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1. Introduction1 
 
Forecasters have long known how to 
identify severe weather radar 
characteristics based on the shape, 
orientation, and strength of radar echoes.  
Certain signatures are associated with 
different types of severe storms.  For 
example, an isolated severe storm will 
often, by its nature, be isolated or 
perhaps exist ahead of a line of 
convection.  It will have a high 
reflectivity core and sometimes a hook 
echo.  The hook echo is caused by a 
redistribution of the precipitation due to 
storm updraft and rotation.   It will also 
tend to be long-lived and move in a 
southeast direction due to pressure 
perturbations within the storm that favor 
convective development on its southeast 
flank.  This development is enhanced by 
strong environmental storm relative 
helicity that results from a highly 
sheared environment.  Large hail occurs 
within these storms resulting in high VIL 
values.   
 
Pulse severe storms often occur in a 
highly buoyant, weakly sheared 
environment.  They tend to move slowly 
in this weak flow.  Since they develop in 
an environment of very high low-level 
heat and moisture their maximum 
reflectivity core is often higher than 
normal storms.  The high reflectivity can 
also be attributed to water coated ice 
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associated with large hail.  This also 
produces high VIL readings.    
 
Linear storms, associated with line echo 
wave patterns (LEWP) and derechos, 
also have high reflectivity cores and tend 
to move fast.  These storms often form 
in environments with strong winds and 
shear and relatively high instability. 
They typically to do not get as tall as 
pulse storms. 
 
Humans have long known that the severe 
storm characteristics outlined above are 
good predictors in determining whether 
a storm is severe or not. They can then 
use this information to issue warnings. A 
critical question is whether decision 
trees and artificial neural networks can 
accomplish the same task.  
 
Decision Trees and Artificial Neural 
Networks are two artificial intelligence 
algorithms that can be used for 
classification.  Decision Trees measure 
the information gain from various 
combinations of the predictors and 
choose splits based on nodes that have 
the highest information gain.  Pruning of 
the tree is used to prevent over-fitting of 
the data.  This pruning mechanism 
maximizes information gain by getting 
rid of nodes that do not contribute much 
to information gain.  In effect, what is 
left behind are the most effective 
predictors in a given data set.  Artificial 
Neural Networks also can be used to 
classify data by repetitively presenting 
the predictors and know classification to 
the network and then adjusting the 



weights of each node based on the error 
that occurs between its predicted 
classification and the known 
classification.  With enough iterations 
the network slowly adjusts its weights to 
minimize the error between predicted 
and observed data.   
 
The task then is to determine if an 
artificial intelligence (AI) algorithm can 
classify the type of storm using radar 
parameters as the predictors.  The main 
purpose of this paper to show that two 
methods, Decision Trees and Artificial 
Neural Networks, can classify severe 
weather employing  radar characteristics 
with some modicum of skill. 
 
2. Data Preparation 
 
a. Quality Control and Identification of 
Outliers  
 
The data for this project came from an 
original study on severe weather forecast 
skill and its relationship to storm type 
(Guillot, et., al. 2008).  Before using the 
algorithms it was necessary to look at 
the training data for errors or 
misclassifications.  The training data 
supplied was put together by humans 
who looked at radar data and made 
judgment calls on the storm type 
classification.  There were four types of 
storms classified: Non-severe, Line, 
Pulse, and Isolated storms.  Visual 
inspection of the data revealed suspected 
measurement errors in the data and 
possibly some misclassification of 
storms.  For example, the data had many 
storms classified as pulse storms and 
severe convective lines but with very 
low (< 10) max VIL values and low 
(<50) max reflectivity.  There was also 
quite a number of missing data elements.  
In order to determine gross outliers in 

the data set the min, max, mean, and 
standard deviation (STD) was computed 
for each predictor for both the supplied 
training and test sets.  Since our 
algorithms would be judged on 
performance on the test data set it was 
necessary to get the mean and STD for 
each predictor of the training data set as 
close as possible to those in the supplied 
test data set.  This identified a few 
outliers (values > 2 STD’s) in the 
training data set and those instances (4) 
were eliminated.  A more thorough 
scrutinization of the training data by a 
group of meteorologists looking at the 
radar images would most likely result in 
a better classification of the storms.  
Although the training data had some 
suspected misclassifications those 
misclassifications were not changed 
because it was thought that the test data 
set would also have the same 
misclassifications in it.  Also, without 
having the original radar data to look at 
it would be difficult to try to change the 
storm type in the training data for those 
suspected instances.  Lastly, all missing 
values were changed to zero and the Lat 
and Lon of Centroid values for all 
instances were eliminated. 
 
b. Training and Test Sets 
 
Once the training data set was slightly 
modified programs were written to split 
the data into a training set and a test set.  
The file was read into memory and all 
instances were randomized in order to 
stratify the data properly.  Before 
randomizing the data, a count was made 
of the number of non-severe, isolated, 
line, and pulse storms.  It was noted that 
the number of instances for each storm 
type were not equal.  For example, there 
were more non-severe and pulse storms 
than isolated and line storms.  A better 



training data set would have an equal 
number of instances for each class.   
Therefore, it was necessary to represent 
the same ratio for each class of storm in 

both training and test files so that the 
algorithm would not be biased.  The 
overall ratio used was 70% for training 
and 30% for testing.  Therefore each 
class had a different number of instances 
in the training and test files but the same 
proportion of 70% and 30% was kept for 
the training and test sets, respectively. 
Table 1 lists the breakdown used for the 
testing and training files.  All instances 
in the training and test files were 
randomly stratified so that each class 
was randomly distributed. 
 
In addition the training and test files 
were formatted for the decision tree and 
neural net algorithms. 
 
3. Attribute Selection 
 
a. Histograms 
 
Attribute selection is an important part 
of the process to identify inputs to any 
artificial intelligence algorithm.  If good 
predictors are not chosen performance 
will be poor both on the test set and in 
reality.  Knowledge of the data for each 
class it represents and the upper and 
lower bounds of that data help determine 

what is good and what is suspect.   There 
were suspected good predictors in this 
data set and some predictors that were 
suspected to not be as good due to 
difficulty in measuring or amount of 
missing data.  A method to identify good 
predictors and attributes is to use 
histograms and a decision tree.   
 
Histograms show the range and 
frequency of data and are a quick way to 
graphically see differences between 
classes for a particular attribute. The 
decision tree, through its process of 
measuring and maximizing information 
gain, will prune away poor predictors 
with the most influential predictors 
appearing at the top of the tree.  Figure 1 
shows histograms for each attribute, 
color-coded by storm type, for the 
original training set2. 
 
Non-severe storms are dark blue, 
Isolated storms are in red, Line storms in 
light blue, and Pulse storms in blue-
green.  The Max Reflectivity, Max VIL, 
and Mean Reflectivity immediately 
stand out as good predictors because the 
frequency distributions for each class 
appear to be well separated.  Other good 
predictors are MESH/LifeTimeMESH, 
Aspect Ratio, and Rotation.  Intuitively, 
and meteorologically, these predictors 
make sense.  However there are subtle 
differences for other predictors than 
cannot be gleaned from a visual 
histogram.  To further explore and 
measure the contribution of these 
predictors the data set was run through a 
decision tree. 
 
b. Decision Tree Analysis of Attributes 
 

                                                 
2 These images are best viewed by using a higher 
zoom factor in your document reader. 

Storm 
Type 

Total 
number 
in 
original 
file 

Number 
in 
training 
file 
based on 
70% of 
original 
file 

Number 
in testing 
file 
based on 
30% of 
original 
file 

Non-
Svr 

526 368 158 

Isold 222 156 66 
Line 208 146 62 
Pulse 400 280 120 
Table 1.  Randomly stratified number of 
instances for the training and test files 



Good 
Predictor 

Good 
Predictor 

Good Predictor
Good 
Predictor 

Good 
Predictor 

Good 
Predictor 

The decision tree used was a version of 
Quinlan’s (1990) C4.5 algorithm 
available in the Wakaito for 
Environment for Knowledge Analysis 
(Weka) tool (Witten and Frank, 2005).  
When running the training data through 
the decision tree a large tree is produced 
with many nodes or decision points.  
This results in a 66.8% of correctly 
classified instances.  However such a 
large tree is likely to be overfit.  Weka 

has a number of tunable parameters that 
allow for pruning of the tree to reduce 
overfitting such as the confidence factor 
and minimum number of instances per 
leaf node.  Using a confidence factor of 
0.5 and a minimum number of objects 
per leaf of 10 results in smaller tree (19 
leaves) with a higher percentage of 
correctly classified instances (69.5%).  
The resulting tree is shown in Figure 2.   

Figure 1.  Frequency histograms for all attributes in the original training set for each class.  Non-
severe storms are dark blue, Isolated storms are in red, Line storms in light blue, and Pulse storms in 
blue-green.  The lower right histogram shows each class and number of instances for each class. 
 

 



The decision tree shows the attributes 
with the most information gain at the top 
of the tree with lesser influential 
attributes towards the bottom.  
Meteorologically, it makes sense to see 
Max VIL, Max Reflectivity, and Mean 
Reflectivity, MESH, and Aspect Ratio at 
the top of the tree.  These predictors 
were shown to be well separated in the 
histograms.  However the decision tree 
process ferrets out more subtle details 
and relationships in the data that would 
be hard for a human to judge by looking 
at the histograms alone.  These subtle 
differences appear farther down the tree.  
Note that the low values of Max VIL 
used in the decision split are likely the 
result of bad measurements by the 
human classifying the data set. Better 
quality control of the data would likely 
result in a more realistic tree that made 
sense meteorologically, at least with 
regards to the Max VIL node.  It would 
be unwise to use this tree in a real-time 
operational setting.  Nevertheless, even 
with suspected bad data, the most 
prevalent predictors rise to the top of the 
tree.  In addition, sensitivity tests were 
done by removing particular attributes, 
one at a time, from the data set and 
running it through the decision tree each 
time to measure the decrease (or increase) 
in predictive skill.  The attributes that 
lowered the skill after having been 
removed were deemed important and 
added to a list of possible attributes to 
keep.   Others that did not have an 
influence were eliminated.  The tree and 
sensitivity tests suggested the number of 
predictors for radar classification should 
be reduced from the original 19 to 11.  
These are identified in the nodes of the 
tree.  
 
c. Confirmation of Decision Tree 
Analysis 

 
Another aspect one hopes to find in the 
results of the decision tree is that the tree 
makes sense based on what 
meteorologists already know about 
severe weather radar signatures outlined 
in the introduction.  This tree does 
appear to support those ideas.  Each leaf 
node contains the number of correctly 
classified events and incorrectly 
classified events.   For example, the left 
side of the tree is dominated by the non-
severe events with very low Max VIL, 
low Max Reflectivity, and low 
probability of hail.  There were some 
pulse storms on this side of the tree but 
the majority of the pulse events appear 
on the right side where VIL, Reflectivity, 
and MESH are higher.  The Aspect Ratio 
is a very good predictor for determining 
line severe storms quickly identifying 
the majority (64) very high in the tree.  
Descending further in the tree shows 
more subtle differences that begin to 
flush out rotational aspects of severe 
storms.   Weak low level shear and 
slowly moving storms separate the pulse 
events from additional line events.  The 
majority of the isolated severe storms 
occur, as one would expect, where low 
level shear is high.  These storms are 
developing in an environment which 
supports favorable horizontal vorticity 
which gets tilted vertically by updrafts 
and results in rotation.  Such storms are 
highly organized and usually long-lived.  
The resulting strong updrafts support 
large hail which is identified by the 
Lifetime POSH and Rotation decision 
nodes.    
 
4. Identifying Non-Linear 
Relationships with a Neural Network 
 



a. Visual Inspection of Scatter Plots 
 
There are very few processes in 
meteorology that are linear.  The 
atmosphere is a three-dimensional, 
chaotic fluid.  Thus, it should be no 
surprise that using linear models to 
identify non-linear relationships in 
meteorological data would not do well.  
This radar data set is no exception.  
Figures 3, 4, and 5 show a few examples 

of non-linear relationships in this radar 
data.  Each instance of the data is plotted 
and color-coded for the type of storm.  
Non-severe storms are dark blue, pulse 
storms are light blue, line storms are 
green, and isolated storms are red 

Figure 2. Decision Tree for radar classification data using a Confidence Factor or 0.5 and 
a minimum number of instances per leaf of 10.  
 

       
b. Artificial Neural Networks 
 
A decision tree can identify non-linear 
relationships but a more adept algorithm 



and potentially better one is the 
application of a Neural Network (NN).  
Reed and Marks (1999) showed that a 
two layer neural net can model any non-
linear function. Weka does include a 
neural network interface however it is 
difficult to use because a large number 
of parameters (nodes, learning rate, 
momentum, etc) must be manually 
adjusted for each training run via a GUI 
interface.  Therefore a neural network 
was developed in Java so that different 
network architectures could be 
automated and tried on the training and 
test sets.  The Java implementation has a 
number of the adjustable parameters as 
the Weka version.  It is a two-layer, 
back-propagation network with 
adjustable number of nodes in each 
hidden layer, learning rate, momentum, 
and weight decay.  It also uses the 
logistic sigmoid as its activation function 
for all hidden nodes and includes a bias 
node for the input and hidden layers.  
Different network structures were run on 
the training data set and the test data set 
was used to measure the skill of the 
network.  The training and test files for 
the neural net were made by splitting the 
original data set into a 70% train and 
30% test configuration after randomly 
stratifying all instances in the original 
file.  The relative distributions of 
predictands for the taining and test files 
were proportioned in the same manner as 
was done for the decision tree.  All 
inputs to the neural network were 
normalized (for both training and test 
sets) using the following equation 
according to Witten and Frank (2005). 
 
Normalized Value = (Value-min)/(max-
min) 
 
where min and max represent the 
minimum and maximum values found 

for each particular predictor.  For 

example, each input value to the neural 
net for the Max Reflectivity was 
normalized by using the min and max of 
23 and 72, respectively.   
 
Various skill scores were computed 
based on the predicted and observed  
outcome for both training and test data 
sets for each run of the network.  Since 
the competition would be judged on the 
highest True Skill Score (TSS) it was 
decided to use this skill score as a 
measure of forecast robustness in the  
Java implementation. 
The goal was to 
produce the best network that achieved 
the highest, but nearly equal, TSS for 
both the training set and testing set.  The 
TSS for training and testing should be as 
close as possible.  Anything else is 
overfit.   The best network achieved a 
TSS of 0.67 on the training data and 0.70 

 
Training  TSS: 0.67 

  POD FAR CSI 
 Non 
Svr 

0.86 0.14 0.75 

Isold 0.75 0.28 0.57 
Line 0.56 0.25 0.46 
Pulse 0.75 0.31 0.56 
Table 2.  Results of Neural Network on 
training data showing True Skill Score 
(TSS), Probability of Detection (POD), 
False Alarm Rate (FAR), and Critical 
Success Index (CSI) for each storm type.
 

  Testing  TSS: 0.70 
  POD FAR CSI 
Non 
Svr 

0.88 0.12 0.78 

Isold 0.71 0.27 0.55 
Line 0.51 0.25 0.43 
Pulse 0.80 0.29 0.60 
Table 3.  As in Table 2 except for 
testing data. 
 



Figure 3. Graph of Max Reflectivity (X axis) vs. Max VIL (Y axis) for each storm type. Non-severe storms 
are dark blue, pulse storms are light blue, line storms are green, and isolated storms are red. 

on the test data.   In the original study 
(Guillot, et. al., 2008) that used a 
decision tree the TSS was 0.71 for 
training and 0.58 for testing.  Since the 
TSS in their study was much lower for 
the test set than the training set it 
indicated that their model was slightly 
overfit.  In this study, although the 
training TSS was slightly lower than the 
test TSS, it was felt that since they were 
so close the network indicated a good 
model that would be robust enough to 
generalize well on new, unseen data.  
Higher training TSS’s were easily 
achieved with more complex networks 
but the accompanying testing TSS scores 
fell much lower indicating these 
networks were overfit.  Since the test 
TSS in this study was higher than the 

test TSS in the original study it was 
thought that this model was an 
improvement and competitive enough to 
enter the competition. 
 
 
c. Results of Neural Network  
 
The results of the neural network are 
show in Tables 2 and 3.  It can be seen 
that the POD, FAR, and CSI between the 
training and testing data sets are close 
indicating an unbiased and properly fit 
network.   The Line type severe storms 
were the hardest to identify.  This could 
be due to the fact that the number of 
instances in the original data set was the 
lowest of all 4 types and not properly 
represented.  The CSI for both training 



Figure 4. As in Fig 3 except graph of MESH (X axis) vs. Max VIL (Yaxis) 

and test sets are improved over the CSI 
in the original study indicating the neural 
network approach is an improved model 
over the decision tree approach alone.   
 
Tables 4 and 5 show output from the 
neural network in confusion matrix form 
for the training and test data sets.   
 
For the training confusion matrix shown 
in Table 4 the numbers are scaled by the 
number of iterations performed by the 
network.  This was done in order to keep 
the output results in a compact form and 
for visual representation only.  This 
confusion matrix was a result of a 
network with 600 iterations, 20 hidden 
nodes in layer 1, 10 hidden nodes in 
layer 2, a learning rate of 0.08 and 
momentum of 0.3.  Therefore the true 
number of hits, misses, etc are those in 

the table multiplied by 600.  Since the 
test data set was only run through the 
network once no adjustment is necessary.  
The diagonal values highlighted in red 
indicate pure hits and the Accuracy 
values of each row identify the POD for 
each class.  The Accuracy along the 
bottom indicates that all storms forecast 
by the model of that class are truly made 
up of that class.  
 
5. Conclusion 
 
a. Improvements over Original Study 
 
A decision tree and neural net were used 
to explore relationships in radar data 
used to characterize severe storms.  The 
decision tree alone showed comparative 
skill to the original study in correctly 
identifying severe storms.  Its use in this 



study was to help identify the more 
influential attributes for severe storm 
classification and to confirm attributes 
that have always thought to be important 
by meteorologists in identifying severe 
weather characteristics of radar data. 
Sensitivity tests and pruning helped 
flush out important predictors and 
reduced the number of inputs for the 
neural net providing for faster training 
and reduced overfitting.   
 
The choice of a neural network over the 
decision tree for classification was due 
to the non-linear relationships thought to 
exist in the radar data.   A two layer 
neural net can model any non-linear 
function.  The results from this 
implementation of a neural net showed 
increased skill over the decision tree 

approach based on a higher CSI for both 
training and test data over the original 
study.  The higher CSI scores were 
mainly due to lower FAR values than in 
the original study.  When comparing 
Accuracy scores of the confusion matrix 
between the original study and this one it 
was found to be equal in skill for the 
training set.  However the confusion 
matrix for the test set in this study 
showed increased Accuracy scores (as 
well as TSS scores) indicating a forecast 
model that was more robust and better at 
generalization than in the original study.  
It was also found that forecast skill of 
the neural net was highly dependant on 
the number of training instances 
representing each predictand.  Those 
predictands that had a lot of training 
instances (Non-Svr and Pulse storms) 

Figure 5. As in Fig 3 except for graph of Low Level Shear (X axis) vs. Mean Reflectivity 
(Y axis) 



had better skill scores than predictands 
with relatively fewer training instances 
(Line storms).  An equal distribution of 
training instances for each predictand 
would likely produce skill scores that 
were relatively even. 
 
b. Future Applications 
 
The neural network approach to 
identifying severe radar characteristics 
shows good promise for the future.  It 
would be easy to implement in an 
operational setting and would classify 
storms in a matter of seconds given the 
number of inputs for which it was 
trained.  Providing that input and 
formatting it for the neural net would be 
the difficult part.  One could possibly do 
this by setting up a web cam trained on a 
loop of radar imagery and capturing the 
images.  Software would be needed to 
take the input images and translate them 
into some coded, perhaps binary, 
representation.  Clustering analysis 
could be performed to separate the 
echoes and then the attributes (Max VIL, 
Max Reflectivity, Aspect Ratio, etc) 
could be recorded after each volume 
scan for each cluster of echoes.  These 
attributes would be fed into the neural 
network for classification.  Over time a 
probability distribution could be built 
from successive classifications with each 
volume scan.  The forecaster could then 
be alerted for the probability for each 
class of severe storm on the radar.  This 
automated classification scheme would 
be very important in the future when the 
phased array radar becomes operational.  
With such large amounts of data arriving 
in one-minute resolution volume scans it 
would be very difficult for humans to 
keep up with the increased data flow by 
using manual identification techniques. 
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Testing Confusion Matrix      TSS 0.70 
 Forecast Class 

 Not 
Svr 

Isold Line Pulse Accuracy 

Not Svr 139.0 0.0 0.0 18.0 88.5%  
Isold 1.0 47.0 4.0 14.0 71.2% 
Line 4.0 17.0 32.0 9.0 51.6%  
Pulse 15.0 1.0 7.0 96.0 80.7%  

Observed 
Class 

Accuracy 87.4% 72.3% 74.4% 70.1% 87.4% 
Table 5.  As in Table 3 except Confusion Matrix for testing data. 
 

Training Confusion Matrix      TSS: 0.67 
 Forecast Class 

 Not 
Svr 

Isold Line Pulse Accuracy 

Not Svr 318.4 1.9 0.9 47.8 86.3% 
Isold 2.0 117.0 17.8 19.2 75.0%  
Line 5.0 30.3 81.9 28.8 56.1%  
Pulse 45.9 14.1 9.8 211.2 75.2%  

Observed
Class 

Accuracy 85.8% 71.7% 74.2% 68.8%  
Table 4.  Confusion Matrix for training data for each severe storm 
class.  Numbers along the diagonal indicate correctly identified 
instances.      
 


