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ABSTRACT

The propagation of small-scale internal gravity wave packets through large-scale inertial frequency
waves is investigated through ray theory and numerically solving the fully non-linear Navier-Stokes
equations in two dimensions. Small-scale internal waves generated by flow over topography interact
with both time-independent background shear profiles and time-dependent shears present in the atmo-
sphere in the form of large-scale waves of inertial frequency propagating upward. Interaction with a
time-independent shear may lead to a critical layer interaction and eventual short wave absorption or
breaking. When the shear is time-dependent and the energy of both the small- and large-scale waves are
propagating in the same direction, a critical layer may be approached, but because of the time-dependent
nature of the background it may disappear before the small-scale wave is absorbed or breaks. Although
both numerical and observational studies have been performed to address this issue, the details of this
type interaction are not fully understood, and seem to be highly sensitive to initial wave parameters
and location. Through ray theory many small-scale waves can be traced, and data collected on the
evolution of their energy and propensity to break. An investigation of many small-scale waves with a
range of realistic initial wave parameters and vertical locations propagating upward through an upward
propagating inertial wave give insight into the propagation of terrain generated internal waves through
a time-dependent background flow, and result in a classification of probable types of short wave inter-
actions.

1. Introduction

Internal waves are ubiquitous throughout the atmo-
sphere. Strong generation regions in the stratosphere,
such as mountain ranges, can generate a stream of
internal waves propagating upward into the middle
atmosphere. Internal waves may also be generated
through convection, wind shear, adjustment of unbal-
anced flows near jet streams and frontal systems, and
body forcing accompanying localized wave dissipa-
tion (Fritts and Alexander (2003)). These small-scale
gravity waves may interact with other waves, winds,
and the changing buoyancy frequency as they propa-
gate. Each of these interactions, in addition to gravity
wave dissipation, may contribute to the universal fre-
quency spectrum, slopes near −5/4, seen in the mid-
dle atmosphere (VanZandt (1982), Balsley and Carter
(1982), Nakamura, Tsuda, Fukao, Kato, Manson, and
Meek (1993), Collins, Nomura, and Gardner (1994)).
The importance of each of these individual effects is
unknown and the resulting spectral shapes and wave
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breaking are not well understood (Gardner (1996)).
The location of wave-breaking and dissipation is im-

portant to understanding the combined effect a num-
ber of small-scale gravity waves can have on the at-
mosphere, including their influence on large-scale cir-
culation. Some examples of gravity-wave-driven fea-
tures are the quasi-biennial oscillation of the equatorial
lower stratosphere (Takahashi, Zhao, and Kumakura
(1997)), the semiannual oscillations of the equato-
rial upper stratosphere and mesosphere (Hamilton and
Mahlman (1988)), the annual mesospheric merid-
ional circulation, and the separated winter stratopause
(Hitchman, Gille, Rodgers, and Grasseur (1989)).
These effects are important to include in global circu-
lation models (GCMs), but the internal gravity waves
which generate them cannot be resolved. Parameteri-
zation of the generation and evolution of internal grav-
ity wave activity through the atmosphere is necessary
for accurate GCMs.

Ray theory has been used as a method to parame-
terize gravity wave propagation through steady back-
ground winds as well as with tidal winds present
(Zhong, Sonmor, Manson, and Meek (1995). With
only steady background shear present, vertical wave-
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length cutoff values have been prescribed assuming
wave-breaking and dissipation will occur for waves
reaching these small scales (Henyey, Wright, and
Flatté (1986)). Although this may be accurate for
steady shear profiles, Eckermann (1997) found allow-
ing for time-dependent shear profiles results in small-
scale internal wave propagation which is very differ-
ent from steady profiles. Depending on the relative
motion of the time-dependent shear, the short waves
may reach caustics (Broutman, Macaskill, McIntyre,
and Rottman (1997), Vanderhoff, Nomura, Rottman,
and Macaskill (2008), Sonmor and Klaasen (2000))
which only occur due to the time-dependence, or un-
steady critical layers (Sartelet (2003a,b)). Also preva-
lent in the atmosphere are inertial scale waves prop-
agating upward, which can be modeled as stationary
time-dependent shears, where the phases of the inertial
wave propagate downward. These interactions with
low frequency motions may cause Doppler-spreading
of the short waves or possibly even breaking.

We assume strong internal gravity wave generation
by the mountains in Whistler, B.C., Canada. These up-
ward propagating small-scale waves may interact with
strong background steady shear in addition to other,
larger-scale, inertial frequency waves. The interac-
tions between these waves will define which small-
scale waves will continue to propagate upwards and
contribute to internal wave activity in the mesosphere,
which will have a change in their properties, and which
will break.

In the next section, background information on the
idealized problem and solution methods, ray tracing,
and numerical simulations, is presented. In Section
3 the results of small-scale wave propagation through
different mediums is addressed for both ray tracing and
numerical simulations. Conclusions are drawn in Sec-
tion 4.

2. Setup

In this section we will cover the different setups of
the ray tracing calculations and numerical simulations.

a. The idealized problem

In the ray tracing and numerical simulations we con-
sider the case of a packet of short waves approach-
ing a single inertia packet either from above or be-
low, as described in Vanderhoff, Nomura, Rottman,
and Macaskill (2008), where a steady shear may be
present as well. The coordinate system is (x, y, z) with
z positive upwards, x positive eastward, and y positive
northward. We assume that the buoyancy frequency N
and the Coriolis parameter f are both constant.

The inertial packet has wavenumber K = (0, 0,M),
whereM = 2π/λi and λi is the vertical wavelength of
the wave. The corresponding velocity field is uniform,
horizontally, u = (u, v, 0), but confined in the vertical
by a Gaussian envelope:

U + iV = U0 e
−z2/L2

ei(Mz−ft) (1)

where L and U0 are constants, real and complex re-
spectively. The envelope of the inertia-wave packet
assumed stationary, since the vertical component of
the group velocity vanishes at the inertial frequency.
The phases move vertically through the packet at speed
c = f/M , assumed positive for the moment. A steady
shear may be superimposed on the background with a
linear profile seen in the stratosphere, which increases
with height or the mesosphere which decreases with
height. In the numerical simulations we use a gaussian
profile with a maximum horizontal velocity of 50m/s,

Usteady = Umax e
−z2/L2

. (2)

Waves propagating to the east which do not reach a
critical level while in a background velocity going to
the east will not change while going back through the
opposite shear as they propagate upwards. Therefore
we will concentrate on short waves which reach a crit-
ical level or turning point during the first strong shear
interaction.

The short waves have wavenumber k = (k, 0,m),
with k constant, and intrinsic frequency ω̂, which is
the Doppler-shifted frequency, where

ω̂2 = (N2k2 + f2m2)/(k2 +m2) (3)

which simplifies to

ω̂2 ≈ N2k2

m2
(4)

when f2 � ω̂2 � N2. We take m and ω̂ to be posi-
tive, and allow k to have either sign. The vertical group
velocity cg = ∂ω̂/∂m is negative if m is positive and
positive if m is negative.

The vertical displacement of the short waves is ζ =
ζ0 exp(iθ), from which the wavenumber and wave fre-
quency are given by k = ∇θ and ω = −θt, respec-
tively, and where ω = ω̂ + kU . The wave-energy den-
sity E is related to ζ0 by

E =
1
2
ρ0ζ

2
0N

2

[
1 +

(
fm

Nk

)2
]

(5)

where ρ0 is the mean density of the fluid.
The numerical simulations are initialized at time

t = 0 with a short-wave packet whose vertical dis-
placement field ζ(x, z, t) has the initial form
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ζ(x, z, 0) = Re
{
ζ0 e
−(z−z0)

2/`2ei(kx+mz)
}

(6)

where ` and z0 are real constants and ζ0 is a complex
constant. The initial vertical position z0 is specified
such that the short-wave packet is below the inertia-
wave packet since cg > 0.

Wave-breaking is defined when isopycnals are verti-
cal, ζz > 1, leading to overturning within the fluid and
resulting turbulence. This can be calculated in the nu-
merical simulations by finding ∆ζ/∆z. For calculat-
ing wave steepness in ray theory we use the dispersion
relation and (5) to derive:

ζz = −m

∣∣∣∣∣
(

2Aω̂
ρ0

)1/2

N−1

∣∣∣∣∣ . (7)

Here A = E/ω̂ is the wave-action density. There is an
inverse relationship between the wave steepness and
the Richardson number, where Ri = N2/u2

z , which
is:

Ri =
1− f2/ω̂2

ζ2
z

. (8)

For the ray tracing and numerical simulation re-
sults shown in this paper, we use the following atmo-
spheric parameters, which are within the range of in-
ternal waves in the stratosphere and mesosphere at the
latitude of Whistler, B.C., CA: M = 2π/(10000 m),
k = 2π/(10000 m) , f = 1.114 × 10−4s−1, N =
0.02s−1, and U0 = 10m/s for the inertial wave and
Umax = 50m/s for the shear profiles. For the numer-
ical simulations, the initial steepness |ζz| = |mζ0| =
0.1, where subscript z represents the partial derivative
with respect to z, ML = 16, and `/L = 0.6. We
will alter the vertical wavenumber, m, to realize dif-
ferent group speeds of the short wave. The vertical
wavelength never exceeds 30km so the change in back-
ground density over a wavelength is not significant in
the calculations.

b. Ray Theory

Using ray theory we can calculate approximately the
behavior of the short wave encounter with the inertial
wave group. To do this we assume that the inertial
wave is both unaffected by the short wave interaction
and has a much larger length scale than that of the short
wave. Also we assume the short wave is determined by
the linear dispersion relation. Then an evolution equa-
tion in characteristic form can be found for k. For fur-
ther detail see Vanderhoff et al. (2008).

1) THE RAY EQUATIONS

The ray-tracing results in this paper are obtained
with the following pair of ray equations, for the vertical
position of the ray path and the vertical wavenumber
respectively:

dx
dt

= cg + U,
dm

dt
= −k∂u

∂z
. (9)

Here d/dt = ∂/∂t+cg •∇. Because the expression
(1) has no dependence on x or y, the horizontal compo-
nents (k, 0) of the wavenumber of the short waves are
conserved along the ray. These equations are solved
using the Matlab ODE45 solver which is based on
an explicit Runge-Kutta formula, the Dormand-Prince
pair, Dormand and Prince (1980), which is a one-step
solver. The tolerances are set at 10−4 for the relative
error and 10−6 for the absolute error.

2) ANALYTIC RAY SOLUTIONS

An analytic ray solution describing short-wave re-
fraction by inertia waves propagating opposite to the
small scale waves appears in Broutman and Young
(1986) and is obtained by letting L approach infinity
in equation (1). The inertia-wave velocity U is then
purely sinusoidal. In a reference frame moving at the
inertial-wave phase speed c, the inertial current appears
steady. Solutions then exist for which the short-wave
frequency in the inertial-wave reference frame

Ω = ω̂ + kU − cm ≈ constant. (10)

When the vertical group speed of the short wave is in
the same direction as the inertial wave the result is tran-
sient critical levels. A critical level occurs when the
relative frequency of the internal wave tends to zero,
ω̂ = 0, such that oscillations relative to the background
wind cease, which for a steady background is

Ω = kU . (11)

This occurs where the horizontal phase speed of the
internal wave is equal to the horizontal velocity of the
background,

U = Ω/k = cpx . (12)

In a steady shear profile if a critical level is present, the
short wave is eventually absorbed by the mean flow,
or may be transmitted or reflected depending on the
amplitude of the incident wave. When an inertial wave
is present

Ω = kU − cm . (13)

With a short wave vertical wavelength of only 1000m
and an inertial wave where Umax = 10m/s the sec-
ond term on the right hand side is an order of magni-
tude less than that on the right. This disparity increases
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as the vertical wavelength increases and the horizontal
background velocity increases. Thus this term is ne-
glected and the approach to a critical level is expected
as is calculated for steady flows. When short waves are
traveling upward through the inertial wave the value of
the horizontal phase speed at the critical level is merely
a different sign if the wave is traveling in the positive or
negative x-direction. If k is positive (short wave trav-
eling in positive x-direction, here traveling to the east)
and m is negative (short wave traveling upward), the
value of the background velocity at the critical level
is positive, and for upward, west traveling waves, the
background velocity at the critical level is also to the
west.

If the horizontal wave propagation is opposite to the
steady horizontal velocity turning points may ensue.
A turning point is where the intrinsic frequency of the
short wave approaches the buoyancy frequency,

Ω = N + Uk − cm , (14)

above which it cannot propagate. Again the cm term
is very small for larger scale waves and the interaction
approaches that of a steady shear profile,

Ω = N + kU . (15)

This occurs when the horizontal group speed of the
short wave is equal to the negative horizontal back-
ground velocity. At the turning point the rays be-
come horizontal and can only turn back on themselves.
The short wave vertical group speed passes through
zero and changes sign, the horizontal group speed ap-
proaches zero, but then goes negative again.

When the short waves are propagating opposite the
the inertial wave caustic interactions occur. For our
idealized model, caustics occur when

cg = c . (16)

Vanderhoff et al. (2008) show results for these types of
interactions. These types of interactions are less likely
to occur in the atmosphere with most internal waves
having upward group speeds.

c. Numerical Simulations

Numerical results are obtained by integrating the
fully nonlinear inviscid, Boussinesq equations of mo-
tion. In their vorticity-streamfunction form, these are:

∂2ψ

∂x2
+
∂2ψ

∂z2
= q (17)

∂q

∂t
− J(ψ, q)− ∂σ

∂x
− f ∂v

∂z
= 0 (18)

∂v

∂t
− J(ψ, v) + fu = 0 (19)

∂σ

∂t
− J(ψ, σ)−N2w = 0, (20)

where q is the y-component of vorticity and J(ψ, q)
the Jacobian with respect to (x, z). Here the fluid ve-
locity u = (u, v, w), and the stream function ψ is
defined such that u = ∂ψ/∂z, w = −∂ψ/∂x, and
q = ∂u/∂z − ∂w/∂x. The scaled density perturba-
tion due to the presence of internal wave motions is
σ = gρ′/ρ0 where g is the acceleration due to gravity;
the density ρ = ρ′ + ρ0, with ρ0(z) the mean density
profile. Because of rotation, there is a nonzero v field,
but all variables are assumed to be independent of y.
The scale height is not included because the relatively
small vertical scale of the waves results in insignificant
changes in density over the height of the wave.

Periodic boundary conditions are imposed in both
the x- and z-directions, and the equations are solved
using a Fourier spectral collocation technique with
Runge-Kutta time stepping. The computational do-
main contains one horizontal wavelength of the short
waves in the horizontal direction and one vertical
wavelength of the inertia waves in the vertical direc-
tion.

There are 512 grid points in the vertical direction,
but only 16 grid points in the horizontal direction. The
low horizontal resolution suffices for this problem –
as has been verified by tests at higher resolution – be-
cause the short waves, though strongly refracted, are
not strongly amplified, and remain well below break-
ing threshold. The maximum wave-steepness ∂ζ/∂z
of the short waves over the duration of the simulation
does not exceed unity (except in a special case as dis-
cussed later). No viscosity or filtering was necessary
to stabilize the calculations.

3. Results

a. Ray Tracing through an inertial wave

The ray path of a short wave with horizontal phase
speed of 5m/s propagating upward through a station-
ary inertial wave with phases propagating downward
is shown in Fig.1. Critical levels are approached as
the phases propagate through but then the small-scale
internal waves propagate back to their original proper-
ties as the critical level propagates through. The x− z
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FIG. 1. Short wave with horizontal phase speed 5m/s. Solid line is ray path interacting with inertial wave, dashed
line is path with no inertial wave present. The upper left plot is the ray path where the elliptical regions are outlines
of critical layer values. As the ray flattens out in z − t space it is approaching a critical layer, where the longest
time it does so is in the largest part of the envelope. Upper right plot is ray path in x − z space, lower left plot is
the steepness of the short wave during the interaction, where it increases as approaching a critical layer, then drops
as the critical layer propagates through. The lower right plot is the change in vertical wavenumber over the ray.

FIG. 2. Short wave with horizontal phase speed 5m/s. Ray path in x−y−z space. Solid line is ray path interacting
with inertial wave, dashed line is path with no inertial wave present. Oscillations in y−direction are due to the
inertial wave oscillations. Ray exits interaction with approximately the same properties it entered with.
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space plot shows the increased horizontal distance the
short wave travels as it approaches a critical level due
to the inertial wave interaction. If no inertial wave were
present, dashed line, at the final height the wave is ap-
proximately 150 km west of its current location. So
although the final short wave properties are not irre-
versibly altered, their horizontal location can be shifted
hundreds of kilometers. As the short wave approaches
the critical level its steepness increases, and may break
if the initial steepness is great enough, but if not it
will drop back to its initial steepness. In this case if
U0 = 13m/s the steepness would be greater than unity
for a few time steps. This corresponds to short wave
breaking when:

U = cpx0 +
c

k
(m0 −mbreak) (21)

where

ζz
ζz0

= 10 =
mbreak

m0

(1 + fmbreak

(Nk)2 )1/2

(1 + fm0
(Nk)2 )1/2

, (22)

which was derived using equation 13. This is only
true for a small range of values and the resulting phe-
nomenon is currently being explored further.

The vertical wavenumber increases just as the criti-
cal level is approached and after it passes, in between it
decreases. There is no net change in vertical wavenum-
ber, however, and thus there is also no net change in the
energy of the short waves.∫

EdV =
∫
Aω̂dV (23)

where V is the volume of the short wave packet. Due
to wave action conservation,

∫
AdV = constant, and

we assume ω̂ is constant within the packet such that
the final energy of the short wave after the interac-
tion is Efinal/Einitial = ω̂/ω̂0. Within the mid-
frequency approximation the intrinsic frequency is in-
versely related to the vertical wavenumber of the short
wave and thus decreases in vertical wavenumber re-
sult in increases in energy. The three dimensional ray
path is shown in Fig.2. Since l = 0 the changes in
the y−direction are due only to motion of the back-
ground inertial wave in the y−direction. The ray never
reaches a critical level, even when the value of the hor-
izontal phase speed is reached and surpassed because
the phases of the inertial wave continue to propagate
through.

Short waves with phase speeds less than the max-
imum horizontal velocity of the inertial wave are af-
fected similarly. The main difference is the amount of
time spent approaching the critical level depending on

the relationship between U0 and cpx. Waves with ini-
tial vertical group speeds of 0.1m/s, 0.8m/s, and 3m/s,
and horizontal phase speeds of 2.7m/s, 4.9m/s, and
9.5m/s respectively are shown in Fig.3. The slowest
waves do not propagate as far in the x− or y− direc-
tions, but the relationship between the short wave inter-
acting with an inertial wave and its counterpart which
does not interact, is the same for each wave. The in-
teracting wave slows as it approaches a critical level
and therefore does not propagate as far vertically as
its counterpart, but due to the eastward velocity of the
inertial wave while it is traveling more slowly it propa-
gates farther to the east. The greatest disparity between
final horizontal locations occurs with the smaller scale,
slower waves, where here the slowest wave is shifted
about 400km and the fastest only 10km.

Short waves with a horizontal phase speed in the
negative direction, traveling westward, approach crit-
ical levels 180o out of phase of those traveling in the
positive-x direction. Again, there is no net transfer of
energy or wave breaking necessarily as the basic situ-
ation is identical to that already shown. These waves,
however, will have a final location hundreds of kilo-
meters west of where they would be without an inertial
wave present. This final location shift is opposite of
the shift for eastward traveling waves.

When waves are propagating opposite to the propa-
gation of the inertial wave caustics are reached (Van-
derhoff et al. (2008), Broutman, Macaskill, McIntyre,
and Rottman (1997)) due to the singularity when the
group speed of the inertial wave is equal to the phase
speed of the large wave. This only occurs when their
vertical group speeds are in opposite directions. When
the waves have group speeds in the same direction the
result is these moving critical levels.

Vertical wavelength and wavenumber statistics for
1000 short waves is shown in Fig.4. All of the waves
start with the same steepness, ζz0 = 0.1. Most of the
short waves exit with the same parameters they entered
the inertial wave interaction with, they are on themf =
mi line. Those waves which are most likely to break
are the waves with initially large vertical wavelength.
This may be due to the initialization which is such that
ζz0 = m ∗ zeta0 = 0.1 for each short wave, so short
waves with small m0 will have large initial amplitude.

b. Ray tracing through an inertial wave and
background wind

When a background wind is introduced in addition
to the inertial wave then a critical level can be reached.
The background wind is a steady shear which starts at
0m/s at 2.5L below the center of the inertial wave and
extends upward for 50 km with a maximum horizon-
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FIG. 3. Short waves with initial vertical group speeds of 0.1m/s, 0.8m/s, and 3m/s, and horizontal phase speeds of
2.7m/s, 4.9m/s, and 9.5m/s corresponding to the blue, green and red lines respectively. The dashed line represents
the short wave which does not encounter an inertial wave. Ray path in z− t space (top plot), x− t space (middle),
and y − t space (lower). Notice the changes in y are only due to the inertial wave, no critical level is approached.

FIG. 4. Statistics of 1000 short waves propagating through an inertial wave. Solid line is where mf = mi. Waves
with a final steepness normalized by initial steepness of 10 (ζz0 = 0.1) are cut from the calculations, and shown
as having a final vertical wavenumber and wavelength of 0. Left plot is vertical wavenumber and right is vertical
wavelength. Mainly waves of large vertical wavelength reach a large steepness and are cut.
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tal velocity going eastward of 50m/s. The north-south
background velocity is purely due to the inertial wave.
Here the short waves have an initial vertical wavenum-
ber m = 2π/10000m such that the horizontal phase
speed is 22m/s (note the midfrequency approximation
cannot be used for these scales). The previous short
waves used in the pure inertial wave interaction reach a
critical level almost immediately in this setup because
of their low horizontal phase speed.

Equivalent figures are shown when short waves ap-
proach an inertial wave while a background shear is
also present. The ray path, steepness and vertical
wavenumber are shown in Fig.5. In this case a crit-
ical layer is continually approached due to the hori-
zontal velocity of the steady background shear. As the
ray flattens out in z − t space it is approaching a crit-
ical layer, and it continues to when the steady back-
ground velocity is equal to the horizontal phase speed
of the short wave. The wave steepness decreases as
the critical layer is continually approached as the abso-
lute value of the vertical wavenumber increases. The
wave may be spread by the interactions with the in-
ertial wave before the critical level is approached, re-
sulting in a drop in amplitude just before the critical
level. Yet in the steady background shear case the short
waves have an increasing amplitude as the critical level
is approached, as is expected for a steady shear inter-
action. The vertical wavenumber continues to decrease
as the critical layer is approached, but for the propa-
gation through both the inertial wave and the steady
shear, has some changes as the phases of the inertial
wave continue to propagate through.

Fig.6 shows the ray path in three dimensions, show-
ing the critical level is reached as the short wave
continues to propagate in the x− and y− directions.
This shows continual motion in the east-west propa-
gation due to the steady shear background and oscil-
lations in the north-south propagation due to the iner-
tial wave. These oscillations in the north-south prop-
agation of the wave would cease as the inertial wave
propagates upward. The horizontal oscillations are sig-
nificant, though, as Fig.6 shows the oscillations in the
y−direction have a 100km swing. This could result in
wave breaking 50km north or south of the estimated
location for waves propagating only through a steady
shear wind.

Short wave propagation through a steady critical
level, inertial wave only, and steady shear with iner-
tial wave present are each very different. Only very
small vertical scale short waves will be affected by
a pure inertial wave with maximum horizontal veloc-
ity of 10 m/s. Since the background wind is stronger,
larger scale waves will be affected by the interaction.

It seems for the general propagation direction, when
an inertial wave is present there is a small change in
vertical propagation as the inertial wave phases prop-
agate through. The final approach to the critical level
is the same and the short waves reach the same height.
The main differences are in the final horizontal shift in
wave location and the continual changing of the ver-
tical wavenumber due to the inertial wave motions.
These motions are continuous in this calculation be-
cause of their null group speed, but as they do have a
slow vertical group speed eventually these oscillations
in vertical wavenumber and horizontal location would
die out as the inertial wave propagates upward through
the shear.

When a number of short waves are traced through
the inertial wave with a steady background shear
present, and the short wave horizontal group speed is
the same direction as the background velocity, all the
waves with a horizontal phase speed less than the max-
imum steady background velocity will approach a crit-
ical level. These waves, if allowed to propagate, slowly
become smaller and smaller, until their vertical wave-
lengths are less than one meter. These waves interact
as would be expected with a critical layer, except with
a few minor oscillations before the critical level due to
the inertial wave. Waves which do not reach a criti-
cal level have their original properties, but have been
advected in the direction of the wind.

Propagation opposite to the direction of the steady
background results in turning points for the short
waves. These waves’ vertical wavenumber will change
sign and the waves turn back on themselves. The hor-
izontal wavenumber will stay constant and total re-
flection is expected, as Phillips (1977) found within
the WKB approximation. Fig.7, and Fig.8 show short
waves of vertical wavelength m = 2π/10000m with a
negative horizontal wavenumber, k = −2π/10000m
(ω̂ = 0.0141/s). These waves are reflected when
their horizontal group speed goes to zero, resulting in a
frequency which approaches the buoyancy frequency,
which occurs when Usteady = −cgx = 22m/s. These
waves are no longer followed as they are now trapped
between the turning level and the ground because their
horizontal wavenumber will not change sign and thus
will always be propagating opposite the direction of
the steady wind shear. The wave steepness decreases
when approaching the turning point, then in the steady
case increases back to its original value.

c. Numerical simulations through an inertial wave

Fully nonlinear numerical simulations show the two
dimensional interaction with an inertial wave. Fig.9a
is the perturbation density of a short wave with m =
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FIG. 5. Short wave with horizontal phase speed 22m/s. Plots as in Fig.1, where the elliptical regions in the upper
left plot are outlines of critical layer values and the solid line represents the ray path when both a steady shear and
inertial wave a present and the dashed line represents the ray path if only the steady shear is present. Both lines
approach the same critical level.

FIG. 6. Short wave with horizontal phase speed 22m/s. Ray path in x− y − z space. Solid line is interaction with
both inertial wave and steady shear, dashed line is for steady shear background only.
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FIG. 7. As in Fig.5, but with short wave horizontal phase speed −22m/s. The ray reaches a turning point where
the background steady velocity is 22m/s.

FIG. 8. Short wave with horizontal phase speed −22m/s. Ray path in x − y − z space. Solid line is interaction
with both inertial wave and steady shear, dashed line is for steady shear background only.
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FIG. 9. Numerical simulation of short wave interaction with an inertial wave. (a) Perturbation density of short
wave with mi = 2π/2000. (b) Initial (dashed) and final (solid) vertical wavenumber spectrum.

2π/10000m propagating upward through an inertial
wave. The inertial wave cannot be seen in the den-
sity perturbation plot because it does not have an asso-
ciated density perturbation. As in the ray tracing the
short wave approaches a critical layer then goes back
to original conditions as the critical level passes. It
also loses amplitude as it propagates as it has spread.
The steepness of this calculation actually exceeds unity
for a short period of time while the wave approaches a
critical level. A small jump was seen in the ray trac-
ing at the same time, but of a much smaller magnitude.
Fig.9b is the initial and final vertical wavenumber spec-
trum, averaged over the last quarter of the interaction.
The initial spectrum is spread due to the packeting of
the short wave. The final spectrum is peaked a little
lower than the initial vertical wavenumber due to the
increase in vertical group speed over the inertial wave.
There is also some small spreading to higher and lower
vertical wavenumbers due to the interaction.

The wave path generated by ray tracing matches that
calculated through fully nonlinear simulations quite
well. The approach to and retreat from the critical level
is captured and only a small shift in vertical wavenum-
ber is seen. Also, the overall spreading of the short
wave is seen. However, the horizontal shift of the short
wave cannot be tested because the simulations are only
two-dimensional, and with periodic boundary condi-
tions in the horizontal with a scale equal to that of one
short wave horizontal wavelength, the horizontal shift
is not calculated. Also, there is a strong increase in
steepness that was not seen in the ray tracing.

d. Numerical simulations through an inertial wave
and background wind

When a steady shear profile is present the classic
critical level is approached as shown in Fig.10. The
wave is absorbed at the critical level, the amplitude de-
creases. The final vertical wavenumber spectrum has a
peak at a higher vertical wavenumber consistent with
slower vertical propagation of the short wave. The
steepness in this calculation never increases above the
initial steepness, as was also seen in the ray tracing.

When an inertial wave is also in the background,
as shown in Fig.11, the critical level is again reached,
but by the time it reaches it the amplitude of the short
wave has decreased significantly. This was also seen in
the ray tracing. The short wave first interacts with the
inertial wave, loses amplitude, spreads, and then ap-
proaches a critical level. Again there is a shift to higher
vertical wavenumbers but because of the spreading due
to the inertial wave it is not as clear as in the purely
steady shear case. These interactions may result in the
short wave losing energy before reaching the expected
critical level when only a steady shear is present.

When the short wave is propagating in the opposite
horizontal direction a turning point is reached, but is
not well resolved by this model. Additional spreading
of the short wave can be seen in the turning point when
an inertial wave is also present, which was seen in the
ray tracing as well.

Although the horizontal shift was not captured in the
two-dimensional numerical simulations, they serve to
verify the motion and wavenumber evolution of the in-
teractions discussed as they match quite well, yet it is
much more time efficient to use ray tracing to calculate
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FIG. 10. Numerical simulation of short wave interaction with a steady background shear defined by equation 2
with L = 10000m and Umax = 50m/s. (a) Perturbation density of short wave with mi = 2π/10000. (b) Initial
(dashed) and final (solid) vertical wavenumber spectrum.

FIG. 11. Numerical simulation of short wave interaction with a steady background shear defined by equation 2
with L = 10000m and Umax = 50m/s with an inertial wave also present, centered with the shear. (a) Perturbation
density of short wave with mi = 2π/10000. (b) Initial (dashed) and final (solid) vertical wavenumber spectrum.
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these motions.

4. Discussion

If the strongest winds are due to inertial waves with
an upward group velocity than no critical level will be
reached and short waves will continue to propagate
after interacting with them with unchanged parame-
ters. During the interaction with an upward propagat-
ing inertial wave, the short wave begins to reach a crit-
ical level, then rights itself as the critical level passes
through with the phases of the inertial wave. Within
the inertial wave the short wave properties change, and
afterward the wavenumber spectrum has spread nearly
equally both above and below the initial value, but still
has a peak near the initial vertical wavenumber. Thus
the spectrum of short waves propagating through an in-
ertial wave are only altered while interacting. When an
inertial wave is present the short waves will not reach
as high a vertical location if given the same amount of
time due to the slowing during the interaction. Short
waves traveling to the west will be shifted further west,
up to hundreds of kilometers, and waves traveling east
will be shifted further to the east. The extent of this
shift increases with decreasing horizontal phase speed.
A relationship for this shift value in terms of wave pa-
rameters is being explored. Also, waves with larger
vertical wavelengths may break. This may be an ar-
tifact due to the steepness being constant and there-
fore the amplitude of these waves is initially larger than
smaller scale waves. In general the critical layer must
be steady for an extensive amount of time for a short
wave to break. There is also a possibility of the short
wave breaking if the horizontal velocity of the inertial
wave is large enough. This is being investigated.

Small scale waves with a horizontal phase speed
component propagating with the wind, but less than
the maximum wind will reach a critical level. When
an inertial wave is also present these critical layer lo-
cations can be shifted tens of kilometers vertically and
hundreds of kilometers horizontally. Also, due to the
inertial wave interaction the short wave energy may be
spread over a significantly larger volume before reach-
ing a critical level. These waves will have a more broad
final spectrum of vertical wavenumbers.

If the phase speed parallel to the wind is in the op-
posite direction of the wind, turning points will ensue.
Again, the effect of the inertial wave’s presence is to
spread the energy of the short wave before turning so
the short wave occupies a larger volume and afterward
there is more of a spread of final vertical wavenum-
bers. Again both horizontal and vertical location shifts
are seen.

If we know where short waves are initialized we can

calculate where they may break. This work has shown
the importance of knowing if large scale inertial waves
are present as they can act to significantly shift waves
horizontally and even slightly vertically therefore shift-
ing their breaking locations as well.
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