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1 Introduction

The interaction between the atmosphere and
the earth’s surface takes place in the bound-
ary layer (BL), which compared to the free
atmosphere, has a high turbulence intensity.
During the night time, or the polar winter,
the boundary layer is often stably stratified,
whereby buoyancy reduces the turbulence
intensity. In the stable boundary layer (SBL),
the only production of turbulence is through
shear, which plays a predominant role near the
surface. Although being reduced in intensity
by buoyancy, turbulence is still an important
transport and mixing mechanism for heat,
momentum and energy in the SBL. Despite
the fact that energy in the SBL is partly
transported by waves (Nappo, 2002), we will in
this text not consider this transport mechanism.
In case of a stably stratified boundary layer
over a sloping surface, gravity is an accelerating
term in the along-slope momentum equation.
That is, if an air parcel near the surface is
cooled, it becomes heavier than its surroundings
and starts to descend down the slope. A density
driven down-slope flow, often called a katabatic
flow, can thus arise without any external
forcing, and is frequently directed along the
fall line of the slope. Moreover, a typical wind
speed profile in a katabatic regime exhibits a
wind maximum.
Glaciers, small in lateral extent and frequently
located at higher latitudes, are sensitive to cli-
mate fluctuations. Melting is a process which is
very sensitive to air temperature variations, and
the observed retreat in valley glaciers during
the last century is an evidence of this sensitivity
(Oerlemans, 1994). Although melting of glaciers
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is mainly caused by solar radiation (Greuell
et al., 1997), measurements on glacier surfaces
show that turbulent fluxes contribute 25% to
40% to the total energy balance, see Denby
(2002) and references herein.
Traditionally, there are two types of analytical
descriptions of katabatic flow. The first type
of model considers local equilibria in the heat
and momentum equations, which allows for an
analytical solution that describes the vertical
profiles of e.g. the velocity and temperature in
the katabatic layer. Hereafter, we will refer to
this type of model as a ’profile model’. The first
of such was presented by Prandtl (1942), who in
the heat equation assumed a local equilibrium
between adiabatic downslope warming and
cooling by slope-normal heat flux divergence
in a stratified background atmosphere; in the
momentum equation acceleration by gravity is
opposed surface friction. The solution gives ver-
tical profiles of the down-slope velocity and the
temperature deficit ∆, which is defined as the
temperature of the air minus the background
temperature. The Prandtl model produces a
velocity profile inhibiting a wind maximum,
and the temperature deficit profile shows a
maximum near the surface and a decrease with
height.
Later, Grisogono and Oerlemans (2001a)
(hereafter GO) noted that because the Prandtl
model assumes constant turbulence exchange
coefficient the sharp gradients in the velocity
and temperature profiles obtained from mea-
surements are not reproduced. They pointed
out that if the temperature profile is correct, the
wind is wrong and vice versa. GO extended the
classical Prandtl model to solve the katabatic
flow problem using gradually varying, height
dependent turbulence exchange coefficients
and constant but arbitrary Prandtl number.
Despite the fact that in the GO-model the flow
dependent turbulence exchange coefficients have
to be determined a priori, it was found that this
model was better at reproducing observations
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than the classical Prandtl model. In subsequent
studies by Grisogono and Oerlemans (2001b)
and Parmhed et al. (2004) it was also found
that the GO-model was capable of reproducing
the surface fluxes of heat and momentum
inferred from observations. Grisogono (2003)
later extended the GO-model to include time
dependence, and more recently also the effect
of the earth’s rotation (Kavcic and Grisogono,
2007). Gutman and Malbakhov (1964), and
Shapiro and Fedorovich (2008) describe ana-
lytical models also including the Coriolis force,
which over the large ice sheets of Greenland
and Antarctica becomes important (Van den
Broeke et al., 2002), but will not be discussed
in further detail here.
The second type of analytical models, the
hydraulic models, is based on the assumption
that bulk quantities such as mass flux, can be
related to each other using a closed system
of equations, and that details in the vertical
profiles are of lesser importance (Haiden and
Whiteman, 2005). The hydraulic model type
was supported by calculations of Papadopoulos
et al. (1997), who analysed data from an array
of meteorological stations on Mt. Hymettos,
Greece. They found that in the katabatic
layer bulk quantities of wind and temperature,
calculated by vertical integration, compared
well with theoretical models.
The immediate benefit of hydraulic model type
over the profile models described above, is
that they permit changes in bulk quantities
with down-slope distance. Moreover, numerical
weather prediction and climate models have
a resolution too coarse to resolve the detailed
fields of the katabatic flow, and thus use
parameterizations based on hydraulic models
(Haiden and Whiteman, 2005).
In the hydraulic model by Manins and Turner
(1978), who extended the work of Fleagle
(1950), it was assumed that all the fluid par-
ticipating in the katabatic flow was entrained
from the environment; the entrainment rate
was specified a priori through parameterization
based on laboratory experiments and related
field experiments. Nappo and Rao (1987), how-
ever, pointed out that parameterizations used
by Manins and Turner would not necessarily be
applicable to katabatic flows under all ambient

conditions. Instead of investigating katabatic
flow using a highly parameterized analytical
model, Nappo and Rao used a time-dependent,
two-dimensional numerical model based on
turbulent kinetic energy closure. The model
used a slope-following coordinate system and
the flow considered was down a uniform open
slope with a finite length. The numerical model
provided down-slope velocity and temperature
as function of down-slope distance and height.
These variables could be vertically integrated
to yield values for the entrainment rate needed
by analytical hydraulic models.
Whereas Nappo and Rao applied the 1.5-order
turbulent kinetic energy closure proposed by
Delage (1974), Denby (2002) more recently
studied katabatic flow using a one-dimensional
model that applied second-order closure. He
argued that 1.5-order closure used in several
earlier numerical models, depend on horizon-
tally homogeneous and vertically monotonous
stable boundary layers, which may be in-
compatible with conditions in the katabatic
flow. The second-order closure model required
parameterization of the the viscous dissipa-
tion of momentum and heat, the turbulent
transport and the pressure-strain/temperature
correlations. Denby carried out simulations
of katabatic flow using input data from three
measurement campaigns, and showed that the
model was capable of reproducing both mean
profiles and flux measurements when the flow
was almost one-dimensional and the turbulence
locally determined. An important finding was
that at the height of the wind maximum, where
shear production goes to zero, the turbulence
transport term becomes important
Whereas Denby successfully simulated mean
fields and turbulent fluxes of a katabatic flow
using second-order closure, there has in liter-
ature also been a call for numerical studies
using the techniques of large-eddy simulation
(Grisogono and Oerlemans, 2001b; Parmhed
et al., 2004). The concept of large-eddy simu-
lation (LES) is that the larger scale turbulent
motion is resolved explicitly, whereas small scale
turbulence is understood to be isotropic and
can be parameterized using turbulence theory.
Pope (2000) provides an introduction to the
techniques of LES, for a more comprehensive
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description see Sagaut (1998); Geurts (2004).
LES of the convective boundary layer has been
done since the mid seventies, but simulation
of the turbulent flow in the SBL requires a
much finer resolution (Beare et al., 2006), which
has only recently become possible with the
increase in computer power. Moreover, there
has only been a few large-eddy simulations of
the SBL over a sloping surface. Skyllingstad
(2003) used LES with a rotated coordinate
system, applied periodic boundary conditions
on the sides but open boundary condition on
the top and bottom of the slope. To ensure
conservation of mass, the mass flux at the
slope top was adjusted to balance the mass
flux exiting at the slope bottom. The initial
ambient atmosphere was neutrally stratified,
and the simulation was carried out until the
slope flow velocity and turbulent fluxes reached
a near-equilibrium state over the central portion
of the slope. Skyllingstad mainly investigated
the importance of the ambient cross slope
wind on the katabatic flow, and his analysis of
the momentum budget showed that near the
surface the flow is maintained by a balance
between downslope buoyancy forcing and ver-
tical turbulence flux from surface drag. Above
the wind maximum, he found that the flow
acceleration due to buoyancy is retarded by hor-
izontal advection of slower moving ambient air.
Skyllingstad also noted a seemingly self-similar
behaviour of the momentum budget profiles as
the cross wind component was increased. For
a given cross-slope wind the turbulence kinetic
energy budget showed that the main source of
turbulence production was through shear, which
was balanced by dissipation through friction
and buoyancy. An increase in the cross-normal
wind would yield an increase in the shear
production term and corresponding balances.
The peak value of the shear production would
also move closer to the surface.
Skyllingstad considered katabatic flow over a
steep (20o) and a shallow (1o) slope, and in
this article we will focus on katabatic flow over
moderately steep slopes (∼ 5o). To this end,
we will use results from LES, but in contrast
to Skyllingstad the slope is regarded to be
infinitely long. Details on the numerical model
is given in the next section, and in Section 3

model output is compared to observations. To
our knowledge, no LES study of katabatic flow
has considered the effects of stratification and
cooling rate on the flow, which will be the focus
of Section 4. Although the emphasis will be on
mean characteristic profiles and scaling thereof,
we will also show profiles of turbulent fluxes of
momentum and heat.

2 LES model

The governing equations of katabatic flow are
described in a reference frame aligned with the
topographical gradient. The reference frame has
been rotated by the slope-angle α (α > 0) with
respect to the z∗ axis, which points in the op-
posite direction of the gravity vector g. The
velocity components parallel and normal to the
surface, e.g. in the x and z directions, are de-
noted by u and w, respectively. The ambient
atmosphere is stably stratified and its poten-
tial temperature is in the non-rotated coordi-
nate system denoted by θa(z∗). The correspond-
ing lapse rate of the ambient atmosphere is con-
stant, γ ≡ dθa

dz∗ . The Brunt-Väisälä frequency
N =

√
gγ/T0 and T0 is a reference tempera-

ture. In the rotated reference frame, the filtered
model equations for momentum and buoyancy,
using the Einstein summation convention (e.g.
Riley et al., 1997) are respectively

dui

dt
= − ∂π

∂xi
− 2εijkΩjuk (1)

− b [δi1 sinα− δi3 cos α]− ∂τij

∂xj
,

db

dt
= −N2 [u1 sinα− u3 cos α]− ∂τbj

∂xj
,(2)

where variables with an overbar denote filtered
quantities and sub-filter scale (SFS) quantities
are denoted by a prime. The three filtered ve-
locity components are denoted ui, the filtered
buoyancy is b = g∆/T0 where ∆ is as defined
above, and δij is the Kronecker Delta function.
Note that in the text we will use the terms buoy-
ancy and heat interchangeably. In the buoyancy
equation the term including the slope-angle α
is the advection of ambient temperature. The
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modified pressure and sub-filter scale stresses
and buoyancy flux τij and τbj are given by

π = p
ρ0

+ 2
3e,

τij = uiuj − ui uj − 2
3eδij and (3)

τbj = ujb− ujb

respectively. In the SFS model - sometimes la-
belled a TKE model (e.g. Beare et al., 2006) or
a Deardorff type model after Deardorff (1980)
- the SFS turbulent kinetic energy (TKE) e =
1
2 (ukuk − uk uk) is a prognostic variable gov-
erned by

de

dt
= −τij

∂ui

∂xj
+ τb3 − cε

e3/2

λ
, (4)

where cε = 2π
cf

(3Ck/2)−3/2 = 0.93, cf = 2, and
the Kolmogorov constant Ck = 1.5, values as in
Pope (2000). In Equation 4 we have assumed
that the contribution from the horizontal com-
ponent of the SFS buoyancy flux is negligible.
The SFS fluxes of heat and momentum in Equa-
tions (3) and (4) are modelled according to:

τij = −Ks
m

(
∂ui

∂xj
+

∂uj

∂xi

)
τb3 = −Ks

b

∂b

∂z
,

where Ks
m = cmλ

√
e and Kb = (1 + 2λ/δ)Km

are the SFS exchange coefficients of respectively
momentum and buoyancy (Raasch and Etling,
1991); cm = cεπ

−2 = 0.094 is a dimensionless
constant (Dosio, 2005). The values of the
constant cε, cf and cm are evaluated from
inertial subrange theory assuming that the
spectral cut-off wave number kc = π/λ is lying
in the inertial subrange. In all simulations we
use λ = δ, where δ is the numerical grid size. To
prevent laminarization, in the lowest 10% of the
domain we let the filter width decrease2 linearly
to λ = δ/2 at the surface. In the wall layer,
between the solid surface and the first grid
point, we use standard Monin-Obukhov (MO)
theory (Foken, 2006) despite its limitations
(Mahrt, 1998, 1999).

2Analogous to the van Driest damping function (e.g.
Pope, 2000)

The most important input parameters are the
slope-angle, the background stratification, and
the surface buoyancy flux. All simulations
use an equidistant grid, the ratio of the grid
distance in the horizontal to the vertical is ∼ 6.
A ratio different from unity will introduce extra
numerical errors, but is used for numerical
efficiency. The time integration is performed
using a third order Runge-Kutta scheme. The
advection term produces the most numerical
dissipation, which can be reduced by using a
higher order scheme; here we use a sixth order
central difference scheme. Lastly, in the top
25% of the domain, there is a sponge layer that
removes fluctuations of velocity temperature
in order to dissipate gravity waves before they
can reflect at the model top (Cuijpers, 1994;
Khairoutdinov and Randall, 2003).

3 Observations and model
validation

In the summer of 1994 a glacio-meteorological
experiment on the Pasterze glacier in Austria
was performed (PASTEX). The experiment con-
sisted of mast measurements at six different lo-
cations and balloon soundings; for the model
validation we will only use data from the mast at
site A1. Wind and temperature were measured
at eight levels (0.25, 0.5, 1, 2, 4, 6, 8, and 13
m), whereas fluxes of momentum and heat were
measured at two levels (2.5 and 10.3 m). Details
on the measurement sites and instrumentation
are given in Van den Broeke (1997).
For our comparison we look at nocturnal data
(half-hour measurements averaged over the pe-
riod 22 - 04 h) measured during a single night
with only small synoptic disturbances. The sur-
face heat flux is obtained by linear extrapolation
of the observed heat flux: wθs = -0.035 K ms−1.
The roughness length was 4.4 mm. The horizon-
tal domain and grid distance are 250 m and 2.7
m, respectively, and in the vertical direction 51
m and 0.4 m, respectively.
We first consider the time evolution of the flow;
unlike SBLs over flat surfaces, katabatic flows
become steady after some time, but in an os-
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cillatory way. Schumann (1990) showed for an
up-slope boundary flow (convective counterpart
of katabatic flow) that the vertically averaged
temperature deficit and velocity oscillate with a
time-period

τ =
2π

N sinα
.

Figure 1(a) shows the oscillatory behaviour of
the vertically averaged velocity UD and temper-
ature deficit TD (defined below). At first the
surface cools, whereby the flow is accelerated.
With increasing wind speeds, more potentially
warm air is advected down-slope, which reduces
the temperature deficit. The flow is retarded
as the temperature deficit decreases, but with a
weak flow, the surface cooling increases again.
Figure 1(b) shows the down-slope velocity at
four different heights and also the vertically av-
eraged velocity UD ≡ h−1

∫ h

0
udz; for simplicity

we have taken h to be the top of the domain. It
is seen that the velocity near the surface starts
increasing before the velocity further away from
the surface. At z = 1 m the velocity becomes
more or less constant after t/τ = 0.4, whereas
at other heights the oscillation continues until
t/τ ∼ 2. The velocities at 1 and 5 m show a sud-
den drop around t/τ ∼ 0.2, numerical instability
is a possible cause, but we have not found a more
concrete explaination. The damping is stronger
than in Schumann (1990) who introduced arti-
ficial damping to reduce computer time needed
to reach a steady state solution. Moreover, di-
rect numerical simulation of moderately turbu-
lent katabatic flow (Fedorovich, personal com-
munication) has shown an oscillation in UD also
for t/τ & 10, which contradicts the damping.
We can only speculate as to what the cause of
the damping may be, but a a comparison with
simulations using other input parameters sug-
gests that the damping increases foremost with
decreasing stratification, and increases with in-
creasing surface heat flux.
In the remainder we assume a stationary state
obtained by averaging the modelresults over the
oscillation period t/τ = 2 - 3. Moreover, mean
profiles are evalutaed by averaging the resultant
fields over planes parallel to the surface. Fig-
ure 2 shows model results together with obser-
vations of the downslope wind speed, the ver-

tical momentum flux, the temperature deficit3,
and the vertical heat flux. To assess the mea-
surement error, we have calculated the standard
deviation of the wind and temperature at each
level, using the half hour measurements.
The shape of the wind profile strongly resembles
the observations, and although the model over-
estimates the wind maximum umax, it is still
within the error-bars. The modelled momen-
tum flux also seem to fit the observations to a
good degree; near the surface the modelled uw
is slightly overestimated. Larger discrepancies
are found between modelled and observed tem-
perature deficit. Near the surface the modelled
values and observations agree, but for z > 2 the
modelled temperature deficit is too large. Fig-
ure 2 also indicates that the height at which ∆
goes to zero is too high. e.g. the boundary layer
height is overestimated, which is also seen in the
temperature flux profile. The surface heat flux
was one of the input parameters to the numerical
model, which is why the modelled and observed
heat flux at z ∼ 2 m should agree. However, at
z ∼ 10 m, the modelled heat flux is about 2.5
times the observed heat flux. i.e. there is too
much mixing of heat whereby the BL grows.
Denby (2002) also compared model results with
data from Pasterze, but instead of using data
from a single night, he averaged the observations
from a 12-day period characterised by weak syn-
optic conditions. From his figure 3, it would ap-
pear the his modelled heat flux compares better
to the observations than our results, but a close
inspection of his heat flux at ∼ 10 m gives wθ ∼
-0.022 Kms−1 (our comparison value: -0.095),
which is very similar to our model output. If
we slightly change the interval over which the
observations are averaged, the discrepancy be-
tween modelled and observed heat flux becomes
smaller, but the differences between modelled
and observed velocity and momentum flux be-
comes larger. This raises the question of how to
select data for comparison, which we will not at-
tempt to answer. However, based on the results
shown in this section we are confident that our
numerical model can capture the main features
of a katabatic flow.

3In this section only, we revert to the notation of
temperature (deficit) to give a more intuitive comparison
with observations
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Figure 1: (a)Vertically averaged velocity UD and temperature deficit TD as function of non-dimensional time,
and (b) the time evolution of the down-slope velocity at different heights.
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Figure 2: Comparison of model results to observations. (a) downslope velocity, and (b) vertical momentum flux,
(c) temperature deficit, and (d) heat flux.

4 Sensitivity study

In the numerical study of katabatic flow by
Nappo and Rao (1987), the effect of the ambient
stratification on steady katabatic flow was inves-
tigated. Simulations using two different lapse

rates, γ = 0.1 and γ = 10, K km−1 showed that
the flow was considerably weaker and shallower
for the strong stratification case. One of the fo-
cuses of this study is to further investigate the
effect of stratification on the flow. The near-
surface stratification is in turn influenced by the
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Table 1: Summary of input parameters in numerical
simulations.

Simulation N wbs α
[10−2s−1] [10−3m2s−3] [degrees]

G1F1A2 1.01 1.02 5.0
G1F2A1 1.01 1.36 3.5
G1F2A2 1.01 1.36 5.0
G1F2A3 1.01 1.36 6.5
G1F2A4 1.01 1.36 7.5
G1F3A2 1.01 1.70 5.0
G2F1A1 1.24 1.02 3.5
G2F1A2 1.24 1.02 5.0
G2F1A3 1.24 1.02 6.5
G2F2A1 1.24 1.36 3.5
G2F2A2 1.24 1.36 5.0
G2F2A3 1.24 1.36 6.5
G3F1A2 1.43 1.02 5.0
G3F2A2 1.43 1.36 5.0
G3F3A2 1.43 1.70 5.0
G4F1A2 1.60 1.02 5.0

surface buoyancy flux, and will in the following
also be addressed. The effect of a third param-
eter, the slope-angle α, will be discussed sepa-
rately.
16 numerical simulations have been carried out
with Brunt-Väisälä frequencies ranging from ∼
1 to 1.6·10−2 s−1, surface buoyancy fluxes rang-
ing from ∼ 1 to 1.7·10−3 m2s−3, and α ranging
from 3.5o to 7.5o; a summary of the input pa-
rameters used is given in Table 1.
Figure 3(a) shows the down-slope velocity pro-
files of a selection of the simulations; the se-
lection includes the extreme input parameters
in background stratification and surface forc-
ing. As expected, the velocity decreases with in-
creasing background stratification (G1F1A2 and
G4F1A2), and increases with increasing surface
buoyancy flux (G1F1A2 and G1F3A2). For the
wind maximum height zj , there is an inverse
relation; zj decreases for increasing N , but in-
creases for decreasing wbs. Turning to the buoy-
ancy profiles, we see in Figure 3(b) that all pro-
files tend to zero far away from the surface; near
the surface it would appear that the background
stratification has a smaller impact on the buoy-
ancy than the surface buoyancy flux, but such a
conclusion can only be made after finding proper

scaling parameters. Such scale factors for veloc-
ity, buoyancy and length are derived from the
equations Prandtl based his model on:

b sinα− ∂wu

∂z
= 0,

−uN2 sinα− ∂wb

∂z
= 0,

(Prandtl, 1942; Shapiro and Fedorovich, 2008).
In the momentum equation the buoyancy accel-
eration is opposed by the turbulent stress, and
in the buoyancy equation heating by advection
of ambient air is opposed by surface cooling. By
introducing the generic scales V (velocity), L
(distance) and B (buoyancy), the equations can
be recast on the form

bn +
1

sinα

V 2

LB

∂τn

∂zn
= 0, (5)

un +
1

sinα

B

LN2

∂Qn

∂zn
= 0, (6)

where the subscript n denotes non-
dimensionalized variables: zn = z/L, bn = b/B,
τn = uw/V 2 and Qn = wb/(V B). The two
external parameters N and Fs = wbs, can be
combined to give the units of length, velocity
and buoyancy. (To obtain positive scales, the
absolute value of the surface buoyancy is used.)
Following Schumann (1990), and Shapiro and
Fedorovich (2008) we get

V1 = F
1/2
s N−1/2, B1 = F

1/2
s N1/2 and

L1 = F
1/2
s N−3/2. (7)

Figure 3(c) shows that the scaled down-slope
velocity profiles converge only for z/L1 & 0.2
and that the heights of the wind maxima do
not coincide. The wind maxima are brought a
bit closer together, especially the wind maxima
of the simulations G1F1A2 and G1F3A2. Fig-
ure 3(d) shows that the scaled buoyancy profiles
also only converge for z & 0.2, and that near the
surface the scaling does not bring the buoyancy
profiles closer together.
We have also consider scales involving the height
of the wind maximum, zj , which is determined
by the flow, e.g.

V2 = FsN
−2z−1

j and B2 = FsN
−1z−1

j . (8)

7



0 1 2 3 4 5 6 7
0

10

20

30

40

u  [ms−1]

z
  

[m
]

 

 
G1F1A2
G1F3A2
G4F1A2

(a)

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1
0

10

20

30

40

b  [ms−2]
z
  

[m
]

(b)

6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

u / V
1

z
 /

 L
1

(c)

−60 −50 −40 −30 −20 −10 0
0

0.1

0.2

0.3

0.4

b / B
1

z
 /

 L
1

(d)

6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

u / V
2

z
 /
 z

j

(e)
−7 −6 −5 −4 −3 −2 −1 0
0

0.5

1

1.5

2

2.5

3

b / B
2

z
 /
 z

j

(f)

Figure 3: Dimensional down slope velocity (a), buoyancy (b), and scaled velocity (c,e), buoyancy (d,f). See text
for details.
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Figure 4: Dimensional (a) and scaled (b) momentum flux, in (c) and (d) dimensional and scaled buoyancy flux.
Legends as in Figure 3.
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Figure 5: Down-slope velocity simulations with different α (a), and umaxzj as function of Fs/(N2 sin α); straight
line is linear regression.

The scaled down-slope velocities are shown
in Figure 3(e); by scaling the height by
zj , the heights of the wind maxima will by
definition all coincide at z/zj = 1,but we
also note that the magnitude of the velocity
maxima are brought closer together when
scaling u by V2. The flow-dependent scaling
parameters also work well for the buoyancy
profiles, Figure 3(f); upon scaling b by B2 all
buoyancy profiles practically fall onto one curve.

Next we consider the dimensional and scaled
fluxes of momentum and buoyancy, Figure 4.
The profiles of the dimensional momentum
fluxes vary at all heights; below the wind
maximum they are negative and increase until
z ∼ 15 - 25 m. At the height of the wind
maximum the momentum fluxes go to zero;
the intersection of all curves near z ∼ 6 m
is merely a coincidence, other simulations do
not pass through that intersection point. The
dimensional buoyancy flux profiles, Figure
4(b), go from Fs at the surface to zero at the
boundary top, not linearly as in the SBL over
flat surfaces (Nieuwstadt, 1984), but somewhat
curved. Figures 4(c,d) show the momentum and
buoyancy fluxes scaled by respectively V 2

1 and

V1B1. Two of the three scaled momentum flux
profiles coincide to a good degree, the ’outlier’
is simulation G4F1A2. The wb profiles are
scaled by V1B1 = Fs; near the surface all scaled
buoyancy flux profiles go to unity, further away
a small spread between the scaled profiles is
observed. Lastly we scale the momentum and
buoyancy flux profiles by respectively V 2

2 and
V2B2, Figures 4(e,f). Because the height has
been scaled by zj , all scaled momentum flux
profiles go to zero at z/zj = 1. We further note
that two of the three profiles shown coincide
to a good degree; the ’outlier’ is the G4F1A2
simulation which differs from the other two
in the background stratification. Scaling the
buoyancy flux profiles with V2B2 clearly does
not bring the scaled flux profiles closer together.

The slope-angle α is the last variable we
will focus on. Figure 5(a) shows the down-slope
velocity profiles of four simulations with fixed N
and Fs but with varying α; both the magnitude
of the wind maximum umax, and zj increase
with decreasing slope-angle. Schumann (1990),
who performed numerical simulations with
various slope-angles, found for the anabatic
flow over moderately steep slopes that the wind
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maximum only weakly depends on α. He related
the vertically averaged down-slope velocity to
the slope-angle by UD h = Fs/(N2 sinα), the
right hand side being very similar to the scale
factor V2. From the Prandtl model a similar
relation for the product umaxzj can be found:

umaxzj =
πe−π/4

2
√

2
Fs

N2 sinα
.

Figure 5(b) confirms the relation, although the
linear regression coefficient is different (0.19).
Note that the linear regression was obtained us-
ing all simulations, when isolating simulations
with constant FsN

−2 but varying α, the re-
gression coefficient was 0.25. We would expect
umaxzj to vanish for small Fs/(N2 sinα), but
this is not verified in the figure.

5 Discussion

A relation between the two length scales in-
troduced in the previous section, L1 and zj , is
sought; Figure 6 shows that zj increases linearly
with L1. Of the nine simulations having α = 5o,
four have the same wind maximum height, most
likely because zj is determined on a discretized
grid. For instance, the height of the wind
maximum is typically around z ∼ 4 m, and with
a vertical grid distance δz = 40 cm, ’moving’ zj

up or down one grid level gives a relative change
of 10%. We take this discretization problem
into account when doing a linear regression
analysis; the regression coefficients for α = 3.5o,
5o and 6.5o are respectively 0.12, 0.08 and 0.06.
For the moderately steep slopes that we have
simulated, we conclude that the increase in zj

for increasing L1 is smaller for large α than for
small α. Further analysis must determine how
the regression coefficients varies with Fs, N and
α.

6 Conclusion

Slope flows over cool, inclined surfaces have been
studied using large-eddy simulations with ro-
tated coordinate system. Periodic boundary
conditions have been applied to the velocity
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Figure 6: zj as function L1.

components, temperature deficit and the sub-
filter scale turbulent kinetic energy, and simu-
lations are run until steady state. Model vali-
dation with in-situ observations from an Alpine
glacier show good agreement between modelled
and observed down-slope velocity and momen-
tum flux, but suggests that the boundary layer
depth is overestimated.
The sensitivity study where the external param-
eters α, N and Fs shows that the down-slope ve-
locity increases with increased surface buoyancy
flux, but decreases with increased stratification
and slope-angle. Two sets of scaling parame-
ters for the velocity, buoyancy and height have
been introduced, one set is based solely on exter-
nal parameters, and one set on the height of the
wind maximum, zj . We have seen that the mean
profiles of the down-slope velocity and buoyancy
scale well the zj dependent parameters.
Fluxes of momentum and buoyancy have also
been studied as function of N and Fs. Momen-
tum fluxes are negative below the wind maxi-
mum, go to zero at zj and continue increasing
up to 3-4 times the height of the wind maximum,
where after momentum fluxes start diminishing
again. The buoyancy profiles are similar to the
buoyancy profiles in the SBL over flat surfaces,
but due to the advection of upslope ambient air,
the decrease in wb is not linear but curved. The
scaled profiles of respectively momentum and
buoyancy, show that the scale parameters solely
based on external parameters work the best.
Analysis has further shown a linear relation be-
tween zj and L1, in the future we will pursue
a theoretical reasoning for the relation based on
the Prandtl model. Also, with the aid of LES
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it is now possible to study the scaling behavior
of the various terms in the TKE budget, and
determine how exchange coefficients of momen-
tum and buoyancy, and thus also the Prandtl
number, vary with height.
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