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1.   INTRODUCTION* 

 
In idealized studies of mountain waves, particularly 

those addressing critical levels, wind profiles that vary 
linearly are often assumed as a crude approximation to 
real wind profiles with shear (e.g. Booker and Bretherton  
1967). That is the case also in the study of Grubišić and 
Smolarkiewicz (1997), where the surface gravity wave 
drag is calculated. In reality, wind profiles that vary 
linearly near the surface must be bounded aloft, so the 
shear must change at some height. Shear variations are 
likely to affect the drag, through multiple reflections of 
the wave energy between the surface and the levels 
where they occur (Teixeira et al. 2005). Most studies 
have considered relatively weak shear (i.e. flow at 
relatively high Richardson number, Ri), but  that is not 
the case of Grubišić and Smolarkiewicz (1997), where 
the drag variation is studied for Ri down to 1/4. For this 
range of Ri, both shear discontinuities and critical levels 
are likely to strongly affect the surface drag. At low Ri, 
the effect of critical levels can no longer be treated as 
total wave absorption.  

In the present study, the effects of shear 
discontinuities and critical levels are addressed using 
linear theory and numerical simulations for relatively low 
Ri. We consider inviscid, non-rotating, hydrostatic and 
uniformly stratified atmospheric flow over 2D and 3D 
mesoscale mountains. In order to isolate the effects 
under consideration, very simple idealized wind profiles 
are adopted: the wind velocity is assumed to vary 
linearly up to a certain level, and to be constant above it.  

Shear discontinuities may either enhance or reduce 
the surface drag, depending on whether they lead to  
constructive or destructive interference between upward 
and downward propagating waves. The surface drag is 
also highly sensitive to the existence (or not) of critical 
levels between the surface and the shear discontinuity. 
The cases of unidirectional shear and directional shear 
flow must be distinguished. While for unidirectional 
shear, all wavenumbers in the mountain waves' 
spectrum either have or do not have a critical level, for 
directional shear some wavenumbers have critical levels 
whereas others do not. Cases with unidirectional shear 
are treated here using a 2D ridge, whereas cases with 
directional shear require 3D orography. In the latter 
situation, a circular mountain is adopted for simplicity.   
 Apart from their intrinsic fundamental interest, the 
results reported in this study are also relevant for the 
improvement of drag parameterization schemes, since 
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these schemes generally do not take vertical wind shear 
into account, 
 
2.  THEORETICAL MODEL 

 
 We depart from the hydrostatic version of the 
Taylor-Goldstein equation,  
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where the wind profile curvature term has been 
neglected, since only piecewise-linear wind profiles will 
be considered. ŵ  is the Fourier transform of the vertical 
velocity perturbation, N is the Brunt-Väisälä frequency of 
the background flow (assumed constant), (U(z),V(z)) is 
the background wind velocity, (k,l) is the horizontal 
wavenumber of the internal gravity waves, and the 
primes denote differentiation with respect to height, z. 
 The background wind profile is assumed to have 
the form: 

 0 0 1, ifU U z V V z z zα β= + = + < , 

 1 0 1 1 0 1 1, ifU U U z V V V z z zα β= = + = = + > , (2) 

where U0, V0, α and β are constants. So the wind varies 
linearly below the height z1, and is constant above that 
height.  For this wind profile, the solution to (1) in the 
lower layer is 
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where γ and δ are constants, s=sign(αk+βl) and 
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In the upper layer, on the other hand, the solution is: 
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where ε is a constant. In (3), the two terms correspond 
to waves whose energy propagates upward and 
downward, while in (5) only upward propagating waves 
are considered, since the source of the waves is at the 
surface. In order to determine the constants γ, δ and ε, it 
is necessary to note that both ŵ  and the Fourier 
transform of the pressure perturbation associated with 
the waves, 
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(where ρ0 is a constant reference density) must be 
continuous at z=z1. Additionally, the boundary condition 
at the surface is 
  0 0

ˆˆ ( 0) ( )w z i U k V l h= = + , (7) 



where ĥ  is the Fourier transform of the terrain 
elevation. These conditions totally define the solution to 
the present mountain wave problem.  
 The drag produced by mountain waves is given by 
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for a 3D mountain. For a 2D mountain, all the previous 
equations (apart from (8)) remain valid as long as it is 
noted that in this case l=0, V0=0 and β=0. Then the drag 
per unit length in the spanwise direction is 
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where now all Fourier transforms must be understood 
as 1D instead of 2D.  
 In order to address the effects of shear 
discontinuities and critical levels only, the values of the 
drag given by (8) and (9) will be normalized by the 
corresponding values due to a constant wind equal to 
the surface wind. 
  
3.  RESULTS 
 
The variation of the normalized drag with Ri will be 
studied first for unidirectional shear flow over a 2D ridge. 
This situation is the simplest to interpret. Then, results 
will be presented for directional shear flow over a 
circular mountain. A circular mountain is chosen 
because it possesses an isotropic spectrum that is 
particularly convenient to isolate the effect of critical 
levels.  Additionally, the 2D and circular geometry have 
the advantage of making the normalized drag 
independent of the detailed shape of the orography. 
This is only valid for hydrostatic and non-rotating flow, 
such as considered here. All wind profiles used are of 
the type given by (2). 
 
3.1 Unidirectional shear flow over a 2D ridge 
 
We first consider the wind profile (2) with V0=β=0 and 
flow over a 2D ridge aligned in the y direction (l=0). If 
U0>0, two situations are possible: forward shear (α>0), 
or backward shear (α<0). In the case of backward 
shear, it will be assumed that a critical level exists, i.e. 
U=0 at some height below z1. (the case of backward 
shear without a critical level is identical, in terms of drag 
behavior, to the case of forward shear).  
 Figure 1 shows the normalized drag as a function of 
Ri-1 for different values of the ratio of the wind speed at 
z1 and at z=0, |U1/U0|. In Fig. 1a the case of forward 
shear is displayed, whereas in Fig. 1b, the shear is 
backward. The lower and upper solid lines correspond, 
respectively, to the exact linear drag (Smith 1986) 
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and to the drag calculated using a WKB approximation 
(Teixeira and Miranda 2004) for a shear that extends 
indefinitely: 
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Figure 1. Normalized drag as a function of Ri-1 for 

unidirectional flow over a 2D ridge, for various values of  
|U1/U0|. (a) Forward shear, (b) backward shear. 
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 It can be seen that, in the case of forward shear, 
the behavior of the drag differs markedly from that 
predicted for an infinite shear layer. The drag oscillates, 
attaining maxima at low Ri that can be considerably 
larger than predicted by previous models. By contrast, 
for backward shear, the drag has no oscillations and 
stays much closer to the predictions of both exact theory 
and WKB theory for an infinite shear layer.  
 This behavior is explained by Fig. 2, where the 
reflection coefficient, defined as  

  R
γ
δ

= , (12) 

is presented as a function of Ri.1. For forward shear, R 
decreases gradually to zero as Ri.1 decreases from 4 to 
0. This is due to the smoothing of the shear discontinuity 
at z1. On the other hand, for backward shear, R decays 
much faster. This is due to wave absorption at the 
critical level below z1. Hence, for forward shear, 
resonance is produced by upward and downward 
propagating waves in the layer below z1. This leads to 
the observed drag oscillations.  For backward shear, 
these oscillations are largely precluded. At Ri=0.5, for 
example, almost all of the wave energy is absorbed, 
which manifestly is not the case for forward shear. 
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Figure 2. Reflection coefficient as a function of Ri.1. 

 
 The foregoing results are linear. We also carried 
out numerical simulations to see in what way these 
results changed for more realistic mountain heights (see 
Teixeira et al. 2008 for details). A dimensionless 
mountain height of Nh0/U0=0.5 was considered  (where 
h0 is the dimensional height). This corresponds to 
relatively weak nonlinearity. Figure 3 shows theoretical 
results (lines) and numerical results (symbols) for one 
particular value of |U1/U0|=4. The nonlinear results are 
denoted by the open squares. It can be seen that, in 
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Figure 3. Normalized drag as a function of Ri.1 for 

|U1/U0|=4 in linear and nonlinear conditions. (a) Forward 
shear, (b) backward shear. 

 
 
nonlinear conditions, the drag is considerably amplified, 
but in different ways for forward and backward shear. 
For forward shear, the drag is amplified especially at low 
Ri, while for backward shear, it is amplified particularly 
at high Ri (but very little at Ri-1=0). This leads to an 
apparent singularity in the drag variation at high Ri, 
which probably can be attributed to nonlinear critical 
level dynamics (Teixeira et al. 2008). 
 
3.2 Directional shear flow over a circular mountain 
 
 Unidirectional flow over a 3D mountain is affected 
essentially in the same way as unidirectional flow over a 
2D mountain, with the difference that the waves are now 
dispersive. Therefore, the drag behaves essentially as 
in Fig. 3 (with a somewhat smaller degree of 
amplification in the case of Fig. 3a). 
 The situation is different for flows with directional 
shear, since in that case a critical level is not simply a 
level where the background wind velocity vanishes, but 
rather a level where 
  0Uk Vl+ = . (13)  
As is clear from (13), critical levels are located at 
different heights for each wavenumber, which means 
that, as the background wind rotates, there is a 
continuous distribution of these levels. Then, instead of 
having all or none of the wave spectrum filtered by a 
critical level, there are parts of the wave spectrum that 
are filtered and others that are not. This leads to a drag 
behavior that is intermediate between that of Fig. 1a or 
Fig. 3a and that of Fig. 1b or Fig. 3b. 
 First we will consider a background wind profile 
that, below z1, is similar to that adopted by Shutts and 
Gadian (1999). This corresponds to taking V0=0, α=0, 
U0>0, β>0 in (2). Figure  4 shows the drag variation with 
Ri-1 for this wind profile for various values of |U1/U0|. 
Symbols are as in Fig. 1. Both components of the drag 
have oscillations with Ri, but do not reach as high 
values as in Fig. 1. Interestingly, due to its oscillations, 
the y component of the drag becomes negative, for 
example at Ri=0.5. This means this component of the 
drag opposes the corresponding wind component, i.e., 
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Figure 4. Normalized drag as a function of Ri-1 for the 
wind profile of Shutts and Gadian (1999) over a circular 
mountain for various values of |U1/U0|. (a) x component, 

(b) y component. 
 

the mountain is accelerating the wind.  
The reason for the lower amplitude of the drag 

oscillations is the following. For the assumed wind 
profile, the angle spanned by the wind velocity is at 
most π/2. Since all wavenumbers that are perpendicular  
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Figure 5. Normalized drag as a function of Ri.1 for 
|U1/U0|=4 in linear and nonlinear conditions. (a) x 

component, (b) y component. 

 
to the wind are filtered by critical levels, this means that 
critical levels exist for at most a range of wavenumber 
angles of π, or half of the total spectrum. This leads to 
partial filtering of the mountain wave spectrum, which, 
while retaining the drag oscillations, somewhat reduces 
their amplitude. 
 In weakly nonlinear conditions (Nh0/U0=0.5) the 
drag is somewhat amplified, but not so much as in Fig. 
3. This is due, on the one hand to the wave dispersion 
inherent to any 3D flow, and on the other to the partial 
wave filtering mentioned above. 

Finally, we consider a wind profile that, below z1, is 
similar one of those used by Teixeira et al. (2004). This 
corresponds to setting V0=U0>0, β=0 and α<0 in (2). 
This wind profile has the property of spanning, at most, 
an angle of 3π/4, which means that the waves filtered 
from the complete spectrum span an angular range of at 
most 3π/2, or 3/4 of the possible maximum range. This 
situation therefore corresponds to considerably more 
complete wave filtering. 
 Figure 6 shows the drag as a function of Ri-1 for the 
same values of |U1/U0| as employed in Figs. 1 and 4.  
The drag now oscillates much less than in either Fig. 1 
or Fig. 4, especially the x component. This is due to the 
fact that only abut 1/4 of the wave spectrum reaches the 
shear discontinuity at z1 without passing through a  
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Figure 6. Normalized drag as a function of Ri-1 for the 

wind profile of Teixeira et al. (2004) over a circular 
mountain for various values of  |U1/U0|.(a) x component, 

(b) y component. 
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Figure 7. Normalized drag as a function of Ri.1 for 
|U1/U0|=4 in linear and nonlinear conditions. (a) x 

component, (b) y component. 
 

critical level. This relatively small part of the spectrum is 
responsible for the remaining drag oscillations, 
particularly visible in Fig. 6b. Otherwise, the drag 
variation is relatively close to the predictions valid for an 
infinite shear layer, both derived exactly or using a WKB 
approximation. 
 In nonlinear conditions, again for Nh0/U0=0.5, both 
components of the drag are considerably amplified for 
all non-zero values of Ri-1, but less than in Fig. 3. An 
apparent singularity at high Ri, where the drag changes 
from its relatively modest increase at Ri-1=0 to a larger 
increase at Ri-1≠0 is also seen in this case, but the 
transition is more smoothed. This is consistent with the 
fact that now only a part of the spectrum (that which 
passes through critical levels) is affected by this 
process. 
 
4.  CONCLUDING REMARKS 
 
It was seen that, in an atmosphere where the wind 
varies linearly below a certain height and becomes 
constant aloft, the behavior of mountain wave drag is 
considerably more complicated than in an (idealized) 
atmosphere where the shear extends indefinitely. For 
unidirectional shear flow, differences only depend on 
whether there is a (total) critical level or not. When there 
is no critical level (e.g. for forward shear), the drag 
variation as a function of Ri is characterized by strong 

oscillations, and bears no resemblance to the drag for a 
similar shear that extends indefinitely. This is caused by 
resonance associated with interference between waves 
whose energy propagates upward and downward 
beneath the shear discontinuity. For backward shear 
with a critical level, the drag oscillations are nearly 
absent, and the drag stays close to results for an infinite 
shear layer, either exact or derived using a WKB 
approximation. This is due to the filtering, or absorbing, 
effect of critical levels. 

For directional shear flows over a circular mountain, 
it was seen that the greater the amount of critical levels 
that the waves encounter, the closer the drag is to its 
predicted value for a shear of unlimited extent. The 
dependence of the drag on the fraction of wavenumbers 
filtered by critical levels creates an asymmetry between 
flows with positive and negative shear. This asymmetry 
is not predicted by linear theory for a shear extending 
indefinitely in hydrostatic conditions. Since many 
theoretical studies on gravity waves assume constant-
shear flows, the present study highlights the importance 
of taking into account the shear discontinuities, or shear 
variations, that always exist in practice.  

Nonlinear effects are found to considerably amplify 
the drag, but many qualitative features of the linear drag 
behavior remain. However, differences between linear 
and nonlinear results are substantially enhanced by the 
existence of shear, being much more pronounced than 
for a constant wind.  
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