
1. INTRODUCTION

The stable boundary-layer (SBL), contrary to its 
ostensible simplicity, exhibits a complicated time-
dependent behavior that involves the interactions of 
several processes over a relatively wide range of 
scales,  including intermittent turbulence. Turbulence is 
of central importance, because it efficiently modifies the 
flow state through mixing. For several years, gravity 
waves have been thought to play a very important role 
in the production of SBL turbulence, but an ultimate 
description remains elusive.

This  paper details our current efforts to simulate 
gravity wave-turbulence interactions using a non-
hydrostatic, atmospheric model applied to the 
microscale. The initial set of simulations described in 
this  paper explores three separate processes. The first 
is the simulation of shear instability and the formation of 
Kelvin-Helmholtz (KH) billows and secondary structures 
related to shear instability.  The second process is the 
generation of longer wavelength modes which are 
capable of propagating away from the shear layer. 
These modes are implicated in the transport of 
momentum and energy far from a shear layer and may 
be important for generating the kinds of step-like 
velocity  and temperature profiles observed in the SBL. 
The final process incorporates idealized terrain 
elements. The enhanced influence of  surface 
heterogeneity in SBLs has been recognized for several 
years. Recent work opens the possibility of  gravity wave 
interactions with viscous instability in the presence of 
topography. The viscous instability can radiate gravity 
waves or a freely propagating gravity wave can excite 
viscous instability near the surface (Wu and Zhang 
2008).

2. MODEL

We employed the National Taiwan University/
Purdue University (NTU/PU) non-hydrostatic model 
(Hsu and Sun, 2001; Hsu et  al., 2000). This model has 
been previously applied to several different situations, 

such as lee mountain waves, shallow convection from 
cold-air outbreaks, simulations of  squall-lines, etc. It 
employs a height-based, terrain-following coordinate for 
topography and allows grid stretching in all three spatial 
dimensions.  The model also employs a prognostic 
equation for density in contrast to employing the 
anelastic assumption and solving the resulting Poisson 
equation or solving a pressure tendency equation. This  
solution method also explicitly resolves acoustic waves 
avoiding the need for time-filtering. To balance the 
resources required for a small enough time step to 
satisfy the Courant-Friedrichs-Levvy (CFL) criterion for 
acoustic waves, we employ two methods to reduce  
computation. By decreasing the speed of sound, the 
largest, stable time interval can be increased without 
affecting the meteorology. In addition, the model uses a 
split  timestep integration scheme to update more slowly 
varying physics at an appropriate interval.  By avoiding 
the iterative solvers used on Poisson equations, the 
model is more easily  parallelized for efficient use of 
massively parallel clusters (Hsu and Sun, 2001).  The 
resulting MPI-based code shows just under 90% 
efficiency when employing 960 processors, not including 
time spent during output. 

The NTU/PU model uses Deardorffʼs (1980) single-
equation eddy-viscosity closure scheme. As part of the 
preparation for performing high-resolution simulations of 
the SBL, a Reynolds stress closure scheme has been 
implemented to include prognostic transport equations 
for the second-order turbulence correlations (e.g.,  
subgrid momentum flux and heat flux).  This scheme is 
based on the work of Lumley and Zeman (Lumley, 1979; 
Zeman and Lumley, 1979; Zeman, 1981). The 
dissipation is formulated using the scheme outlined by 
Canuto and Minotti (1993) which reduces the dissipation 
when the subgrid scale (SGS) is  not completely within 
the isotropic, inertial subrange.

3. SHEAR INSTABILITY

Shear instability is the primary source of  turbulence 
production in stable environments. From linear theory, 
the depth of the shear layer and the stratification 
determines the band of modes that are amplified– the 
Kelvin-Helmholtz (KH) modes. Accurately reproducing 
the growth of these modes can be difficult for 
atmospheric models because of the stronger diffusion 
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and smoothing employed for numerical stability, which 
tends to slow the growth or eliminate perturbations 
during the exponential growth phase. Model simulations 
often use direct numerical simulation (DNS), but DNS is 
wholly impractical for atmospheric scales.

A series of model runs were performed with a shear 
layer defined using a hyperbolic tangent and constant 
Brunt-Väisälä frequency. The stratification used was 
N=0.02 s-1,  which is relatively weak, but  reasonable 
when compared to step-like structures of lesser 
stratification embedded within the SBL profile 
(Chimonas 1999). The shear layers were all 100 m thick 
with a 4.99 m/s velocity difference between the top  and 
bottom, and were centered at 600 m above a no-slip 
surface.  Below the shear layer, the wind velocity was 

0.01 m/s and 5 m/s above. The minimum gradient 
Richardson number was Ri=0.06. A 0.0025 m/s 
perturbation was introduced into the x-velocity field as a 
single mode, as two modes, or using a pseudo-random 
number generator. All three simulations produced wave 
instability  and eventual wave breaking (see Fig. 1). 
Using the eddy-viscosity scheme the diffusion can be 
reduced,  and will produce wave breaking,  but with a 
much slower growth rate. Additionally the model 
becomes unstable, without significantly increasing the  
smoothing coefficient. It  should be noted that we have 
not yet experimented with any of  the more sophisticated 
eddy-viscosity closures.

Perturbing with a single 550 m mode, which is 
within the band of  KH modes predicted by linear theory, 
results in wave fronts perpendicular to the stream-wise 
direction with no span-wise variation. Fig. 2a compares 
the fluctuations of the potential temperature between the 
Reynolds stress model and the single-equation eddy-

viscosity  model. Again the eddy-viscosity model shows 
a much slower growth rate. This is  echoed in the vertical 
velocity  gradient at the center of the shear layer shown 
in Fig. 2b. The eroding of velocity shear occurs very 
quickly once wave breaking occurs for the Reynolds 
stress model, but even with the wave breaking occurring 
in the eddy-viscosity model, mixing in the shear layer 
remains weaker.

When a second unstable KH mode is included, the 
apparent evolution undergoes some change,  but still 
amplifies a single mode to the point of wave breaking. 
However, looking at the spectrum of the potential 
temperature fluctuations (see Fig. 3), we see the 
excitation of longer wavelength modes. These are 
gravitational shear waves (e.g. Chimonas and Grant 
1984a,b;  Fritts 1982, 1984). They have a much longer 
wavelength than the KH modes and can propagate 
outside of the shear layer, unlike the KH modes which 
decay. In addition, they can have a phase speed 
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Figure 1: Contours of potential temperature during 
wave breaking for (a) single mode perturbation, (b) two-
mode perturbation, and (c) random perturbation.

Figure 3: Wave spectrum for fluctuations in the potential 
temperature after wave breaking for (a) single-mode 
perturbation (b) two-mode perturbation,  and (c) random 
perturbation. 
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Figure 2: (a) Root  mean square potential temperature 
fluctuations versus time. (b) Mean vertical velocity 
gradient at the center of the shear layer.
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different from a velocity within the shear layer. The 5 km 
waves shown at the left propagate with a phase speed 
of 5.8 m/s. These waves are generated via nonlinear 
interactions. While they can be produced by vortex 
pairing, the stratification outside of the shear layer 
prevents the pairing. Instead, this effect  is likely caused 
by interactions between the two KH modes introduced 
during initialization. Again the periodic boundary 
conditions combined with the span-wise independent 
perturbation yielded no significant variation in the span-
wise direction.

Finally, the same shear layer was perturbed using a 
pseudo-random number generator. A  band of  KH modes 
were excited with a single dominant mode growing to 
the point of wave breaking. In addition to the growth of 
several longer wavelength modes as in the two-mode 
case, span-wise variations were also amplified. These 
variations correspond with strong deviations in the 
vorticity vector from the span-wise into both the stream-
wise (see Figure 4b) and vertical directions (not shown), 
and may be related to secondary instability, such as 
vortex braiding and knotting (Thorpe 1987), which tends 
to appear early in the instability process. The vorticity 
perturbations did appear early in these simulations, 
although they are much smaller than the mean vorticity 
of the shear layer.

4. TERRAIN SIMULATIONS

Observations point to the increased influence of 
surface heterogeneity on the flow with effects ranging 
from drainage currents to shed vortices. Moreover, 
terrain elements provide an additional source of  gravity 
waves.  Recent theoretical work shows the possibility of 
non-linear interactions between gravity waves and 
waves resulting from viscous instability near topography 

(Wu and Zhang 2008). Topography is included through 
the use of a terrain following coordinate. The two 
idealized examples we used are the shedding of 
vortices from an asymmetric, isolated obstacle (Fig. 5a) 
and the interaction between the flow over a 50 m 
mountain ridge and an unstable shear layer at 600 m 
(Fig. 5b). The simulation with the combined shear layer 
and ridge hint at  interesting interactions that enhanced 
the sub-grid scale turbulent kinetic energy (TKE) 
between the surface and the shear layer  (see Fig 6).
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Figure 5: (a) Streamlines of the horizontal flow around 
a bell-shaped mountain tilted at a 30° angle with respect 
to the x-axis, and (b) x-velocity  contours showing the 
interaction between flow over a small mountain ridge 
and a shear layer at 600 m.
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Figure 4: (a) Contours of span-wise vorticity for a slice through the center of the shear layer. (b) Horizontal vorticity 
vectors  for feature in the center of (a). A significant deviation in the direction of the vorticity as stream-wise vorticty is 
amplified. 



Being able to directly simulate the generation of 
these vortices and terrain-produced gravity waves and 
how they interact with gravitational shear waves, which 
are also explicitly generated, will allow unprecedented 
detail.  At the same time, these simulations will be able 
to include the influence of larger scale forcing with a 
large computational domain. In the near future, we will 
begin simulations, initialized with data from the 
CASES-99 experiment, to examine the modelʼs 
performance for more realistic situations.
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Figure 6:  Profile of SGS TKE showing enhancement at 
a layer between the shear layer at 600 m and the 
surface.  


