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1. INTRODUCTION* 
 
The question of how the gravity wave drag produced in 
stratified flow over mountains is affected by wind profile 
effects (i.e. shear and curvature) has been the object of 
recent investigations (Teixeira et. al. 2004, Teixeira and 
Miranda 2004, 2006). These investigations employed a 
WKB approximation to treat local impacts on the surface 
drag of the first and second derivatives of the wind 
velocity, for generic wind profiles. In order for these 
effects to be captured, it was necessary to extend the 
WKB method to 2nd order in the small perturbation 
parameter, since it was shown that corrections to the 
surface pressure that are asymmetric with respect to the 
orography only arise at this order.  

While these results have some interest for 
parameterization purposes, especially when formulated 
for mountains with an elliptical cross-section (Teixeira 
and Miranda 2006), the actual force that is exerted on 
the atmosphere, and therefore directly parameterized, is 
related with the wave momentum flux. It is the vertical 
divergence of this momentum flux that produces the 
reaction force acting on the atmosphere that balances 
the surface gravity wave drag exerted on the mountain.  

By Eliassen-Palm's theorem, and its more recent 
extension to directional shear flows (Broad 1995), the 
momentum flux only varies in linear conditions due to 
the existence of critical levels, where the wave equation 
is singular. In previous linear studies addressing the 
momentum flux profiles, wind shear does not have an 
impact on the surface drag, and the gravity waves are 
totally absorbed at critical levels (Shutts and Gadian 
1999). This occurs because high Richardson numbers 
(Ri) were considered.  

The present study aims to extend this approach to 
lower Ri, where the surface drag is modified by shear or 
curvature of the wind profile, and critical levels do not 
absorb the waves completely, but rather filter them 
(Teixeira et al 2008). Again, a WKB approximation is 
employed to obtain the wave solutions for generic wind 
profiles, but now this method must be extended to 3rd 
order. The calculations are performed for a circular 
mountain and tested for three idealized wind profiles 
with directional shear and constant Ri. Two of these 
wind profiles are linear, while in the third the wind turns 
with height at a constant rate, maintaining its magnitude.  

Contour integration techniques enable us to obtain 
simple expressions for the momentum flux, correct to 
second order in the small perturbation parameter, and 
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closed-form analytical expressions for the momentum 
flux divergence. The momentum flux profiles are 
compared with results from numerical simulations, both 
for linear and weakly nonlinear conditions. 
 
2.  THEORETICAL MODEL 
 
The flow is assumed to be inviscid, non-rotating and 
hydrostatic, with a constant Brunt Väisälä frequency. If 
the equations of motion are linearized and combined, 
the Taylor-Goldstein equation is obtained, 
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where ŵ  is the Fourier transform of the vertical velocity 
perturbation, N is the Brunt-Väisälä frequency, 
(U(z),V(z)) is the incoming wind velocity, (k,l) is the 
horizontal wavenumber of the mountain waves and the 
primes denote differentiation with respect to height, z. 
The form assumed for the solution to (1) is 
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where the vertical wavenumber m has been expanded 
in a power series of ε (a small parameter) up to 3rd 
order. This is necessary for obtaining the momentum 
flux with sufficient accuracy. When (2) is introduced in 
(1), four equations result, valid at zeroth, first, second 
and third order in ε. These equations give definitions for 
m0, m1, m2, m3.  

Equation (1) is subject to the boundary condition 
that the flow follows the terrain at the surface, 
 0 0

ˆˆ ( 0) ( )w z i U k V l h= = + , (3) 

where (U0,V0) is the background wind at the surface and 

ĥ  is the Fourier transform of the terrain elevation. 
Additionally, it is required that the wave energy flows 
upward aloft. This determines the sign of m0 and m2. 
The definitions of the various terms of the vertical 
wavenumber are found to be: 
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This specifies the solution to the mountain wave 
problem completely. 



As mentioned above, the aim of this study is to 
specify the vertical momentum flux associated with the 
mountain waves. This momentum flux is given by 
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respectively for the x and y components, where û  and 
v̂  are the Fourier transforms of the velocity 
perturbations along x and y, and ρ0 is a reference 
density. These quantities are related to ŵ  through 
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where m=m0+εm1+ε2m2+ε3m3. Using these equations, 
and also (2) and (3), and noting that the momentum flux 
is a real quantity, (8)-(9) may be expressed as: 

2

2 2 2Im( )
0 0 02 2

ˆ
4 Re( )( ) s

x

k h
M m U k V l e dkdl

k l
π ρ

+∞ +∞
−

−∞ −∞

= +
+∫ ∫ , (12) 

2

2 2 2Im( )
0 0 02 2

ˆ
4 Re( )( ) s

y

l h
M m U k V l e dkdl

k l
π ρ

+∞ +∞
−

−∞ −∞

= +
+∫ ∫ , (13) 

where  
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The determination of s must be carried out separately 
for the various terms comprising m. m1 and m3 may be 
integrated directly, but the imaginary part of the integral 
of m0 and m2 must be obtained by contour integration. 
The contour used in the case when U’k+V’l>0 at the 
critical level is shown in Fig. 1. The semi-circles in Fig. 1 
are centered on zc, the critical level height. By design of 
the wind profiles, it is assumed that the integral along 
the outer semi-circle is negligible, so the only 
contribution to the imaginary part of (14) comes from the 
singularity at zc. This singularity leads to a discontinuity 
of the momentum flux contribution from each 
wavenumber at the critical level. A convenient way to  
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Figure 1. Contour used in the calculation of the integral 
(14). R is the radius of the outer semi-circle and δ the 

radius of the inner semi-circle.  
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Figure 2. Angles spanned by a generic wind that turns 

anti-clockwise.(ψ0 to ψ, vertical hatching) and 
corresponding angles of the wavenumbers that have 
been filtered by critical levels (horizontal hatching). 

 
express this effect is by dividing the domain of 
integration in wavenumber space into two parts: a part 
where the waves have been filtered by the critical levels 
and a part where the waves have not been filtered.  In 
Fig. 2, the azimuthal angles of the filtered wavenumbers 
are denoted by the horizontal hatching. 

The momentum flux is normalized by the surface 
drag in the absence of shear, which is given by 
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where κ=(k2+l2)1/2. It has been assumed that the 
mountain that generates the waves is circular, since this 
makes the normalized momentum flux independent of 
the detailed shape of the orography. 

The final expressions for the normalized 
momentum flux are: 
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additionally with ( cU′ , cV ′ )=(U,V)(z=zc). 

 
3. RESULTS 
 

The expressions presented above for the 
normalized momentum flux will be tested next for three 
idealized wind profiles with directional shear.   



3.1  Linear wind profile 1 
 
In the first wind profile considered, the wind varies 
linearly in the same way as in Shutts and Gadian 
(1999), i.e.: 
 0U U= , V zα= , (23) 

where U0>0 and α>0 are constants. 
Figure 3 shows momentum flux profiles for Ri=0.5 

as a function of dimensionless height αz/U0. The solid 
line corresponds to the present WKB calculations. The 
dotted line corresponds to the result of the model of 
Shutts and Gadian (1999), developed for high Ri. The 
dashed line corresponds to the WKB model modified to 
take into account the finite horizontal dimensions of the 
numerical integration domain. The filled symbols denote 
numerical simulations carried out in very nearly linear 
conditions, and the open symbols numerical simulations 
for Nh0/U0=0.5 (see Teixeira and Miranda 2008 for 
details). As can be seen, the best agreement with the 
linear numerical results is achieved by the limited-area 
WKB model. The results using Shutts and Gadian’s 
(1999) model clearly produce worse agreement 
everywhere. The nonlinear numerical simulations show 
that the drag is enhanced by nonlinear processes (the  
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Figure 3. Normalized momentum flux as a function of 
normalized height for Ri=0.5. Dotted line: Shutts and 
Gadian (1999), Solid line: WKB infinite-area model, 

dashed line: WKB limited-area model, filled symbols: 
linear numerical simulation, open symbols: numerical 

simulation for Nh0/U0=0.5. (a) x component, (b) y 
component. 
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Figure 4. Normalized isentropic surface vertical 

displacement for the linear simulations of Fig. 3 at a 
normalized height αz/U0=1. Solid lines: positive, dashed 

lines: negative. (a) WKB model, (b) numerical model. 
 
corresponding symbols are only presented for 
αz/U0>0.7 due to the presence of the mountain). 

Figure 5 shows the vertical displacement of 
isentropic surfaces for the linear case of Fig. 3, at a 
height αz/U0=1, from the WKB model and from 
numerical simulations. The agreement is quite good, 
namely the number of contours is similar and the shape 
of the pattern only differs slightly. There is an elongated 
‘tail’ in the fields shown in Fig. 4 along the direction of 
the mean wind at the displayed height (thick dashed 
line). This is due to the filtering effect of the critical level. 
 
3.2 Linear wind profile 2 

 
The second linear wind profile to be considered is 

similar to one of those adopted by Teixeira et al. (2004): 
 zUU α−= 0 , 0UV = , (24) 

where, again, U0>0 and α>0 are constants. There  is 
considerably more wind rotation for this profile than for 
the previous one, leading to more substantial 
momentum flux variation with height. 

Figure 5 shows the momentum flux profiles, as a 
function of dimensionless height αz/|U0| for Ri=0.5. 
Again, the best agreement with the linear numerical  
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Figure 5. As Fig. 3, but for the linear wind profile 2. 

 
results is achieved by the limited-area WKB model. The 
infinite-area WKB model overestimates the momentum 
flux slightly, especially at larger heights, while the model 
of Shutts and Gadian (1999) overestimates it more 
severely, and especially near the surface. Nonlinear 
results show, again, a momentum flux enhancement for 
the y component, but a decrease in magnitude for the x 
component. This is probably related with the fact that 
the x momentum flux component changes sign as 
height increases. 

Figure 6 shows the vertical displacement of 
isentropic surfaces for the linear case of Fig. 5, at a 
height αz/|U0|=1, from the WKB model and from the 
numerical simulations. There is a reasonable degree of 
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Figure 6. As Fig. 4, but for the linear wind profile 2, and 

αz/|U0|=1. 
 

agreement, but in the numerical simulations the ‘tail’ in 
the field which exists along the wind direction is 
considerably more spread laterally than in the analytical 
result. This is probably a result of spurious diffusion, due 
to the finite resolution of the numerical simulations. 
 
3.3 Wind that turns with height 
 
The third and final wind profile to be considered 
corresponds to a wind that turns with height maintaining 
its magnitude (cf. Teixeira et al. 2004), 
 0 cos( )U U zβ= , 0 sin( )V U zβ= , (25) 

where U0>0 and β>0 are constants. 
In Fig. 7, the momentum flux can be seen as a 

function of normalized height βz/π.  Since the surface 
drag is larger than for a linear wind profile (increasing as 
Ri decreases and therefore being larger than its value 
without shear), the momentum flux predicted by the 
WKB model is also larger than that predicted by the 
model of Shutts and Gadian (1999). The x component is 
in quite good agreement (either for an infinite area of for 
a limited area) with the linear numerical simulations, 
except near the surface, where it somewhat 
underestimates the numerical results. At βz/π=1, where 
the wind has turned by an angle of π, all wavenumbers 
in the wave spectrum have been filtered by critical 
levels. This leads the x momentum flux to become 
slightly negative. This feature is also well-captured by  
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Figure 7. As Fig. 3, but for a wind that turns with height. 
 
the WKB model. 

In the nonlinear numerical runs, the momentum flux 
increases considerably, and the agreement with the 
WKB model is not good, but clearly the WKB model 
provides a large improvement upon Shutts and Gadian’s 
(1999) model, which underestimates the x momentum 
flux much more severely. The prediction of the y 
component of the momentum flux is rather worse, with 
the analytical models being in particular unable to 
capture its non-zero value at the surface. This problem 
is inherent to the WKB approximation. 

 In Fig. 8, the vertical displacement of isentropic 
surfaces is shown at the height βz/π=1/3. Again, there is  

 

-10 -8 -6 -4 -2 0 2 4 6 8 10

x/a

(a)

-10

-8

-6

-4

-2

0

2

4

6

8

10

y/
a

 

-10 -8 -6 -4 -2 0 2 4 6 8 10

x/a

(b)

-10

-8

-6

-4

-2

0

2

4

6

8

10

y/
a

 
Figure 8. As Fig. 4, but for a wind that turns with 

height, and βz/π=1/3. 

some resemblance between the analytical and the 
numerical results, although not as close as, for example, 
in Fig. 4. 

 
4. CONCLUDING REMARKS 
 

Momentum flux profiles accurate to second order in 
a small perturbation parameter were calculated using a 
3rd order WKB approximation, for stratified flows with 
directional shear over a circular mountain. These 
calculations complement those presented by Teixeira et 
al. (2004) for the surface mountain wave drag. The 
explicit form of the momentum flux expressions was 
obtained through contour integration methods, and is 
given in terms of simple 1D integrals. The momentum 
flux divergence (which corresponds to the drag force 
acting on the atmosphere) can be provided in closed 
analytical form (not shown). 

The momentum fluxes obtained from the WKB 
model were compared, for three idealized wind profiles, 
with the results of numerical simulations, in linear and 
weakly nonlinear conditions. The WKB model 
considerably improves the predictions of the model of 
Shutts and Gadian (1999) (developed for high Ri), for Ri 
as low as 0.5, especially when the finite horizontal 
extent of the domain is taken into account. In nonlinear 
conditions, the momentum fluxes are amplified 
somewhat, and differ more from the theoretical 
predictions. However, they remain closer to the results 
of the improved model presented here than to results of 
previous models. 
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