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 ABSTRACT 

Our approach to the AI contest is based on our research in classifying simulated and observed storms using 
decision trees (Gagne II and McGovern, 2008).  Based on our results in that project, we developed a multi-
algorithm ensemble approach that outperforms the baseline decision tree provided by the contest.  Our 
approach uses a combination of decision trees, neural networks, logistic regressions, random forests, and 
boosting to generate the final model.  We combine the models using multi-class linear regression and take a 
vote over 10 different regression models, each trained using cross validation.  This final ensemble model 
outperforms the baseline decision tree as well as all of the individual models included in the ensemble. 

  
 
1. INTRODUCTION 

As part of a research project on tornado 
warning verification by storm type, a set of 2,425 
storms was classified using a decision tree (Guillot 
et al., 2008).  Since the project’s primary focus 
was tornado warning verification and not storm 
classification, a very basic decision tree was used.  
When evaluated on a test set of storms, the 
decision tree achieved a True Skill Statistic (TSS), 
a measurement of the accuracy of the prediction 
that eliminates correct predictions found by 
random chance (Woodcock, 1976), of .583.  In 
order to improve the accuracy of the classification 
of storms in the dataset, a contest was announced 
as part of the AMS Annual Meeting to develop an 
algorithm that would most improve on the TSS of 
the original decision tree.  This paper describes 
our entry for the contest.   
 The various methods that we used in 
classifying this set of storms fall under the broad 
category of machine learning classification 
algorithms.  The purpose of machine learning 
classification algorithms is to sort through various 
attributes, or descriptive aspects of a data set, and 
find relationships between those attributes that 
can be used to predict the value of one or more of 
the attributes in the data set.  All of these 
algorithms require some form of a training dataset, 

which is often a dataset that has been already 
labeled with the correct classification.  The model 
building is done from this data set.  In order to 
evaluate the model, other sets of data, called test 
sets, are entered into the model so as to 
determine the accuracy of the model’s 
classifications.  
  
2. DATA 
 Each storm in the dataset is described by 
a set of twenty-three different attributes, the same 
ones used in Guillot et al. (2008).  These include 
morphological characteristics such as aspect ratio, 
convective area, size, and latitudinal and 
longitudinal radius; positional characteristics such 
as latitude and longitude of centroid, speed, 
orientation to due north, motion east, and motion 
south; reflectivity-derived attributes; hail attributes 
such as Maximum Expected Size of Hail (MESH) 
and Probability Of Severe Hail (POSH); and 
measurements of low level shear.  The storms in 
the dataset were divided into four types:  isolated 
supercells, convective lines, pulse storms, and 
non-organized storms, as defined by (Guillot et al., 
2008).  For the competition, a training set of 1356 
storms was provided along with a test set of 1069 
storms with the storm type attribute removed. 
   
3. METHODOLOGY 
 Our approach stemmed from the 
understanding that an ensemble approach to a 
machine learning problem will usually outperform 
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Figure 1.  This graph compares the TSS of the individual models and the ensemble approach.   

any single method (Schapire, 1990 1999; 
Breiman, 1996).  By learning a combination of 
models and having each one contribute a portion 
of the overall prediction, the ensemble magnifies 
each model’s strengths.  The process occurred in 
three major steps:  training multiple models, using 
multi-class regression to train a combined model, 
and using an ensemble/bagging approach for 
evaluating the combined model across the ten-
fold-cross-validation and making predictions for 
the test set.   
 For the first step of the process we trained 
multiple machine learning models using the 
provided training set.  The algorithms for these 
models came from the Waikato Environment for 
Knowledge Analysis (WEKA), a suite of machine 
learning algorithms developed at the University of 
Waikato (Witten and Frank, 2005).  This program 
was used primarily because it contained a very 
large number of machine learning algorithms, the 
dataset could be easily manipulated to be 
interpreted by the program, and the program was 
written in Java, so its models could simply be 
imported into another Java program for other 
uses.  We used nine unique models from WEKA 
along with three sets of attributes for some of the 
models to bring the total to seventeen.  The 
following models were used:   

 
1. REP Tree:  A quick decision tree generator that 
uses information gain and variance to determine 
its rules (Witten and Frank, 2005); 
2. BF Tree:  A decision tree that uses a best first 
method of determining its branches (Shi, 2007); 
3. Logistic Model Tree:  A decision tree with 
logistic regression models at its leaves (Landwehr, 
2005); 
4. Multilayer Perceptron:  a neural network 
function that uses back-propagation to classify the 
data (Witten and Frank, 2005); 
5. Logistic Model:  a logistic regression fitted to the 
data (Le Cessie, 1992); 
6. Random Forest:  a method that creates a forest 
of random trees that is similar to boosting 
(Brieman, 2001); 
7. Ada Boosting with Decision Stumps:  creates a 
series of decision stumps and uses a weighted 
average of their results for predictions (Freund and 
Schapire, 1996); 
8. Ada Boosting with REP Trees:  uses Ada 
Boosting with REP Trees; 
9. Ada Boosting with a Random Forest:  uses Ada 
Boosting with a series of Random Forests 
 
In addition, the Multilayer Perceptron, Logistic 
Model, Logistic Model Tree, and Random Forest 
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Figure 2.  This graph compares the classification accuracy 
of the four different storm types in the dataset between the 
baseline decision tree model and the ensemble algorithm.   
 

models were run with three different sets of 
attributes.  One set had all the attributes given, 
one had only the attributes chosen by the REP 
Tree, and one had only the attributes chosen by 
the BF Tree.  This was done in order to try to 
reduce over fitting since those models do not have 
a way of determining the gain of their given 
attributes.  Ten-fold cross validation was used to 
train each model, and then the predictions from 
each model were used to build the ensemble 
model.  
 In the next step of the process, we 
combined the predictions of the seventeen total 
models using multi-class regression (Bishop, 
2006). We learned the weights, W, for the 
function: 
 

)(),( xWxwy T Φ=       (1) 
 
The inputs to this function take the form of x but 
they can be transformed through the function φ.  
For this work, φ(x) = x.  The standard method for 
training the weights is: 
 
  
 
where Φ is a matrix with the individual φ for each 
model, ⊕ represents the pseudo-inverse of the 
matrix Φ, and T is a matrix of the predictions for 
each example.   
 For the third step of the process, we used 
each of the regression models learned from 10-
fold cross validation to add an extra layer of 
ensemble learning. For each of these subsets of 
the original training set, we repeated step two of 
the process to create ten individual weighted 
regression functions and then evaluated the 
validation and test sets. This generated ten 
predictions for each instance of the training and 
validation sets.  We used the ten predictions to 
create one overall prediction by taking the modal 

prediction of the ten. If most of the folds agree on 
a particular prediction, then that prediction is most 
likely the correct one.  From this, a final set of 
prediction of the 10.  This was the prediction that 
we submitted to the competition. Similar to 
Bagging (Brieman, 1996), the modal vote obtains 
a more robust estimate of the true prediction under 
the assumptions of ensemble learning stated 
above. 
 
4. RESULTS 
 The TSS of the ensemble approach is 
improved over both the Guillot et al. decision tree 
and over the individual models.  On the test set, 
the algorithm received a TSS of .637 in 
comparison to the baseline algorithm’s TSS of 
.583.  Figure 1 shows a comparison of accuracy 
between different models on the test set data.  
Between the different models there is little 
variation in TSS.  On the test set, the Multilayer 

(2)          TW +Φ=

  Non-severe Supercell Line Pulse Total Accuracy 
Non-severe 534 0 0 35 569 0.938489 
Supercell 3 89 11 28 131 0.679389 
Line 3 32 31 29 95 0.326316 
Pulse 71 17 21 165 274 0.60219 
Total 611 138 63 257 1069  
Accuracy 0.8739771 0.644928 0.492063 0.642023  0.766137 
TSS 0.6369562      
 

Table 1.  This is the confusion matrix for the ensemble approach.  The rows compare the observed results and the columns 
compare the forecasted results. 



Perceptron (.432), Ada Boost with Decision 
Stumps (.535), Multilayer Perceptron with selected 
attributes (.57), and the REP Tree (.578) 
performed worse than the baseline decision tree 
(.583).  On the positive side, the ensemble 
algorithm submitted to the competition performed 
better every model. 
 When examining the accuracies of the 
specific storm types of our ensemble approach 
versus the original decision tree approach, some 
improvement can be found in two of the types, but 
in the others there was a slight decrease in 
accuracy.  As Figure 2 shows, the accuracy of Not 
Severe storm classification increased from .875 to 
.938 and the accuracy of the Supercell 
classification increased from .626 to .679.  
However, the classification accuracy for 
Convective Lines decreased from .432 to .326, 
and the accuracy for Pulse Storms decreased 
from .613 to .602.   
 The confusion matrix in Table 1 shows the 
numerical results of the test set classification for 
our ensemble approach.  It shows how many 
storms the algorithm predicted for each type in 
comparison to what each type was observed to 
be.  It can be used to calculate a variety of 
statistics, including the accuracy, which was .766.   
 
5. CONCLUSIONS 
 The work with multiple algorithms on the 
same dataset showed that incorporating multiple 
means to examine data into one system can 
improve the overall classification of the dataset.  
The ensemble model factors in the relative 
performance of each model to give more weight to 
the stronger models and less to the weaker ones, 
elevating the overall system to higher accuracies 
than most of the individual models can perform.  
Other boosting algorithms, such as the 20 tree 
random forest shown in the graph, had a slightly 
greater effect on the accuracy and TSS of the 
classification system, but do not result in major 
gains in the classification.   
 Another way to improve the classification 
of the dataset is to find other attributes that better 
describe the relationship between the different 
storm types.  If the right attribute is found, it could 
greatly improve the accuracy of the classification 
system.  We made multiple attempts with this 
project to find attributes that would fulfill this 
condition, but none of them proved to be better 
than the given attributes at classifying the storms.  
Two of our attempts were adding and multiplying 
attribute values together to create an index for 
each storm type, which did not result in any 
improvement in the classification.  We also 

calculated probability distributions for each storm 
type and attribute and applied them to every 
instance in the dataset.  It created a large number 
of new attributes, but the gain from these was still 
less than the gain from the original attributes.  One 
other solution that was not possible with this 
project would be to reanalyze the raw data directly 
to find additional attributes from it and use those to 
improve the calculation. We are doing just that 
with a combined dataset of simulated storms and 
actual storms (Gagne et al., 2008) and have 
demonstrated that these additional attributes 
considerably improve the classification system.   
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