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Abstract

Atmospheric circulation over complex terrain is governed by both synoptic forcing and thermal
circulation induced by radiative heating or cooling of the ground surface. At night or in winter, when
the synoptic forcing is weak enough, the dynamics of the atmospheric boundary layer in a deep valley
is dominated by katabatic (down-slope) flows. Indeed, as soon as the ground surface is sloping, a
horizontal temperature gradient is created between the air just above that surface and the ambient air,
because of the differences between thermal capacity of the air and of the ground.

As predicted theoretically (e.g. [Fleagle (1950)], [McNider (1982)]) and shown from in situ measure-
ments (e.g. [Helmis & Papadopoulos (1996)], [van Gorsel et al. (2004)], [Bastin & Drobinski (2005)]),
oscillations in katabatic winds do occur along the slope. When the atmosphere is stably-stratified, the
angular frequency of these along-slope oscillations is proportional to the Brunt-Väisälä frequency of
the ambient atmosphere and to the sine of the slope angle.

Such an unsteady katabatic flow in a stably-stratified atmosphere must generate internal gravity
waves. These waves are usually not resolved in mesoscale models. Whilst breaking, they induce mixing,
which needs to be parameterized in such models. A preliminary high-resolution numerical investigation
of the dynamics of the stably stratified atmosphere of a valley has suggested that the frequency of
these waves is equal to about 0.8N ([Chemel et al. (2008)]), and so, is independent of the slope angle
of the topography (unlike the pulsation of the katabatic wind). Theoretical work ([Voisin (2007)]) and
previous laboratory experiments are consistent with this finding.

The aim of this study is to extend the characterization of the oscillations in the katabatic flow and
of the internal gravity wave field emitted by this flow to a large range of stratification and slope angle
values. To proceed, we have performed numerical simulations for an idealized topography of a deep
valley with the ARPS meteorological model using a high resolution in space and time (down to 50
m horizontally, 4 m vertically with a time step of 0.2 s). In this paper, we discuss the mechanisms
responsible for the along-slope oscillations and for the emission of the waves and we clarify how the
wave frequency depends upon the stratification.

∗Corresponding author: Yann Largeron, LEGI, BP 53, 38041 Grenoble cdx 9, France; e-mail:
Yann.Largeron@hmg.inpg.fr
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1 Introduction

In the absence of strong synoptic forcing, the flow
in a narrow valley is driven by thermal circulations
due to the heating or cooling of the soil surface.
In regions of sloping ground surfaces, it is well-
known that, at night or in winter, the cooling of
the soil often induces down-slope, also referred to
as katabatic, flows. If, moreover, the atmosphere
is stably-stratified, the katabatic flow perturbs the
stably-stratified air and internal gravity waves are
generated.

According to in situ measurements ([Helmis &
Papadopoulos (1996)], [Gryning et al. (1985)],
[Princevac et al. (2008)], [van Gorsel et al.
(2004)], [Bastin & Drobinski (2005)]), the kata-
batic flow is highly variable and intermittent.
Temporal organization can still be detected, as
temporal oscillations have been measured in these
field campaigns. The existence of such oscilla-
tions was first accounted for by [Fleagle (1950)],
invoking compressionnal warming as the catabatic
wind flows down. The theoretical model thus
derived was extended by [McNider (1982)] to a
stably-stratified atmosphere, by adding buoyancy
effects. McNider’s model predicts that the oscillat-
ing period of the catabatic flow is T = 2π/Nsinα,
where N is the Brunt-Väisälä frequency (whose
square is proportional to the ambient vertical
potential temperature gradient) and α is the local
angle of the topography with the horizontal. Very
few studies dealt with the generation of the waves
from the unsteadiness of the katabatic flow. A pre-
liminary investigation was made numerically in an
idealized alpine valley by [Chemel et al. (2008)].
This work shows that there are two oscillating
systems in the stable boundary layer of a valley:
one is associated with along-slope temporal os-
cillations in the katabatic wind as predicted by
[McNider (1982)] while the other consists of the
oscillations of the internal wave field in the whole
atmospheric boundary layer. These conclusions
are in good agreement with the observations made
by [van Gorsel et al. (2004)] during the Riviera
campaign. The study of [Chemel et al. (2008)]
also led to the conclusion that the power spectrum
of the internal waves is peaked at a frequency
given by ω/N ≈ 0.8.

However, knowledge of the characteristics of these
oscillating motions are missing. Especially, the

effect of local parameters such as the value of
the slope, the stratification of the atmosphere and
the global topography of the valley should be ad-
dressed. This is the purpose of the present study.

To adress these questions, we analyse numerical
simulations performed with the ARPS code. The
setup of the simulations is described in the next
section. Then, the general features of the flow is
reported in section 3. The analysis of the oscillat-
ing motions is reported in section 4. Finally, we
investigate the effect of the stratification in section
5. Conclusions are drawn in the final section.

2 Setup of the simulation

2.1 The numerical model

The numerical simulations are performed with
the ARPS code (Advanced Regional Prediction
System, Xue et al. (2000)). This is a non-
hydrostatic atmospheric model appropriate for
scales ranging from a few meters to hundreds
of kilometers. The code solves the compress-
ible Navier-Stokes equations that describe the at-
mospheric flow, and uses a generalized terrain-
following coordinate system. Microphysical pro-
cesses, surface layer physics and a soil model are
included. Open boundary conditions are imposed
for the velocity field in both horizontal directions.
This field satisfies a no-slip condition on the topog-
raphy while a Rayleigh sponge is imposed in the
upper part of the domain. We model a 3 hour noc-
turnal winter situation starting at 22:00 UTC on
December 21st at the latitude of an alpine valley.
No velocity field is imposed at initial time and there
is no synoptic forcing as well. The topography and
initial temperature field are discussed below.

The Navier-Stokes equations are discretized in
space with a centered fourth-order finite differ-
ence scheme on a staggered grid (of Arakawa C
type). Time is discretized with a centered leapfrog
time scheme, with a mode-splitting time integra-
tion technique for solving the acoustic waves. Three
turbulence closure schemes are available in the
code. Here, we use the classical 1.5 order turbu-
lent kinetic energy (TKE) closure scheme.

The horizontal resolution is 200 m in both the x
and y directions. Along the vertical direction, we
use a variable grid, starting from 5 m in the first
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100 m above the topography and slowly increasing
upwards to reach 98 m at an altitude of 7000 m.
The corresponding number of grid points is 121 ×
103 × 140. The time step is 0.25 s.

2.2 The topography of the valley

In the simulations, we use an idealized topog-
raphy based on the analytical profile of a valley
provided in [Rampanelli et al. (2004)]. Its expres-
sion is given by z = h(x, y) = Hhx(x)hy(y) with
hx(x) = 0.5(1 − cos(π(|x| − Vx)/Sx)) for Vx <
|x| < Vx + Sx; for |x| < Vx, hx(x) = 0 and for
|x| > Sx + Vx, hx(x) = 1. The function hy is de-
fined as hy(y) = 0.5(1 + tanh(y/Sy)).
The valley has a NS oriented axis and is open on
a plain on the south boundary so that an along-
valley wind can develop. The valley length is 20
km and the width (2Vx) is 1240 m at the bottom
level. The sloping sidewall width (Sx) is equal to
2640 m and the summits (H) are at the altitude
of 1700 m. Figure 1 shows that the height of the
summits varies along the valley axis, and so does
also the value of the maximum slope angle in a ver-
tical cross-section. This value ranges from around
3o close to the plain to 44o at the northern part of
the valley.
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Figure 1: Topography of the idealized valley.

2.3 The initial temperature profiles

2.3.1 The initial atmospheric temperature

field

We impose a vertical potential temperature pro-
file θ(z) at initial time which has a value of 271K

at the bottom of the valley and evolves linearly
with height. The Brunt-Väisälä frequency N =
(g/θ0)(dθ/dz)1/2 where θ0 is a reference potential
temperature is therefore constant. Note that due
to topography, the absolute temperature at a given
height above the soil surface is a function of x and
y. The temperature of the soil surface is initialized
with an offset from the temperature of the adjacent
air. Here, we take an offset of 0oC or 3oC (see next
sections for detail) which means that the initial ab-

solute temperature of the soil surface is equal to,
or 3oC less than, the initial absolute temperature
of the adjacent air. We also impose an offset be-
tween the soil surface and the deep soil (which is
set to 0oC or 5oC in our simulations). This is not a
forcing but just an initial condition. The tempera-
ture changes as time evolves in agreement with the
thermodynamic laws prescribed by the code.

2.3.2 The soil surface temperature

A classical two-layer soil model is considered,
with Ts being the soil surface temperature and T2

the temperature of the deep soil. The temporal
evolution of Ts is governed by the equation:

∂Ts

∂t
= Cs(Rn − H − LE) +

2π

τ
(Ts − T2), (1)

where Rn, H, and LE are the net radiative flux,
the sensible heat flux and the latent heat flux re-
spectively. The coefficient Cs is the heat capacity
of the soil surface and τ is the duration of a day.
The typical evolution of Ts as time evolves is dis-
played in figure 2: the soil temperature varies by a
few degrees per hour, consistent with in situ mea-
surements by [Peck (1996)] for instance.
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Figure 2: Temporal evolution of the soil surface
temperature at a given point of the valley.
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3 General behaviour of the
stably-stratified atmospheric

boundary layer in a deep
valley

The purpose of this section is to provide a brief
overview of the motions which develop in the at-
mosphere of the valley as a result of thermal forc-
ing by the cooling of the soil and in the absence of
synoptic forcing.

3.1 The katabatic wind

When cooling, the lower layers of the atmosphere
become denser, and the cold air thus created flows
down by gravity toward lower altitudes. Such a
katabatic flow is visualized in figure 3, which dis-
plays an instantaneous vertical cross section of the
contours of the vertical velocity at y = +7 km,
where the maximum slope angle is ≃ 44o. The max-
imum amplitude is of the order of 2 m/s, consistent
with in situ measurements. Note that a katabatic
wind also develops on the slopes that connect the
summits to the plain, which is of much weaker am-
plitude.
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Figure 3: Katabatic wind flowing down the slope of the
valley. Contours of the vertical velocity at y = +7 km at

t=62 mn (the maximum slope angle is 44o).

3.2 Internal gravity waves generated
by the katabatic wind

Since the atmosphere is stably stratified, any non-
horizontal time-varying disturbance radiates inter-
nal gravity waves. As mentioned in the Introduc-

tion and further discussed in Section 4.1, the kata-
batic wind is unsteady and therefore generates an
internal gravity wave field which propagates in the
whole valley and away from it because of the con-
stant stratification.
Coriolis effects are very weak in the present case
because the scales and velocities we consider are
small (the Rossby number associated with the kata-
batic flow is ≃ 100 and that of the emitted waves,
as shortly seen, is larger than 1). Therefore,
Coriolis effects can be ignored in the following.
As discussed in classical textbooks (for instance,
[Lighthill (1978)]), the flow induced by plane inter-
nal gravity waves in the absence of Coriolis effects
is a parallel shear flow, whereof velocity is directed
along the planes of constant phase. The angle of
these phase planes with the vertical, θ say, sets
the wave frequency ω, when the Brunt-Väisälä is
given. Indeed, from dispersion relation, one has :
ω = Ncosθ.
The emission of internal gravity waves by the un-
steady katabatic wind is illustrated in figure 4b by
velocity vectors in a y = +7 km vertical plane :
velocity vectors of alternate direction as one moves
along the slope are indeed visible. Since the wave
emission has just started (that is, the wave veloc-
ity is zero away from the slope), the wave pattern
consists of closed cells of alternate sign along the
slope. (Note that the vectors close to the slope,
which are associated with the katabatic flow, have
been suppressed for clarity.)
This cell structure clearly appears when the verti-
cal velocity component is plotted in the same ver-
tical plane (figure 4a). The figure also shows that
the waves display a remarkable feature : the an-
gle θ that the cell structures make with the ver-
tical is the same whatever the emission location
along the slope, despite the slope angle varies. This
suggests that the wave frequency is constant, for a
given N . This important feature will be further dis-
cussed in the next sections. The amplitude of the
wave-induced velocity is 0.2 m/s, that is, ten times
smaller than the vertical velocity of the katabatic
flow which emits the waves. (Constant contours of
the horizontal velocity component u also displays
the same features, with a 0.5 m/s velocity).
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Figure 4: (a) Contours of the vertical velocity after 45mn
of simulations at y=+7km. (b) Velocity vectors in a (x,z)

cross section at y=+7 km after 45 mn.

3.3 The valley wind

A valley wind sets in which flows down to the
plain (Figure 5). This valley wind is generated by
the katabatic flow, from mass conservation, but is
rather weak. It is noticeable that the wind is not
generated at the bottom of the valley, but at an
altitude around 1000 m, and reaches the bottom of
the valley while flowing down.

4 Analysis of the case N =

1.47 10−2 rad/s

We focus on a case for which the value of the
stratification lies in the middle of the range of strat-
ification we consider and is typical of those en-
countered in the atmosphere. Thus, the vertical
temperature gradient is 6 K/km associated with
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Figure 5: Top : Contours of v in a (y, z) section along the
valley axis after 45 mn of simulation. Bottom : Contours
of v in a (x, z) section for y= 15 km (from south border)

after 45 mn of simulation.

N = 1.47.10−2 rad/s.

4.1 The katabatic wind

4.1.1 Profile of the along-slope wind

We project the wind velocity on an axis s along
the topography (see fig. 6) and compute the com-
ponent thus obtained, us say, as a function of the
coordinate normal to the topography n. The pro-
fil us(n) is plotted in figure 7 at a given time, for
y = +7 km (that is, in the narrow end of the valley)
and at the point of maximum slope angle.
One can distinguish a lower part in which the wind
is directed down the slope, over a thickness of
roughly 50 m. The velocity reaches a maximum
value of a few m/s around 10 m. Around 100 m
above the ground, a return flow is present as a
result of mass conservation: the wind is directed
upward the slope. These observations agree well
with in situ measurements of katabatic flows on
steep slopes (larger than about 10o), both from a
qualitative and a quantitative point of view on a
single slope (f.i. [Helmis & Papadopoulos (1996)],
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Figure 6: Definition of the sloping coordinate system
(extracted and adapted from [Princevac et al. (2008)])
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Katabatic wind profile at the point i=51, j=75 for t=95mn

Figure 7: Along-slope component of the wind versus the
coordinate normal to the topography n, in the middle of

the slope (x = +2 km, y = +7 km

[Monti et al. (2002)], [Skyllingstad (2003)], Baines
(2005)) or in a valley ([Gryning et al. (1985)],
[van Gorsel et al. (2004)]).

4.1.2 Spatial dependency of the katabatic

wind

The purpose of this section is to investigate the
spatial dependency of the katabatic wind compo-
nent us averaged over the 3 hours of simulation. We
refer to this average velocity as 〈us〉t. Figure 8 (top
frame) displays 〈us〉t along the s-axis at y = +7 km
at 1.5 m above the ground. The slope angle α is
superimposed.

Three features should be noticed. First, the maxi-
mum value for 〈us〉t is not reached where α is maxi-
mum but about 500 m upstream. Second, the value
of 〈us〉t is not symmetrical about the middle of the
slope, whereas α is symmetrical about this point.
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Figure 8: Top frame. Blue : Time average velocity

component along the slope 〈us〉t(s, n = 1.5 m, y = +7 km).
Black : Slope angle α of the topography along the s-axis
for y = +7 km. Bottom frame : same as top frame, for

y = −1 km.
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It therefore appears that the expression derived by
[McNider (1982)] for the value of the average kata-
batic winds (namely 〈us〉t = Lc/(γ sinα) in which
Lc is the cooling rate, γ the lapse rate and α the
slope angle) is not directly applicable in this situa-
tion where the slope is not uniform. Finally, there
is a localized region of weaker wind, implying that
the wind loses momentum there. At this point, two
processes may be invoked, which are the generation
of either the internal wave field or the valley wind.
Note (not shown) that this velocity deficit persists
in the first few tens of meters above the ground
while weakening.
This behavior does not persist when one moves
along the valley axis. Figure 8 (bottom frame)
shows indeed that, in the vertical plane located at
y = −1 km, the momentum loss is no longer visible
and the change in 〈us〉t is more symmetrical, with
a slight shift toward the bottom of the slope very
likely because of inertia.
The behavior described from this Figure is recov-
ered when 〈us〉t(s, n, y)t is plotted versus y for a
given s and n (figure 9). Indeed, when the x-plane
we consider coincides with the upper part of the
slopes (top frame), 〈us〉t is roughly proportionnal
to the slope angle. By contrast, for a value of s
associated with the middle of the slopes (bottom
frame), the figure shows that 〈us〉t first increases
as the slope angle increases and then decreases in
the upper narrow end of the valley, where the to-
pography is very steep (having slope angles around
44o).
Therefore it seems that the change in the katabatic
wind along the slope is not the same when the angle
of the slope varies, even if the curvature remains
constant. This suggests that a physical process
draws energy from the katabatic wind where the
slopes are the highest (and longest) in the steepest
areas of the topography, whereas this process does
not exist (or is weaker) where the topography has
a weaker slope.
Therefore if this physical process corresponds to
the emission of internal gravity waves, the region
of wave emission would be located in the middle of
the slopes of the upper narrow end of the valley,
where the slopes are the steepest, with a maximum
angle close to 40o.
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Figure 9: Blue : Evolution of 〈us〉t along the y-axis for a
given value of x. Black : Evolution of the slope angle α
along the y-axis for the same value of x. Top : x = +2.6

km; bottom : x = +2 km.

4.1.3 Temporal oscillations of the katabatic

wind

At a given point of the slope, the amplitude of
the component of the wind along the topography
varies with time. According to theoretical analysis
([Fleagle (1950)], [McNider (1982)]), the adiabatic
warming and the buoyancy force are the mecha-
nisms responsible for these oscillations. The char-
acteristic frequency of these oscillations is given by
([McNider (1982)]):

ωMcNider = Nsinα. (2)

In the case we consider, the period of these oscilla-
tions is about 10 minutes at the locations where the
slope is the highest, namely 44o. Such oscillations
can indeed be recorded there, as attested by Figure
10a (these oscillations exist all along the slope and
can be better detected at the bottom of the slope).
For layers of air very close to the ground, a power
spectrum of the katabatic wind velocity shows that
the oscillations do coincide with those predicted by
McNider’s model (fig. 10b).
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Figure 10: (a) Temporal evolution of us at x=0.8 km,
y=+10 km. (b) Power spectrum of us at x=0.8 km,

y=+10 km (blue : ωMcNider with N = 1.4710−2 rad/s
and α = 44o). (c) : Power spectrum of us at x=1.4 km,

y=-1km (blue : ωMcNider).

When moving to areas of the valley where the slope
angle is smaller, the period of these oscillations
become longer, in agreement with expression (2).
This can be seen in figure 10c, where the velocity
spectrum is plotted at a location where the maxi-
mum slope angle is 21o. The period is equal to 20
mn.

Note however that the katabatic wind is not ev-
erywhere oscillating with the frequency ωMcNider.
The spectrum of the temporal variations of us most
often exhibits several peaks around this frequency.
This is possibly due to the fact that the slope of
our valley is not uniform while the theoretical fre-
quency ωMcNider is obtained for an infinitely long
and uniform slope.

From the viewpoint of the structure of the katabatic
winds, the McNider oscillations are especially rep-
resentative of the temporal variations of the kata-
batic wind in the lower layers (less than 20 − 30
m above ground). But the oscillations in the re-
turn flow around 100 m also have a quite similar
frequency.

4.2 The internal wave field

4.2.1 Spatial structure of the waves

As discussed in Section 3.2, the katabatic wind
generates internal gravity waves and this genera-
tion seems to occur more favourably on steeper
slopes. As the waves propagate away from the
slope, their phase lines take the form of cells, mak-
ing an angle of approximately 45o with the verti-
cal (this point is further discussed in the next Sec-
tions).

The katabatic flow sets in during the first 20 min-
utes or so of the simulation. During this period,
no wave is visible. After 20 minutes, fluid motions
appear from the center of the valley up to the sum-
mits as if the atmosphere was unstable. Thus the
wind is going upward in the center of the valley
and downward above the summits. Since the at-
mosphere is stably-stratified however, no convec-
tion cell can form (unlike what would happen if
the atmosphere were unstable) and local circula-
tions appear in the vicinity of the slope, near the
center part of the valley and close to the top. These
motions are surmounted by return flow of opposite
direction because of mass conservation.
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after 25mn of simulation.

The front between the two katabatic flows eventu-
ally gives birth to a first cell that loops on itself
because of the stratification, as shown in fig. 11.
This occurs about 25 minutes after the beginning
of the simulation.

After 45 minutes, the cell system is created all along
the slope (see Fig. 4a). Waves are emitted from the
slope and propagate away from it. We observe that
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wave emission along the slope then occurs progres-
sively for weaker slopes, as if wave emission were
spreading along the direction of the valley axis,
from steep to weak slopes.
Since the katabatic winds face each other, the waves
they emit eventually yield a standing wave system
forming at the bottom center part of the valley and
progressively extending upward.

4.2.2 Wavelengths of the internal wave field

The structure of the wave field can be studied more
precisely by computing so-called ”Hövmoller” dia-
grams, which are simply plots of constant contours
of a velocity component (or of the temperature) of
the wave field, the axis being one spatial coordi-
nate, xi say, and time. The diagram can yield the
phase speed in the direction of xi from the slope of
the contours as well as the wave frequency so that
the wave length in the xi direction can be inferred.
Contours of the vertical velocity in a (y, t) dia-
gram are thus plotted in figure 12 along the line
defined by x = −0.2 km (close to the valley cen-
ter) and z = 400 m, for the first one hour or so
of the simulation. The figure shows that the waves
reach this altitude after about half an hour and
that the slope is infinite for y larger than 0.6 km
(from south border). Hence, in the Northern part
of the valley, the phase speed along the y direction
vanishes: the wave structure may be assumed to be
two-dimensional there namely, the waves propagate
in the (x, z) plane.

Hovmoller diagram in a  (y,t) plan for i=60, z=400 mètres
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Figure 12: Contours of vertical velocity in a (x, t) diagram
at x = −0.2 km and z = 400 m.

Contours of the vertical velocity in a (z, t) dia-

gram along the vertical line defined by x = 0.6 km
(close to the valley center) and y = +9km (close to
the Northern border) are plotted in figure 13. As
above, phase lines are clearly visible, with a well
defined slope during the first hour. The wave pe-
riod T is given by the distance along the horizontal
axis between two maxima and the phase speed cz

is equal to the value of the slope. We find T ≈ 10
mn and cz = −2.5 m/s so that, from the relation
cz = ω/kz = λz/T , one gets λz ≈ 1300 m.
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Figure 13: Contours of vertical velocity in a (z, t) diagram
at x = 0.6 km and y = +9 km.

If we plot this Hövmoller diagram for a smaller
value of y, where the slope is shallower, we get
roughly the same phase speed and period.
To compute the wavelength along the x-direction,
we plot the (x, t) Hövmoller diagram in the North-
ern part of the valley (so that no y−dependency
may be assumed) and for z = 800 m (figure 14). At
that altitude, the x−axis is limited to a range of val-
ues set by the topography. Waves do not attain this
altitude before t ≃ 2000−3000 s and the phase lines
then organize along well defined structures which
are symmetric with respect to the valley axis. The
formation of a standing wave system is visible at
later times. The slope of the phase lines is cx ≃ 2.3
m/s while the period is estimated to ≃ 11 mn, con-
sistently with the computation from the (z, t) dia-
gram. Using cx = λx/T , we get λx ≈ 1400 m.

4.2.3 Frequency analysis of the waves

We have computed the frequency of the waves from
time series recorded at one point. In this section,
we analyse how the wave frequency varies along
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Figure 14: Contours of vertical velocity in a (x, t) diagram
at y = +9 km and z = 800 m.

the vertical direction (that is, as the waves prop-
agate away from the slope), along the valley axis
and along the x-direction.

• Change in the wave frequency along the vertical

direction

The frequency spectrum of the vertical velocity has
been computed at different altitudes, ranging from
1000 m above the ground to approximately 2300 m
above the ground, at a location in the valley where
the slope is weak. The result is displayed in figure
15. The Brunt-Väisälä frequency is indicated with
a red line and the frequency predicted by McNider
at this location is shown with a blue line.
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Figure 15: Evolution of the wave frequency with z. Red
line : Brunt-Väisälä frequency N. Blue : frequency

predicted by McNider.

Several frequencies are excited at lower altitudes

but, from a distance to the ground larger than 1500
m, a single wave frequency is detected, which is
quite different from McNider’s frequency.

This behavior is recovered where the topography is
steeper, with the frequency detected at high alti-
tude being closer to McNider’s frequency because
of the higher slope.

This analysis therefore shows that the frequency of
the waves at a distance from ground level greater
than 1500 m can be assumed to be constant when
moving along the vertical axis.

• Change in the wave frequency along the valley

axis

We now analyse the change in the wave frequency
along the valley axis. This is an important point
since the slope of the topography varies along the
valley axis. Hence, this analysis should allow us
to determine whether the wave frequency depends
upon that slope, as the McNider’s frequency does.
To get a closer comparison with the latter fre-
quency, we also display ωMcNider on the same fig-
ure. The ratio ω/N is thus plotted versus y in fig-
ure 16, along with the ratio ωMcNider/N=sinα. We
take for α the maximum value of the slope angle in
each plane y =constant.

The figure shows no clear dependency of ω versus
y that is, with the slope of the topography. Hence,
the wave frequency does not follow McNider’s fre-
quency. The wave frequency is comprised between
0.7 and 0.9 times the Brunt-Väisälä frequency so
that a law of the form ω = 0.8.N may be assumed.
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Figure 16: Blue symbols: Ratio ω/N versus y. Black :
Ratio ωM cNider/N versus y.
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Brunt-Väisälä frequency N . Blue dashed line: frequency

predicted by McNider.

• Change in the wave frequency along x

The dependency of the wave frequency as a function
of x is eventually investigated for a given altitude
(z = 2200 m), at two positions along the valley
axis. For this purpose we plot ω versus x in figure
17 for y = −3 km (top frame) and y = +7 km (bot-
tom frame). At the first location, frequencies are
well distinct from McNider’s frequency, as already
found, and centered about a mean value equal to
0.75N . At the second location, the frequency coin-
cides to McNider’s location due to the sine of the
slope being equal to 0.8.

5 Influence of the thermal
stratification

In order to investigate the effect of the strati-
fication, we performed 8 simulations with different
values of the Brunt-Väisälä frequency, ranging from
9.10−3 rad/s to 2.3.10−2 rad/s.
In agreement with the result displayed in figure 16,
we found that the wave frequency is nearly indepen-
dent on the slope (or equivalently on y). Indeed,
we obtained the same figure as figure 16 in every
simulation.
The measure of a frequency in a given point of the
valley is marred with uncertainties due for exam-
ple to the short time of the simulation - 3 hours
- which leads to an uncertainty in the calculation
of the frequency spectrum of approximately 0.24
mHz. According to figure 17, the frequency takes
a value comprised between 0.65N and 0.95N along
the y-direction. In the following, we assume that
the frequency is nearly constant along y and com-
pute its average value in y for each value of N , at
a given (x, z) location. The y−average is referred
to as 〈ω〉y and is plotted versus N in figure 18 (top
frame).
The figure shows that 〈ω〉y increases with N , con-
sistently with previous finding (where we have ω ≃
0.8N). To get the coefficient between 〈ω〉y and N ,
the ratio 〈ω〉y/N is displayed versus N in figure 18
(bottom frame).
This figure confirms the results of the detailed
study of Section 4, namely that the frequency of the
waves ranges between 0.7 and 0.85N. However, it
contains an additional information: the ratio ω/N
is constant and around 0.8 for weak stratification
and seems to decrease linearly with N when the
stratification becomes stronger. Further work is
needed to analyze this behavior.

6 Conclusions

The purpose of this analysis was to revisit
and extend the preliminary study performed by
[Chemel et al. (2008)], on the emission of inter-
nal gravity waves by a katabatic flow. The study
of [Chemel et al. (2008)] focused on caracterizing
both the oscillations in the katabatic flow and the
internal gravity wave field. A single computation
was considered.
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Bottom frame. 〈ω〉y/N versus N .
Magenta : Uncertainties on the values plotted.

The present study confirms that two oscillating sys-
tems coexist, consisting in oscillations of the kata-
batic flow as predicted by [McNider (1982)] and in
internal gravity waves with frequency ≃ 0.8N . The
novelty here is to analyse the chronology and for-
mation of the wave emission. Thus the waves first
form at the bottom of the steepest slopes, which
seems to be confirmed by the preliminary experi-
mental study performed by Hazewinkel in 2006 (re-
search training, Woodshole Summer School). The
waves next form all along that slope and, subse-
quently, all along the other slopes along the valley
axis.

Since the angle of the steepest slope is 44o, the
wave frequency incidentally coincides with Mc-
Nider’s frequency there. One may therefore won-
der whether the wave frequency is not imposed by
McNider’s frequency, the wave system being then
transported in some way throughout the valley.
Preliminary study with a topography where the
slope is everywhere equal to 30o (so that the sine
of the slope angle is smaller than 0.8) shows that
waves with frequency close to 0.8N are still emit-
ted.

We also ran eight simulations with different val-
ues of N and recover the ω ≃ 0.8N law. This ra-
tio between the wave frequency and N may be ex-
plained by the theoretical work of [Voisin (2007)].
This work shows that the power of the waves radi-
ated by an oscillating sphere or cylinder displays a
maximum value for an oscillating frequency close
to 0.8N . The idea, proposed by Voisin, is that
an unsteady flow, such as a katabatic wind, emits
waves at any frequency, among them those having
a frequency close to 0.8N are the most powerful
and eventually dominate the wave signal. Labora-
tory experiments of localized turbulence in a sta-
bly stratified fluid are fully consistent with this re-
sult, reporting the emission of waves making an
angle around 45o with the vertical ([Wu (1969)],
[Cerasoli (1978)]).
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