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Introduction

The motivation of this work comes from an enquiry on the role of local versus nonlocal
processes in turbulent flows. The traditional view is that the former ones are dominating.
However, it is noteworthy that neither the original derivation of the Kolmogorov 2/3 and
4/5 laws, nor all the subsequent derivations of 4/5 law use the assumption on locality of
interactions and the existence of cascade (also sweeping decorrelation hypothesis). More-
over, it has been demonstrated1 that contrary to frequent claims on locality of interactions
and similar things, the 4/5 law points to an important aspect of non-locality of turbulent
flows understood as direct and bidirectional interaction of large and small scales2. It
appears that in the nonlocality interpretation of the Kolmogorov law an essential role is
played by purely kinematic relations3,4. It also appears that the role of kinematic relations
in the issue of nonlocality goes far beyond their use in the nonlocal interpretation of the
Kolmogorov 4/5 law. We put special emphasis on this aspect bringing 1) an extensive
list of such relations and 2) examples of their experimental verification at large Reynolds
numbers in field and airborne experiments. The full list of kinematic relations is given
in the Appendix I, whereas the experimental facilities and related are described in the
Appendix II.

We start with quotation of the main results of refs1,3. The basic point is that the 4/5
Kolmogorov law which is valid under isotropy assumption appears to be equivalent to the
relation 〈

u2
+u

〉
= 〈ε〉 r/30. (1)

Here u(x) is the longitudinal velocity component (in our case it will be just the streamwise
velocity component), u1 = u(x), u2 = u(x + r), ∆u = u2 − u1, 2u+ = u1 + u2, 2u =
u2−u1 ≡ ∆u, u1 = u+−u , u2 = u+ +u , and 〈ε〉 – is the mean dissipation. The relation
(1) is a consequence of the 4/5 law and a purely kinematic relation which is valid under
homogeneity assumption:

−
〈
u3

〉
= 3

〈
u2

+u
〉

, (2)
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which is a clear indication of absence of statistical independence between u+ and u , i.e.
between small and large scales. The 4/5 law and its equivalent as displayed by the relation
(1), both normalized on 〈ε〉 r, are shown in FIG. 1. The distance r is calculated via Taylor
hypothesis. It is seen that both hold for about 2.5 decades for the field experiments and
more than for 3.5 decades in the airborne experiment. It is remarkable that the relation
(1) holds much better than the 4/5 law, especially in the case of lower quality data as in
the airborne experiment. The reason is due to the fact that Eq. (1) is linear in velocity
increment u , whereas the 4/5 law is cubic in u .

FIG. 1. Conventional 4/5 law (a). Verification of Eq. 1 (b).

Local versus nonlocal contributions

We would like to emphasize the following new aspect. Though the version of the 4/5 law
as expressed in (1) clearly points to the nonlocality, it contains both nonlocal and local
contributions. This can be seen looking at correlations of a different kind involving u1

or equivalently u2, which is one-point quantity (u+ — is a two-point quantity) and u ,
following the approach in ref4. Namely,

u2
+ ≡ 1

2
u2

2 +
1

2
u2

1 − u2. (3)

Thus

u2
+u =

1

2
(u2

2 + u2
1)u − u3. (4)

The first two terms in (4), which are due to nonlocal interactions, after averaging become

1

2
〈(u2

2 + u2
1)u 〉 = − 1

15
〈ε〉 r, (5)

since both

〈u2
2u 〉 = 〈u2

1u 〉 = − 1

15
〈ε〉 r (6)

(see relations (70, 71) in the Appendix I where a variety of kinematic relations are given).
The third term in (4), which reflects the local interaction, is −u3, after averaging it gives
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〈−u3〉 = 1
10
〈ε〉 r (relation (33) in the Appendix I). The sum of the two leads to (1). It is

noteworthy that the contributions from nonlocal and local effects are of opposite signs,
i.e. the nonlocal effects strongly reduce the local ones. Note that the above interpretation
is possible due to the use of the quantities u1 and u2 separately instead of u+, and the

simple algebra is made mostly before the averaging, i.e. not directly with
〈
u2

+u
〉
, but

rather with u2
+u .

In FIG. 2 we show the experimental verification of the relation (5).

FIG. 2. Verification of relation (5).

On the role of kinematic relations

As mentioned, the role of kinematic relations in the issue of nonlocality goes far beyond
their use in the nonlocal interpretation of the Kolmogorov 4/5 law.

The first statement is that the structure functions Sn(r) ≡ 〈(u2 − u1)
n〉 are expressed

via terms all of which have the form of correlations between large- and small-scale quanti-
ties. Such relations in terms of u+ and u , as well as symmetric and asymmetric relations
in terms of u2 and u1 are given in the Appendix I. In other words, in the absence of
nonlocal interactions — as manifested by correlations between large scale (velocity) and
small scale (velocity increments) — all structure functions vanish. Hence the utmost dy-
namical importance of purely kinematics relations. In FIG. 3 examples of experimental
verification of kinematic relations (76) are shown. As contrasted to, e.g. relation (5), the
asymmetric versions are chosen to emphasize the nonlocal aspects.

Another point is that all kinematic relations under consideration stand in contradiction
with the so-called sweeping decorrelation hypothesis (SDH), understood as statistical
independence between large and small scales. This is seen from many of the relations
given in the Appendix I. The simplest are the relations (68, 69) (see FIG. 4) the right-
hand side of which vanishes assuming the sweeping decorrelation hypothesis to be valid,
whereas in reality the left-hand side is well known to scale as r2/3. Similarly, the middle
terms in the relations (70, 71) are vanishing under the SDH to be valid, while the real
values are proportional to r.
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FIG. 3. Verification of relation (76). a — for u1, b — for u2. The main figures are plotted
in limited range of r/η to show details; the plots in the full range of r/η are at the insets. The
results are for the run SNM11, for other runs they look similar.

FIG. 4. Verification of relations (68, 69). The results are for the run SNM11, for other runs
they look similar.

Concluding remarks

The main result is that purely kinematic exact relations demonstrate one of important
aspects of non-locality of turbulent flows in the inertial range. There is no exaggeration
in saying that without nonlocality (understood as direct and bidirectional coupling of
large and small scales) there is no turbulence. We would like to emphasize the following
important aspect within the frame of the present approach. Though in some limited
sense one can speak about separating the local and nonlocal contributions, as in the case
of looking at the relation (1) above, generally such a separation seems impossible and
even in some sense meaningless since ”what is local is also nonlocal”. Indeed let us look,
for example, at the relations (70, 71). The middle terms are interpreted as nonlocal
(as correlations between large- and small-scale quantities), whereas the left-hand side is
considered as purely local.

The kinematic relations stand in contradiction with the sweeping decorrelation hy-
pothesis understood as statistical independence between large and small scales.
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Appendix I. Kinematic relations

Homogeneous turbulence

Symmetric relations in terms of u+ and u .
n = 2 〈u+u 〉 = 0 no relation for 〈u2〉 (7)

n = 3 〈u3〉 = −3〈u2
+u 〉 (8)

n = 4 〈u3
+u 〉 + 〈u+u3〉 = 0 no relation for 〈u4〉 (9)

n = 5 〈u5〉 = −5〈u4
+u 〉 − 10〈u2

+u3〉 (10)
n = 6 3〈u5

+u 〉 + 10〈u3
+u3〉 + 3〈u+u5〉 = 0 no relation for 〈u6〉 (11)

n = 7 〈u7〉 = −7〈u6
+u 〉 − 35〈u4

+u3〉 − 21〈u2
+u5〉 (12)

Symmetric relations in terms of u1, u2 and ∆u.
n = 2 〈(u1 + u2)∆u〉 = 0 no relation for 〈(∆u)2〉 (13)

n = 3 〈(∆u)3〉 = −3〈u1u2∆u〉 (14)
〈(∆u)3〉 = −3〈(u2

1 + u2
2)∆u〉 (15)

Two relations are equivalent
n = 4 〈(u1 + u2)(u

2
1 + u2

2)∆u〉 = 0 (16)
〈(u1 + u2)(∆u)3〉 = 2〈(u3

1 + u3
2)∆u〉 (17)

Two relations are equivalent no relation for 〈(∆u)4〉
n = 5 〈(∆u)5〉 = −5

2
〈(u4

1 + u4
2)∆u〉 + 5

2
〈(u2

1 + u2
2)(∆u)3〉 (18)

〈(∆u)5〉 = −5〈u2
1u

2
2∆u〉 + 5〈u1u2(∆u)3〉 (19)

〈(∆u)5〉 = 5〈(u2
1 + u2

2)
2∆u〉 (20)

Three relations are equivalent
n = 6 〈(u2

1 + u1u2 + u2
2)(u

3
1 + u3

2)∆u〉 = 0 (21)
3〈(u3

1 + u3
2)(u

2
1 + u2

2)(∆u)〉 = 〈(u3
1 + u3

2)(∆u)3〉 (22)
Two relations are equivalent no relation for 〈(∆u)6〉

n = 7 〈(∆u)7〉 = −7〈u1u2(u
2
1 − u1u2 + u2

2)
2∆u〉 (23)

〈(∆u)7〉 = −7〈u1u2(u
2
1 + u2

2)(∆u)3〉 − 7〈u3
1u

3
2(∆u)3〉 (24)

Two relations are equivalent
Asymmetric relations in terms of u1 and ∆u or u2 and ∆u.

n = 2 〈(∆u)2〉 = −2〈u1∆u〉 (25)
〈(∆u)2〉 = 2〈u2∆u〉 (26)

Two relations are equivalent
n = 3 〈(∆u)3〉 = −3〈u2

1∆u〉 − 3〈u1(∆u)2〉 (27)
〈(∆u)3〉 = −3〈u2

2∆u〉 + 3〈u2(∆u)2〉 (28)
Two relations are equivalent

n = 4 〈(∆u)4〉 = −4〈u3
1∆u〉 − 6〈u2

1(∆u)2〉 − 4〈u1(∆u)3〉 (29)
〈(∆u)4〉 = 4〈u3

2∆u〉 − 6〈u2
2(∆u)2〉 + 4〈u2(∆u)3〉 (30)

Two relations are equivalent
Remark: The relations (7)–(12) were obtained using 1) homogeneity, i.e. 〈un

1 〉 = 〈un
2 〉, 2)

factor decomposition of un
1 − un

2 and 3) Newton’s binomial formula. Other relations were
obtained similarly using routine algebraic transformations.
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Isotropic turbulence

For isotropic turbulence the following dynamic equation obtained by Kolmogorov5 from
Karman–Howarth equation is valid:

〈(∆u)3〉 = −4

5
〈ε〉r. (31)

This equation is used further for n = 3. We also used the following relations valid for
isotropic turbulence:

〈um
1 un

2 〉 = 〈um
2 un

1 〉, m + n = 2k;
〈um

1 un
2 〉 = −〈um

2 un
1 〉, m + n = 2k + 1.

Symmetric relations in terms of u+ and u .
n = 2 〈u+u 〉 = 0 no relation for 〈u2〉 (32)

as in homogeneous turbulence
n = 3 〈u3〉 = −3〈u2

+u 〉 = −〈ε〉r/10 (33)
〈u+u2〉 = 0 (34)

n = 4 〈u+u3〉 = 0 no relation for 〈u4〉 (35)
〈u3

+u 〉 = 0 (9) transforms into identity (36)
n = 5 〈u5〉 = −5〈u4

+u 〉 − 10〈u2
+u3〉 as in homogeneous turbulence (10) (37)

〈u+u4〉 = 0 (38)
〈u3

+u2〉 = 0 (39)
n = 6 〈u+u5〉 = 0 no relation for 〈u6〉 (40)

〈u3
+u3〉 = 0 (41)

〈u5
+u 〉 = 0 (11) transforms into identity (42)

n = 7 〈u7〉 = −7〈u6
+u 〉 − 35〈u4

+u3〉 − 21〈u2
+u5〉 as in homogeneous turbulence (12) (43)

〈u+u6〉 = 0 (44)
〈u3

+u4〉 = 0 (45)
〈u5

+u2〉 = 0 (46)
Any n 〈u2k+1

+ un−2k−1〉 = 0, n ≥ 2, k = 0, 1, ..., [(n − 2)/2], integer part (47)

Symmetric relations in terms of u1, u2 and ∆u.
n = 2 〈(u1 + u2)∆u〉 = 0 as in homogeneous turbulence (13) (48)

n = 3 〈(∆u)3〉 = −3〈u1u2∆u〉 = −4
5
〈ε〉r (49)

〈(∆u)3〉 = 3〈(u2
1 + u2

2)∆u〉 = −4
5
〈ε〉r (50)

〈(u1 + u2)(∆u)2〉 = 0 (51)
n = 4 〈(u1 + u2)(∆u)3〉 = 0 (52)

〈(u3
1 + u3

2)∆u〉 = 0 (17) transforms into identity (53)
n = 5 〈(∆u)5〉 = −5

2
〈(u4

1 + u4
2)∆u〉 + 5

2
〈(u2

1 + u2
2)(∆u)3〉 (54)

as in homogeneous turbulence (20)
〈(u1 + u2)(∆u)4〉 = 0 (55)
〈(u3

1 + u3
2)(∆u)2〉 = 0 (56)
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n = 6 〈(u1 + u2)(∆u)5〉 = 0 (57)
〈(u3

1 + u3
2)(∆u)3〉 = 0 (58)

〈(u5
1 + u5

2)∆u〉 = 0 (59)
n = 7 〈(∆u)7〉 = −7〈u1u2(u

2
1 − u1u2 + u2

2)
2∆u〉 (60)

〈(∆u)7〉 = −7〈u1u2(u
2
1 + u2

2)(∆u)3〉 − 7〈u3
1u

3
2(∆u)3〉 (61)

as in homogeneous turbulence (24)
〈(u1 + u2)(∆u)6〉 = 0 (62)
〈(u3

1 + u3
2)(∆u)4〉 = 0 (63)

〈(u5
1 + u5

2)(∆u)2〉 = 0 (64)
Any n 〈u2k

1 (∆u)n−2k〉 = 〈u2k
2 (∆u)n−2k〉, n ≥ 2, n − 2k ≥ 0 (65)

〈u2k+1
1 (∆u)n−2k−1〉 = −〈u2k+1

2 (∆u)n−2k−1〉, n ≥ 2, k = 0, 1, ..., [(n − 2)/2], (66)
integer part

In particular, if k = 0 the last relation gives 〈(u1 + u2)(∆u)n−1〉 = 0. (67)

Asymmetric relations in terms of u1 and ∆u or u2 and ∆u.
n = 2 〈(∆u)2〉 = −2〈u1∆u〉 (68)

〈(∆u)2〉 = 2〈u2∆u〉 as in homogeneous turbulence (26) (69)
n = 3 〈(∆u)3〉 = 6〈u2

1∆u〉 = −4
5
〈ε〉r (70)

〈(∆u)3〉 = 6〈u2
2∆u〉 = −4

5
〈ε〉r (71)

〈(∆u)3〉 = −2〈u1(∆u)2〉 = −4
5
〈ε〉r (72)

〈(∆u)3〉 = 2〈u2(∆u)2〉 = −4
5
〈ε〉r (73)

n = 4 〈(∆u)4〉 = 4〈u3
1∆u〉 + 6〈u2

1(∆u)2〉 (74)
〈(∆u)4〉 = −4〈u3

2∆u〉 + 6〈u2
2(∆u)2〉 (75)

Any n 〈(∆u)n〉 = −2〈u1(∆u)n−1〉 = 2〈u2(∆u)n−1〉, n ≥ 2 (76)

Non-homogeneous turbulence

Symmetric relations in terms of u+ and u .
n = 2 〈u+u 〉 = (r/4)∂〈u2〉/∂x (77)

n = 3 〈u2
+u 〉 = −〈u3〉/3 + (r/6)∂〈u3〉/∂x (78)

Symmetric relations in terms of u1, u2 and ∆u.
n = 2 〈(u1 + u2)∆u〉 = r∂〈u2〉/∂x (79)

n = 3 〈(∆u)3〉 = −3〈u1u2∆u〉 − 2r∂〈u3〉/∂x (80)
〈(∆u)3〉 = 3〈(u2

1 + u2
2)∆u〉 − 2r∂〈u3〉/∂x (81)

Asymmetric relations in terms of u1 and ∆u or u2 and ∆u.
n = 2 〈(∆u)2〉 = −2〈u1∆u〉 + r∂〈u2〉/∂x (82)

〈(∆u)2〉 = 2〈u2∆u〉 + r∂〈u2〉/∂x (83)
n = 3 〈(∆u)3〉 = −3〈u2

1∆u〉 − 3〈u1(∆u)2〉 + r∂〈u3〉/∂x (84)
〈(∆u)3〉 = −3〈u2

2∆u〉 − 3〈u2(∆u)2〉 + r∂〈u3〉/∂x (85)
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Appendix II. Experimental facilities and related

FIG. 5. The multi-hot/cold-wire probe. a - Assembled probe. b - Micro-photograph of the tip
of the probe. c - Tip of individual hot-wire array. d - Schematic of the position of the arrays
1–4 relative to the central array 0.

The experiments were preformed with a measurement system, developed by the group
of Prof. Tsinober, described in detail in the recent paper6. It consists of the multi-hot-
wire probe (FIG. 5) connected to the anemometer channels, signal normalization device
(sample-and-hold modules and anti-aliasing filters), data acquisition and calibration unit
(FIG. 6). The probe is built of five similar arrays. Each calibrated array allows to
obtain three velocity components “at a point”. The differences between the properly cho-
sen arrays give the tensor of the spacial velocity derivatives (without invoking of Taylor
hypothesis), temporal derivatives can be obtained from the differences between the se-
quential samples. The Taylor micro-scale Reynolds numbers, Re , for the experiments are
shown in TABLE I.

Experiment 102, SNM12 SNM11 Falcon

Reλ · 10−3 10.7 5.9 3.4 1.6

TABLE I. The Taylor micro-scale Reynolds numbers, Reλ, for the experiments.

The results mentioned above were obtained in two field experiments and an airborne
experiment (FIG. 7). At Kfar Glikson measurement station, Israel, the measurements
were performed from a mast of 10 m height (FIG. 7a, the corresponding data are marked
“102”). At Sils-Maria, Switzerland, a lifting machine was used that allowed to reach
various heights from about 1 to 10 m (FIG. 7c, the two runs from this site are marked
“SNM11” and “SNM12”). The airborne experiment, FIG. 7b, was based on a Falcon
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research aircraft of the DLR, Germany. The airborne data are marked “Falcon”. For this
experiment a special probe-mounting device was designed, permitting to expose the probe
to the atmosphere and to get it back to the cabin during the flight, without breaking the
hermeticity of the aircraft. It was impossible to use the calibration unit onboard the
aircraft. The calibration in this experiment was performed by comparison of the properly
averaged recorded data with the synchronous data from the navigation system of the
aircraft. After the hot-wire data were transformed into the velocity components, the
components of the aircraft velocity vector were subtracted from them, thus giving the
components of the wind velocity.

FIG. 6. The calibration unit. a - Schematic. b - Interior (container removed).

FIG. 7. Kfar Glikson measurement station, Israel, the probe on the mast (a). Airborne
experiment, Germany, the probe in the flight (b). Sils-Maria experiment, Switzerland, the
probe on the lifting machine (c).
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