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1. Introduction
Support vector machines (SVMs) are a classifier

that uses optimal separating hyperplanes (Vapnik,
1996). For the two-class case, optimal separating hyper-
planes maximize the distance to the closest point from
either class. They provide a unique solution to the sepa-
rating hyperplane problem and they maximize the sepa-
rating margin between the two classes on the training
data which, in theory, leads to better classification perfor-
mance on the test data.

Given these potentially useful characteristics, the
SVM form is investigated here, as it is useful when the
different classes are not linearly separable. The generali-
zation of optimal separating hyperplanes to a SVM (or,
alternatively a support vector classifier) produces nonlin-
ear boundaries by casting a linear boundary in a large,
transformed version of the feature space (Hastie et al,
2001).

The theory behind SVMs is not further developed
here, Instead, we outline the method we followed in
developing the particular SVM used here. We will dis-
cuss what we did, and what we would do differently in
future given the observed performance.

2. Missing Data
The first problem encountered is missing data: some

predictors in the training data set are missing slightly
over 67% of the time. Table 1 provides a summary of the
missing values. Table 2 provides the same summary for

the testing data set. Of the predictors that are missing,
POSH suffers the most and fairs proportionally worse in
the testing data set. However, the testing data set has
two missing predictors that are not shared by the training
data set: Max Azimuthal Shear over the past 120 min,
max reflectivity and mean reflectivity. 

There are various ways of dealing with missing data.
Extracting cases with missing data is not feasible here
(and is typically discouraged), so some sort of imputation
is necessary. Some classification algorithms are
designed to deal with missing data during the training
phase. This means that the imputation is performed
internally. The SVM algorithm used here (Chang and Lin,
2001) does not perform internal imputation. Hence,
imputation must be performed prior to any training.

Data imputation is covered in various sources and is
not reviewed here. The method employed for this work
uses additive regression, bootstrapping and predictive
mean matching. This method incorporates all aspects of
uncertainty into by using the bootstrap to approximate
the process of drawing predicted values from a full Baye-
sian predictive distribution. Different bootstrap resamples
are used for each of the multiple imputations. A flexible
additive model is fit to each sample with replacement
from the original data, and this model is used to predict
all of the original missing and non-missing values for the
target variable. 

Multiple imputation often refers to refitting the model
using the fitted values as first guesses. This is repeated
(usually less than ten times) until the imputed values no
longer change. It can also refer to fitting a classifier to
each imputation and in an attempt to assess the variabil-
ity inherent in the classifier based on the imputed data. In
this case, we instead generated 100 imputed values for
each missing variable and replaced missing variables
with the mean of the 100 imputed values. Thus, we had
only one model to train, but lacked knowledge of its
uncertainty in the face of multiple imputations. We chose
a priori to impute all the missing data. This will have ram-
ifications later.
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Table 1: 

Predictor Number of 
Missing

Proportion of 
Missing

Lifetime MESH 335 24.7%

Lifetime POSH 802 59.1

Low Level Shear 6 0.4%

MESH 390 28.8%

Max VIL 83 6.1%

Motion East 113 8.3%

Motion South 113 8.3%

POSH 910 67.1%

Max Az Shear 23 1.7%

Max Az Shear 30 4 0.2%

Speed 113 8.3%

Table 2: 

Predictor Number of Miss-
ing

Proportion of 
missing

Lifetime MESH 412 38.5%

Lifetime POSH 740 69.2%

Low Level Shear 15 1.4%

MESH 487 45.6%

Max dBZ 2 0.2%

Max VIL 60 5.6%

Mean dBZ 2 0.2%

Motion East 73 6.8%

Motion South 73 6.8%

POSH 799 74.7%

Max Az Shear 120 31 2.9%

Max Az Shear 30 12 1.1%

Speed 73 6.8%



3. Geographic Imbalance
When the latitude and longitude of the training and

testing data are plotted, Clearly there is a geographic
imbalance (Fig. 1). All of the training data are contained

in the northwest half of an area bounded roughly by the
Texas panhandle, central Arkansas, west-central Wis-
consin, and the northwest corner of South Dakota.
Because of this, latitude and longitude of the cells are a
priori retained as predictors. 

Because storm characteristics differ depending on
geographic regions, training data sets should ideally
cover the same area that the testing data cover. SUch an
approach results in a more robust classifier. However,
having a training data set in a different region is one way
to test the general applicability of a classifier.

4. Model Development
Once the missing data are imputed, a model is gen-

erated and tested. SVMs may use various kernels. The
radial basis function (RBF) kernel is used here. The RBF
nonlinearly maps samples into a higher-dimensional
space, has fewer numerical difficulties, and unlike a lin-
ear kernel can handle cases when the relationship
between classes and attributes is nonlinear. In addition
both the linear and sigmoid kernels are special cases of
the RBF (Lin and Lin 2003). Using the RBF, the classifier
is a hyperplane in the high-dimensional feature space,
but nonlinear in the original input space. All data are
scaled to mean zero and unit variance prior to fitting the
model.

The RBF requires the choice of two hyperparame-
ters, C and γ. C is considered to be a cost function
weight while γ is a radius (in some high dimension) that
may also be thought of as a smoothing parameter. 

This approach uses a gridded search, where C and
γ are varied over a grid of values and some interesting
characteristic is mapped as a surface spanning the
ranges of C and γ (Fig. 2).

While the minimum is near the edge of the displayed
surface, as γ (labelled “gamma”) decreases, error rates
rise rapidly for all C (labeled “cost”), making the surface
difficult to visualize. As C increases, error rates slowly
increase. Overall, there is a minimum in error rates in a
broad trough for γ ~ 0.06-0.10. Bootstrap confidence

intervals have not been computed for this surface.
Hence there is likely to be a neighborhood for which the
error rates that are statistically indistinguishable for a
range of C and γ. Hiedke and True (or Pierce) skill statis-
tics (WIlks 2006) are also plotted shown on Fig. 2.

Other data scalings were tried, such as scaling the
data to the interval [-1, 1] and even no scaling, but these
either produced much poorer results obvious over-fitting
(perfect skill scores).

5. Results and Lessons Learned
Results are relatively poor for this particular model.

The overall error rate on the test data is 0.666, compared
to 0.738 for the baseline results, and the TSS = 0.494
compared to 0.583 for the baseline results.

Appropriate predictor selection is the most likely key
to any improvement. For a better SVM implementation,
the first suspected problem is in the imputation of miss-
ing data. Experience has shown one of us (Richman)
that if more than about 25% to 30% or the data are miss-
ing, imputation can give poor results. That appears to be
the case here, as imputation results in very different dis-
tributions (not shown) for the imputed values vs. the
observed values for the most often missing predictors
(POSH and Lifetime POSH) when conditioned upon
storm category.

From an imputation standpoint, the safest course is
to not impute these two variables and omit them from the
model While imputing these missing values indepen-
dently for each storm category might seem a promising
approach there is 1) be no way to do the same for the
testing data, and 2) POSH is missing for 98% of the non-
severe cases in the training data. Imputation in such
cases is essentially hopeless. Lifetime POSH mimics
POSH in the degree of missing data.

Another approach might be to convert POSH or Life-
time POSH to a categorical variable that indicates if it is
missing, as the lack of a POSH (or Lifetime POSH) value
seems to be a good indicator that the storm is at least
nonsevere.

Figure 1. Locations of cases used for training (red) and testing
(green).

Map of Storm Locations
   RED = Training cases
   GREEN = Testing cases

Figure 2. Error rate surface for values of C (“cost”) and γ (“gamma”)
spanning ranges of [0.01, 0.51] and [0.1, 1.0] respectively. The sur-
face shows the error (hit rate) for SVM models using various C and
γ. The minimum error rate occurs at the dot. 

Error Rate Surface as f(gamma, cost
gamma = 0.06, cost = 0.95

TSS = 0.721
HSS = 0.727



No tests for model simplification/variable reduction
were performed due to time constraints. While costly in
time, in the real world such tests are mandatory: some
variables simply do not help and can even degrade
model performance. Given the geographical imbalance
of the training data, Latitude and longitude should be
tested to determine their usefulness. Some intelligent
choices must be in this regard as a blind, brute force
approach that tries every possible combination of predic-
tors is unlikely to be a wise use of time or resources.
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