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1. Introduction 
1

In recent years, operational Numerical 
Weather Prediction centers are assimilating more 
satellite observations, such as the kilo-channel 
Advanced InfraRed Satellite (AIRS) and the 
Infrared Atmospheric Sounding Interferometer 
(IASI), in addition to in situ observations. 
Statistically, the assimilation of new observations 
improves, on average, the accuracy of short-range 
forecasts (e.g. Joiner et al. 2004).  However, the 
value added to the forecast by various 
observations depends on the instrument type, 
observation type, and observation locations, as 
well as the presence of other observations. The 
knowledge of the impact that different 
observations have on the analyses and forecasts 
is important to better use the observations which 
have large impact on the forecasts, and to avoid 
using observations which have no impact or even 
negative impact on the forecasts. 

Traditionally, the observation impact has 
been estimated by carrying out experiments in 
which part of observations used in the control 
experiment were excluded in the data-denial 
experiments (e.g., Zapotocny et al. 2000). 
However, this requires much computational time 
since a new analysis/forecast experiment has to 
be carried out for any subset of observations that 
needs to be evaluated. Langland and Baker 
(2004, LB hereafter) proposed an adjoint-based 
procedure to assess the observation impact on 
short-range forecasts without carrying out data-
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denial experiments. This adjoint-based procedure 
can evaluate the impact of any or all observations 
used in the data assimilation and forecast system 
on a selected measure of short-range forecast 
error. In addition, it can be used as a diagnostic 
tool to monitor the quality of observations, 
showing which observations make the analysis or 
the forecast worse, and can also give an estimate 
of the relative importance of observations from 
different sources. Following a similar procedure as 
LB, Zhu and Gelaro (2007) developed the adjoint 
of the Grid point Statistical Interpolation (GSI) 
assimilation system to estimate observation 
impact in a near-operational data assimilation 
system. They showed that their procedure 
provides accurate assessments of the forecast 
sensitivity with respect to most of the observations 
assimilated. This adjoint procedure to estimate 
observation impact requires the adjoint of the 
forecast model which is complicated to develop 
and not always available.  

In this paper, we propose an ensemble-
based sensitivity method to assess the 
observation impact as in LB but without using the 
adjoint model. It is different from the ensemble 
sensitivity method proposed by Ancell and Hakim 
(2007) as discussed in section 2. We compare the 
observation impact calculated from the ensemble 
sensitivity method we propose with that from the 
adjoint method, and further compare the impacts 
from both methods with the actual forecast error 
reduction due to assimilation of these 
observations in Lorenz-40 variable model (Lorenz 
and Emanuel, 1998).  The paper is organized as 
follows: the derivation of the formula is given in 
section 2, and an alternative formula derivation is 

 



briefly given in Appendix B. The experimental 
design is presented in section 3, and the results 
are in section 4. Section 5 contains a summary 
and conclusions. 

 
2. Derivation of the ensemble sensitivity 

method to calculate observation impact 
without using the adjoint model  

 

 2.1 The sensitivity of forecast errors 
to observations  

Following LB, in order to study the 
observation impact on the reduction of forecast 
errors, we first calculate the sensitivity of a cost 
function at time t to the observations assimilated 
at time t=00hr (Figure 1). LB defined a cost 
function at time t as the energy forecast error 
norm difference between the forecasts from initial 
condition at 00hr (at a time when observations 

were assimilated) and from initial conditions at 

-6hr that did not benefit from the use of the 

observations . Without loss of generality, and 

since we will test our calculation procedure in 
Lorenz-40 variable model, we define a cost 
function as the difference of squared forecast 
errors between the forecasts started at 00hr and -
6hr and verified at time t: 
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of the following derivation is to rewrite equation (1) 
as function of observations assimilated at 00hr, 
which does not depend on the choice of the 
verification state. We follow Bishop’s (2007) 
notation, with the first sub-index indicating the 
verification time, and the second sub-index, 
separated by a vertical bar, indicating the time of 
the initial conditions of a forecast or forecast error, 

so that f
t 0|x  and f

t 6|−x  are the ensemble mean 

forecasts valid at time t, initialized at 00hr and -6hr 
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initialized with the analysis at 00hr and -6hr 

respectively. Substituting the definitions of and 

 into the above equation, the cost function 
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In the following derivation, we aim to express the 

forecast difference ( f
t
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a function of the observation increments 

bo
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prediction of the observations at t=00hr, with )(⋅h  

the nonlinear observation operator. 
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Figure 1 Schematic plot of the time relationship of the 

observation impact on the forecast error at time t. (After 

Langland and Baker, 2004, Fig 1.) 

 
Following Hunt et al. (2007), the 

analysis ensemble member  can be written 

as:  
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K  ensemble member, a tilde indicates that a 
vector or matrix is represented in the subspace of 
ensemble forecasts, and δ represents the 
difference between an ensemble member and the 
ensemble mean.  
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Note that although in the following derivation we 
make a linearization, the actual computation does 
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The last term in equation (7) vanishes, because 
the perturbation weights summed over either the 
K columns or the K  rows are equal to one: 

 (Appendix A) and the 

average of the forecast ensemble perturbations is 
equal to zero. Therefore, we can write 
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Equation (1) is then written as:  
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If the model is nonlinear, equation (10) is a linear 
approximation of equation (1). Since the error 

is not correlated with the observations 

assimilated at t=00hr, the sensitivity of the 
forecast error to the observation increments can 
be written as: 

6|−tε

[ ][ ]006|6|6|0
0

~~ vKXεXK
v

f
tt

fT
t

TJ
−−− +=

∂
∂

 
     (11) 

Note that the sensitivity of the cost function to 
the observation increments (equation (11)) does 
not require the adjoint model. When an 
independent analysis state verifying at time t and 
forecast perturbations initialized at -6hr and 
verifying at time t are available at 00hr, such as in 
a reanalysis mode, equation (11) can be 
calculated along with the data assimilation. This 
ensemble sensitivity method is different from 
Ancell and Hakim (2007) and Torn and Hakim 
(2007), who also proposed a method to calculate 
the forecast sensitivity to the observations without 
using adjoint model. In their approach, the 
sensitivity is a function of the inverse of the 
analysis error covariance, and it is a linear 
regression of analysis errors onto a given forecast 
metric. In Appendix B, we give another derivation 
of the sensitivity of the cost function to the 
observations without linearization, which gives 
results indistinguishable from those calculated 
from equation (11). 
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2.2 Observation impact on forecasts 

As discussed in LB, the forecast 
sensitivity can be used to examine the actual 
observation impact on the forecast. Using the 

forecast sensitivity 
0v∂

∂J
, the observation impact 

on the forecast can be written as: 
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Equation (12) expresses the forecast error 
difference as a function of observation 

increments . When the assimilated 

observations improve the forecast at time t, the 
forecast error is reduced, and the value calculated 
from equation (12) will be negative. When the 
assimilated observations degrade the forecast, the 
value calculated from equation (12) will be 
positive. Furthermore, if the observation errors 
between subsets of observations are not 
correlated, the cost function can be expressed 

as a sum of : 
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where is the observational impact caused by 

the subset of the observations 
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we can calculate the observation impact on the 
forecasts from any subset of observations without 
conducting data denial experiments, and can also 
compare the importance of observations from 
different sources.               

In the following sections, we will compare 
the observation impact calculated from ensemble 
sensitivity method we proposed with that using the 
adjoint method and compare both results with the 
actual observation impact calculated from 
equation (1). Further we will examine whether the 
ensemble sensitivity method we proposed can 
actually detect bad observations whose errors do 
not satisfy the Gaussian assumption 

made in the assimilation. These 

experiments are carried out in the Lorenz-40 
variable model.  

),0( RNo →ε

 
3. Experimental design 
 

The Lorenz 40-variable model is governed 
by the following equation: 
 

Fxxxxx
dt
d

jjjjj +−−= −−+ 121 )( (14)

The variables ( , j=1…J) represent a 

“meteorological” variable on a “latitude circle” with 
periodic boundary conditions. As in Lorenz and 
Emanuel (1998), J is chosen to be equal to 40. 
The time step is 0.05, which corresponds to a 6-
hour integration interval. F is the external forcing, 
which is 8 for the nature run, and 7.6 for the 
forecast, allowing for some model error in the 
system. 

jx

Following LB, we estimate the impact of 
the observations assimilated at 00hr on the 
forecast valid at t=24hr, so that in equation (1) the 
cost function is defined as the forecast error 
difference between a 24-hour forecast (initialized 
at 00hr) and a 30-hour forecast (initialized at -6hr). 
The error difference between these two forecasts 
is solely due to the assimilation of the 
observations at 00hr in the initial conditions of 24-
hour forecast. The observations are observed at 
every grid point. We present experiments with 
“normal”, “larger random error” and “biased 
observation” cases. In the normal case, the 
assumed observation error standard deviation 0.2 
does represent the actual error statistics for every 
observation obtained from the nature run plus a 
Gaussian random perturbation. In the “larger 
random error” case, the observation at a single 
grid point (the 11th grid point) has four times larger 
random error standard deviation than the other 
observations. However, in the data assimilation 

 



process, we still use the error standard deviation 
0.2 to represent the error statistics for every 
observation, including the 11th grid point. Such an 
experiment simulates real cases when some 
observations may have larger (or smaller) random 
errors than assumed in the data assimilation 
system. In addition, real observations may also 
have biases, something especially common when 
we assimilate satellite observations (e.g., Derber 
and Wu, 1998). Therefore, in the “biased” case 
experiment, we include a bias equal to 0.5 in the 
observation at the 11th grid point, but still assume 
that the observation is unbiased during data 
assimilation.  

We run each experiment for 7500 analysis 
cycles with the Local Ensemble Transform 
Kalman Filter (LETKF; Ott et al. 2004; Hunt et al. 
2007) data assimilation scheme. The time 
average statistics shown in the next section are 
the average over the last 7000 analysis cycles. 
Throughout these experiments, we check whether 
our ensemble sensitivity method is comparable 
with the adjoint method of LB in assessing the 
observation impact on the forecast error, and 
compare the ability of both methods to detect poor 
quality observations. Unlike the variational 
assimilation approach, which needs to develop the 
adjoint of the assimilation system (Langland and 
Baker, 2004), the calculation of observation 
impact in an Ensemble Kalman filter (EnKF) does 
not need the adjoint of the assimilation system. 
This is true for both the adjoint method and the 
ensemble sensitivity method because the 
transpose of the Kalman gain matrix can be 
directly obtained.  We will discuss the results case 
by case in the next section. 
 
 
4. Results 
 

           4.1 Normal case 

Figure 2 shows observation impact 
calculated from the adjoint method (grey line with 
plus signs), the ensemble sensitivity method (grey 
line with closed circles) and the actual spatially 
summed forecast error difference (black line with 
open circles) between the analysis cycles 5700 
and 5780 for the “normal” case. It shows that the 
observation impact calculated from the ensemble 
sensitivity method is similar to the result from 
adjoint sensitivity method, and both methods 
succeed in capturing most of the actual forecast 
improvement due to assimilation of the 
observations at 00hr.  

 
Figure 2 Evolution of spatially summed forecast error 

differences and the observation impact for the normal 

case between analysis cycle 5700 and 5780. Black line 

with open circles: the actual forecast error difference 

between 24-hour forecast and the 30-hour forecast; 

black line with plus signs: the observation impact 

calculated from the adjoint method; grey line with 

closed circles: the observation impact calculated from 

the ensemble method; zero line: no impact. 

 

  4.2 Larger random error case 

When the observation has four times 
larger random error standard deviation at the 11th 
grid point than at the other locations, both the 
ensemble sensitivity method and the adjoint 

 



method show that the assimilation of this 
observation increases the forecast error (Figure 
3). The signal from ensemble sensitivity method at 
the 11th observation location is larger than that of 
the adjoint method, but elsewhere, the 
observation impact calculated from both methods 
has similar values.  Conversely, if an observation 
has consistently smaller observation error than 
assumed, its contribution to the reduction of 
forecast errors is larger than other observations 
(not shown). It is interesting to note that the 
observations at adjacent locations (e.g., 12th grid 
point) have larger impact in improving the forecast 
accuracy than at the other locations due to the 
larger weights given to these observations through 
the larger background uncertainty estimated along 
with the LETKF. Snapshots of the spatially 
summed impact show that the observation impact 
calculated from both methods reflects the actual 
forecast error difference (Figure 4) even when one 
of the observations has erroneous error statistics. 
Because of the poor quality of the observation at 
the 11th observation location, the domain summed 
observation impact has some large spikes (Figure 
4).  

 

Figure 3 Time average (over the last 7000 analysis 

cycles) of the contribution to the reduction of the 

forecast error from each observation location (four 

times larger random error at the 11th grid point). Black 

line with closed circles is from ensemble method, and 

the grey line with plus signs is from adjoint method, and 

the black solid line is zero line. 

 

 
Figure 4 Evolution of spatially summed forecast error 

differences and the observation impact from the larger 

random error case between analysis cycle 5700 and 

5780. The notations are the same as in Figure 2. 

 

 4.3 Biased case 

When the 11th observation location has a 
bias, the ensemble sensitivity method (Figure 5) 
indicates, like the adjoint method, that the 
assimilation of this observation increases the 
forecast error. Again, the negative impact from 
assimilation of this observation makes the positive 
impact (reduction of forecast error) of assimilating 
the adjacent observations larger.  

These examples show that the ensemble 
sensitivity method gives observation impact 
similar with that from adjoint method, and both 
methods accurately reflects the actual forecast 
error reduction due to assimilation of the 
observations at 00hr. Like the adjoint method, the 
ensemble method can detect observations that 
have poor quality either with larger random error 
or bias, and the signal detected by the ensemble 
sensitivity method is stronger. When we reduce 

 



the observation coverage, the same conclusion is 
still valid (not shown). 

 

Figure 5 The biased case with a bias equal to 0.5 at 

11th grid point. The notations are the same as in Figure 

3. 
 
 
5. Summary 

The observations are the central 
information introduced into the forecast system 
during data assimilation. However, the quality and 
impact of observations is always different due to 
the magnitude of observation error, observation 
locations and model dynamics. Accurately 
monitoring the quality and impact of the 
observations assimilated in the system can help to 
delete the observations that routinely degrade the 
forecast, and to better use the observations that 
have larger impact on the forecast than the other 
observations. 

 In the past, monitoring the quality of 
observations has been based on observational 
increments, but we have found that the 
observation sensitivity approach is more effective 
in detecting poor observations than the monitoring 
of observational increments (not shown). In this 
paper, following LB, we proposed an ensemble 
sensitivity method to measure observation impact 
on the reduction of forecast error due to 

assimilation of observations. Unlike the adjoint 
method by LB, the ensemble sensitivity method 
we proposed does not need the adjoint model. We 
compared the ensemble sensitivity method to the 
adjoint method using Lorenz-40 variable model. 
The results show that the ensemble sensitivity 
method gets similar observation impact as the 
adjoint method, and both reflects most of the 
actual forecast improvement. Both methods can 
detect the “bad” observations that are of poor 
quality, with either larger random errors or with 
biases, and the ensemble sensitivity method 
shows a stronger signal in such scenarios. Like 
the adjoint method by LB, this method can be 
applied in the observation quality control as well 
as to compare the importance of different type 
observations. With the verification analysis 
available, either from the same or a different 
analysis system, this method could be routinely 
calculated within an ensemble Kalman filter, thus 
providing a powerful tool to understand cases of 
forecast failure and to tune the observation error 
statistics.  
 
Acknowledgements 

 We are very grateful to Dr. Kayo Ide, Dr. 
Shu-Chih Yang and Dr. Istvan Szunyogh for their 
suggestions and discussions, and to Dr. Ron Gelaro for 
his encouragement. This work was supported by a 
NASA grant through NNG04GK29G. 

 
References 
 
Ancell, B. and Hakim, G. J., 2007: Comparing 

adjoint and ensemble sensitivity analysis with 
applications to observation targeting. Mon. 
Wea. Rev. (submitted). 

Bishop, C. H, 2007: Introduction to data assimilation 
research at NRL and flow adaptive error 
covariance localization. 
http://www.weatherchaos.umd.edu/workshop/Bis
hop_UMD_workshop.pdf 

 



Derber, J. C. and Wu, W.-S., 1998: The use of 
TOVS cloud-cleared radiances in the NCEP 
SSI analysis system. Mon. Wea. Rev., 126, 
2287-2299. 

Lorenz, E. N. and Emanuel, K. A., 1998: Optimal 
sites for supplementary observations: Simulation 
with a small model. J. Atmos. Sci., 55, 399-414. 

Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V.,  
Kostelich, E. J., Corazza, M., Kalnay, E., Patil, 
D. J., and Yorke, J. A., 2004: A Local 
Ensemble Kalman Filter for Atmospheric Data 
Assimilation. Tellus, 56A, 415-428. 

Hunt, B. R., Kostelich, E. J., and Szunyogh, I., 
2007: Efficient Data Assimilation for 
Spatiotemporal Chaos: a Local Ensemble 
Transform Kalman Filter. Physics D., 230, 
112-126. Torn, R. D., and Hakim, G. J., 2007: Ensemble-

based sensitivity analysis. Mon. Wea. Rev. 
(submitted) 

Joiner, J., Poli, P., Frank, D., and Liu, H. C., 2004: 
Detection of cloud-affected AIRS channels 
using an adjacent-pixel approach. Quart. J. 
Roy. Meteor. Soc., 130, 1469-1487. 

Langland, R. H. and Baker, N. L. 2004: Estimation of 
observation impact using the NRL atmospheric 
variational data assimilation adjoint system. 
Tellus, 56a, 189-201. 

Zapotocny, T. H., Menzel, W. P., Nelson, J. P., and 
Jung, J. A., 2002: An impact study of five 
remotely sensed and five in situ data types in the 
eta data assimilation system. Weather and 
forecasting, 17, 263-285. 

Liu, J., 2007: Applications of the LETKF to adaptive 
observations, analysis sensitivity, observation 
impact, and assimilation of Moisture. Ph. D 
thesis, University of Maryland. 

Zhu, Y. and Gelaro, R., 2007: Observation 
sensitivity calculations using the adjoint of 
the Gridpoint Statistical Interpolation (GSI) 
analysis system. Mon. Wea. Rev. 
(accepted). 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX A: Perturbation weights averaged over the ensemble  

The following derivation is based on Hunt et al. (2007). We define a column vector of K 
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Since  is a column vector of K ones, , where  is an element of the . 

is a symmetric matrix, therefore, we have the following equation:  
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Appendix B: Another derivation of the sensitivity of forecast errors to observations  

Unlike the derivation in section 2, this derivation does not use linearization. Instead, it 

assumes the mean forecast at time t can be obtained with the same weights as obtained in the 

ensemble analyses. More details are in Liu (2007). 

We first express the  analysis ensemble member at time 00hr as a linear combination 

of the six-hour ensemble forecasts initialized at -6hr. Based on Hunt et al. (2007), the  analysis 

ensemble member is given by:  
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where w0
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~ vKw =a is the mean weighting vector, and the perturbation weighting 

vector  is the  column of the ai
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elements . After expanding the terms on the right hand side of equation (B1) based on the 

definitions of each term and combining the same term together, we get: 
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1 , and ajw0  is the  element of the mean weight vector thj a

0w .  

We estimate the ensemble forecast at time t initialized at t=00hr with the ensemble 

forecasts initialized at t=-6hr using the same weights as at the analysis time:  

thi

 i
t

K

j

aijaajfj
t

i
t www 0|

1
006|0| ）( exx ++−= ∑

=
− δ  (B3)

 



where  represent the error from this approximation. We take an ensemble average of these 

forecasts initialized at t=00h, so the mean forecast initialized at 00hr can be written as: 
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In getting equation (4), we use the relationship . We note that, although 

very small, the error 
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06|6|0|0| δxxxe  cannot be neglected in order to obtain 

accurate observation sensitivity. After expressing a
0wδ  with elements )1,j(0 Kw aj L=δ  in 

terms of the increments , equation (B4) can be written as  0v
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66| || −−− = xxX L  is a matrix whose K  columns are background ensemble 

forecasts. Note that this notation is different from that in section 2. 0
~Kδ is a K by P matrix whose 
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Based on equation (B5), the cost function is written as:  
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Since the error is not correlated with the observations assimilated at t=00hr, the sensitivity of 

the forecast error to observations is written as: 
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The sensitivity to the observations in equation (B7) can be directly calculated based on the 

weighting function from data assimilation at 00hr, the observation increment at 00hr, and the 

ensemble forecast initialized at -6hr. This derivation neglects the correlation between 0|te and the 

observations assimilated at t=00hr. If we replace 0|te from (B4) into equation (B7) and linearize 

as in section 2, we get equation (11). Both (B7) and (11) yield indistinguishable results.  

 

 


