean, and 10th percentile TSS 
over 120 cross-validation runs are shown.  The large 
difference between the 10th percentile and mean and 
median TSS is due in large part to the small (10%) 
random holdout sets used. 

 
Figure 3: Same as Figure 2, but for “distribution 
adjusted” votes and 600 cross-validation runs. 

 

6.  TESTING DATASET RESULTS 

The submitted random forest classifications of the 
training dataset turned out to have a TSS of 0.638 when 
compared to the actual storm type labels.  This 
performance is slightly worse than had been suggested 
by the cross-validation experiments, possibly because 
the test dataset was produced from separate days with 
slightly different combinations of conditions, making 
generalization imperfect. 

Following the submission results, the contest 
organizers made the true dataset classifications public.  
This allowed a demonstration of how a fuzzy logic 
approach to interpreting the random forest votes might 
add value.  For each instance, the distribution of votes 
was used to produce a classification “confidence” c in 
each mode classification via c = (4/3)v/T – 1/3, where v 
is the number of votes obtained by the winning 
category.  If only the instances in the testing set having 
confidence above some threshold are considered, the 
fraction of data declines but the percent classified 
correctly and the TSS both increase, as depicted in 
Figure 4.  For example, using only the half of the 
dataset with the highest classification confidences, the 
TSS rises from 0.64 to 0.77 and the percent correct 
rises from 77% to 88%.  This “confidence” measure of 
uncertainty in the classification, which is a natural 
product of the random forest ensemble, could potentially 
be very useful to downstream applications.  Such 
assessments of confidence are an essential component 
of many fuzzy logic algorithms.  
 
 



 
Figure 4: Test set performance of the final trained 
random forest as a function of classification “confidence” 
threshold derived from the vote distribution as described 
in the text. 

 

7.  CONCLUSION 

This paper has shown how a dataset can be 
analyzed and a random forest trained to learn a 
predictive function based on it.  The data analysis 
includes considering how bad or missing data may be 
handled, and adding derived data fields that may be 
more simply or robustly related to the classification 
problem.  The parameters used for the random forest 
training may be selected using N-fold cross-validation 
experiments, though the random forest appears to work 
remarkably well over a wide variety of choices.  A 
minimal set of predictor variables to be used for training 
the random forest may be selected in a similar fashion.  
Finally, a “confidence” in the random forest classification 
can be easily produced using the vote distribution, and 
does appear to correlate well with classification 
accuracy.  This confidence value may be useful to 
interpreting the results or to automated  downstream 
applications.   

The authors wish to thank Weather Decision 
Technologies for sponsoring this competition, and the 
AMS Committee on Artificial Intelligence Applications to 
Environmental Science for organizing it.   

 

8. REFERENCES 

Breiman, L., 2001: Random forests.  Machine Learning, 
45, 5-32. 

Cotter, A., J. K. Williams, R. K. Goodrich and J. Craig, 
2007: A Random Forest Turbulence Prediction 
Algorithm. AMS Fifth Conference on Artificial 
Intelligence Applications to Environmental Science, 
1.3. 

Guillot, E. M., V. Lakshmanan, T. M. Smith, G. J. 
Stumpf, D. W. Burgess, and K. L. Elmore, 2008: 
Tornado and Severe Thunderstorm Warning 
Forecast Skill and its Relationship to Storm Type.  
AMS 24th Conference on International Interactive 
Information and Processing Systems (IIPS) for 
Meteorology, Oceanography, and Hydrology, 4A.3. 

Lakshmanan, V.  and E. E. Ebert and S. E. Haupt, 2008: 
The 2008 Artificial Intelligence Competition.  AMS 
Sixth Conference on Artificial Intelligence 
Applications to Environmental Science, 2.1. 

Williams, J. K., J. Craig, A. Cotter, and J. K. Wolff, 2007: 
A hybrid machine learning and fuzzy logic approach 
to CIT diagnostic development.  AMS Fifth 
Conference on Artificial Intelligence Applications to 
Environmental Science, San Antonio, TX, 1.2. 

 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


