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1. INTRODUCTION 
 
 With a simple, axisymmetric, constant-
viscosity model of tornadogenesis in a closed 
domain, Davies-Jones (2008; hereafter D-J) 
demonstrated how some tornadoes might form 
by Fujita's (1975) recycling mechanism. The 
model is without buoyancy forces because the 
atmosphere is neutrally stratified and there is 
neither evaporative cooling nor condensational 
warming.  The initial condition (IC) consists of a 
Beltrami flow with a central updraft and mid-level 
mesocyclone, surrounded by an anticyclonic 
downdraft.  The initial flow if left unperturbed 
decays slowly without changing pattern.  Solid 
'precipitation' particles are introduced above the 
updraft through the top boundary and fall at a 
constant speed in an annular rain curtain near 
the updraft/downdraft interface.  In still air, the 
particles take 4 units of nondimensional time t 
(about 23 min) to reach the ground.  The flow 
evolution is shown in D-J's Figs. 2-6. The 
associated precipitation-drag forces locally 
enhance the downdraft.  The augmented 
downdraft and its outflow towards the axis 
transport air with moderately high angular 
momentum (AM) downward and inward, leading 
first to the development of a tornado cyclone on 
the ground, and then to formation of an intense 
tornado at the foot of the axis as the corner flow 
of the tornado cyclone collapses. 
 The model uses unrealistic "mixed" 
boundary conditions, namely no slip for the 
azimuthal (tangential) motion and no stress for 
the radial-vertical motion to accommodate the 
Beltrami flow as a solution of the numerical 
model (Shapiro 1993).  Note however that 
Lewellen (1993 p. 24) did advocate using mixed 
conditions at the ground (no slip on v, the 
tangential wind, and free slip on u, the radial 
wind) in tornado models if a constant eddy 
viscosity is used because of the strong almost 
radial flow into the vortex in the lower part of the 
turbulent boundary layer of a tornado. 
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Compared to a laminar boundary layer, a 
turbulent boundary layer has much sharper 
Compared to a laminar boundary layer, a 
turbulent boundary layer has much sharper 
gradients near the surface.  Lewellen stated that 
a constant-viscosity model with a no-slip 
condition applied to u as well as v produces flow 
into the vortex that is weaker, deeper, more 
elevated and less radial than would occur in 
nature.  At the other extreme, free-slip 
conditions on both u and v would eliminate the 
boundary layer and an end-wall vortex would not 
form. 
 Davies-Jones (2008) investigated the effect 
of the lower boundary condition (LBC) on the 
intensity of the tornado by performing 
simulations with three different LBCs, namely 
the mixed condition, free slip on both u and v, 
and no slip on both u and v. With a free-slip LBC 
a weak tornado cyclone develops at the surface 
even without rain. Davies-Jones (2008) used a 
modified IC that satisfied all three LBCs.  Here 
the unmodified Beltrami IC is used because the 
flow instantly adapts to the boundary conditions, 
the results are basically the same, and the 
unmodified IC has certain advantages 
concerning physical interpretation of the results. 
 The mixed condition allows the strong, 
almost radially inward, flow next to the ground 
that occurs in vortices with turbulent boundary 
layers.  An intense tornado develops in the form 
of a supercritical endwall vortex with an axial jet 
(Fiedler and Rotunno 1986).  Measures of the 
near-surface intensification of this vortex relative 
to the tornado cyclone aloft, and the relative 
strengths of the maxima in the three wind 
components agree well with theoretical 
predictions (Fiedler and Rotunno 1986) and 
values for some numerically simulated turbulent 
vortices (Lewellen et al. 2000). 
 When the free-slip condition is used, the 
centrifugal force is unreduced near the ground, 
and, as the air spins up, is able in time to 
balance the inward pressure-gradient force.  
This balance occurs on the tornado-cyclone 
scale, not the mesocyclone scale, so a tornado 
cyclone still forms.  Its central downdraft quickly 
reaches the ground, and produces a two-celled 
vortex structure with a widening inner cell.  Its 
maximum tangential wind is 77% of the speed 



 

 

limit (Fiedler 1993, 1994), as corner flow 
collapse (CFC; Lewellen and Lewellen 2007) on 
the tornado-cyclone scale does not occur.  The 
radial inflow and the maximum AM advection are 
much weaker in this case.  The tornado cyclone 
does not have the frictional interaction with the 
ground that it needs to produce a strong 
tornado.  It is significant however that a tornado 
cyclone forms even without interaction with the 
ground.  In this model at least, the near-ground 
mesocyclone is just a passing phase during the 
collapse. 
 An end-wall vortex forms also with the no-
slip LBC.  However, it is considerably weaker 
than with the mixed LBC because of the reasons 
given by Lewellen (see above), and because the 
contours of AM do not descend as far.  
Consequently, the tornado develops slowly.  It is 
stronger than the vortex in the free-slip case 
because the maximum inflow, which is now just 
above the ground, moves inward further and 
drives air with relatively high AM closer to the 
axis.  In the simulations, the viscosity is low 
enough that this effect outweighs the loss of AM 
owing to the frictional torque (Rotunno 1979, 
Howells et al. 1988). 
 The purpose of this paper is to develop the 
conditions for CFC in more detail than in D-J. 
 
2. CONDITIONS FOR CORNER FLOW 
COLLAPSE 
 
 At the surface, the ring of maximum inflow 
(which is a minimum of u) in the undisturbed 
Beltrami flow is stationary and slowly fills owing 
to viscous decay.  When rain is introduced into 
the model and the mixed LBC is applied, this 
minimum of u moves inwards and deepens and 
corner flow collapse occurs.  The following 
analysis establishes conditions for this process 
to occur.  Since there is no surface inflow with 
the no-slip LBC, the method only applies to the 
mixed and free-slip LBCs.  Comparison of these 
two cases is of considerable interest, however, 
because they produce the opposite extremes; 
the corner flow of the tornado cyclone collapses 
the most with the mixed LBC and does not 
collapse with the free-slip LBC. 
 Let ρ(t) be the radius of maximum inflow as 
a function of time t.  According to Petterssen's 
formulas (Petterssen 1956, pp. 48, 51), the 
minimum of u moves with the speed 
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and fills at the rate ∂u/∂t|ρ where r is the radial 
coordinate and the subscript ρ denotes 

evaluation at the minimum.  Along the ground (z 
= 0), the nondimensional radial equation of 
motion with Rayleigh friction is 
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where σ is the dry static energy (proportional to 
p2/7 in the dry adiabatic atmosphere), p is 
pressure, −∂σ/∂r is the radial pressure gradient 
force (RPGF), M ≡ vr is angular momentum, and 
λ is a constant.  The individual terms in (2) are: 
T, the tendency of u; A, the radial inertial force 
(excluding the centrifugal force); P the RPGF; C 
the centrifugal force; and F friction (either 
Rayleigh friction or viscous force). Note that an 
incompressible viscous Beltrami flow satisfies 
this equation because its viscous force reduces 
to Rayleigh friction.  From (2), the minimum of u 
(where A = 0) fills at the rate 
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It deepens if P + C + F is negative at its radius 
(Fig. 1). This requires the pressure-gradient 
force to be inward and the dominant force at r = 
ρ (Pρ < 0; |Pρ| > Cρ + Fρ) because the centrifugal 
force is always outward and the Rayleigh friction 
force (and generally the viscous force as well) is 
also > 0 at the minimum since uρ < 0. 
 By differentiating (2) with respect to r, we 
obtain 
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 After substituting for the partial derivatives of 
u, the motion formula (1) becomes 

  

c
!
= u

!
"

#P / #r

#2
u / #r

2

!

"
#C / #r

#2
u / #r

2

!

"
#F / #r

#2
u / #r

2

!

$ % & ' (

           (5) 
where ∂2u/∂r2 > 0 at the minimum and the terms 
are labeled in the second row.  For the minimum 
to move inward, there has to a greater net 
inward force on the inner (axis) side of the 
minimum than on the outer side so that the 
differential of the net force is positive at r = ρ 
(Fig. 1).  The inertial force by itself moves the 
minimum radially inward at the advection speed 
uρ.  The last three terms describe the 
propagation of the minimum.  The friction term Φ 
has almost no influence on the motion of the 
minimum and can be omitted from (5) because 



 

 

∂F/∂r vanishes at the minimum for Rayleigh 
friction and is small there in the simulations. 
 First consider simulations that use the mixed 
condition so that C = 0 at the ground and 
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For the undisturbed Beltrami flow, cρ = 0 
because A + P = 0.  The u minimum slowly fills 
because Fρ > 0.  For the simulation with rain, the 
u minimum hardly moves and changes little from 
t= 0 to t = 4 (Fig. 2).  It then moves steadily 
inwards and deepens until t = 6, the time that the 
tornado, which forms at t = 5.4, is at its peak 
intensity.  From (6) the minimum moves inward 
slower than the advection speed if 
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The evolutions of the terms in (6) are shown in 
Fig. 3.  The magnitudes of both α, the inward 
advection of the inflow maximum, and Π, the 
propagation owing to the differential of the 
pressure force at the inflow maximum, grow 
rapidly with time during the genesis and 
intensification of the tornado.  However, the 
inward motion of the maximum inflow, τ, is 
relatively slow because α is nearly balanced by 
Π.  This in consistent with (7).  The motion 
owing to the differential friction term, Φ, is small, 
as claimed above 
 Deepening of the u minimum starts as 
precipitation reaches the ground (Fig. 4) owing 
to lower pressure on the inner side than on the 
outer side of the minimum [term P in (2)].  At the 
minimum the friction force F is outward and thus 
acts to fill the minimum.  Because it is weaker 
than the pressure force there, the u minimum 
deepens.  The inertial force A at the minimum 
should vanish at all times, but becomes nonzero 
during the tornado owing to numerical errors in 
the model's diagnostic computations when 
gradients become large. 
 More physical insight can be gained from a 
dynamical rather than kinematical approach.  In 
(6), A and A + P can be replaced by −∂k/∂r and 
−∂B/∂r, respectively, where k ≡ u2/2 is the 
kinetic-energy density (hereafter KE) at the 
surface and B = σ + k is the surface Bernoulli 
function (sum of static and kinetic energies).  
Then (6) becomes 
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where −∂k2/∂r2|ρ  is positive.  Therefore, the 
minimum moves inwards if ∂B2/∂r2|ρ < 0.  In the 

Beltrami flow, the Bernoulli function is zero 
everywhere with the KE exactly cancelled by 
negative static energy.  In the rain simulation 
with the mixed LBC, the rain-induced downdraft 
descends to the surface and adds KE to the 
surface flow in its vicinity and also adds static 
energy through the stagnation-high effect.  
Consequently, the surface Bernoulli function B 
increases in this region.  This is evident in Fig. 5, 
which is at a time (t  = 4.5) when the 
mesocyclone is the only vortex present (the 
tornado cyclone forms at t = 5).  The expanding 
downdraft has constricted the updraft, causing 
the mesocyclone to contract, spin up, and 
extend downward.  The increased ‘spin forcing' 
from above (Davies-Jones 2002) lowers the 
surface pressure near the axis.  The KE is zero 
at the stagnation point (r, z) = (0, 0) so B is 
negative there.  The surface static energy is 
lowest near the maximum inflow and mostly 
cancels the KE in this region.  The radius of 
maximum inflow is moving inward because it is 
in a region where d2B/dr2 is negative. As 
previously discovered, the radius of maximum 
inflow moves inward at a speed that is slower 
than the advection speed because the inward 
pressure-gradient force is larger on the outer 
side (r > ρ) of the maximum inflow (Fig. 3), and 
the maximum inflow is intensifying because it is 
in a region where the radial pressure-gradient 
force is inward (Fig. 4). 
 When the LBC is free, the (never inward) 
centrifugal force enters into the equations for 
surface flow, which consist of (2) and the 
following equation for tangential flow:  
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where Fv is the azimuthal component of friction.  
In the simulation with the free LBC, the 
tangential winds in the tornado cyclone reach 
their maximum strength (0.77 times the speed 
limit) aloft at t = 4.6.  To understand why a 
strong tornado does not develop in this case, we 
need to consider first the evolution of the v 
maximum.  From (9) and Petterssen's formulas, 
we find that the v maximum intensifies at the 
rate 
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and moves with the speed 
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where X(t) is the radius of maximum tangential 
velocity, Fv is the azimuthal component of 
friction, vx > 0 and −∂2v/∂r2|x > 0.  Thus, the 
azimuthal component of the centrifugal force, 
−uv/r, intensifies the maximum if ux < 0 (as 
expected from conservation of AM) and 
azimuthal friction diminishes it provided that Fv < 
0.  If ux < 0, the maximum moves inward slower 
than the its local advection speed if the sum of 
the azimuthal centrifugal and friction forces 
increase with increasing r at r = X.  [In contrast 
to (5), model diagnostics show that the friction 
term cannot be omitted in the motion formula 
(11).]  In the initial flow, at any given level except 
the top and ground where v ≡ 0, the maximum of 
v is collocated with the minimum of u.  After one 
time step, there is very weak surface tangential 
wind with its maximum collocated with the u 
minimum owing to the LBC ∂v/∂z = 0.  At first, 
the v maximum is advected inward rapidly and 
intensifies owing to the near-conservation of AM.  
By t = 2 the radius of maximum surface 
tangential wind has contracted to tornado-
cyclone scale (Fig. 6) and becomes almost 
stationary until t = 4.75 (Figs. 7 and 8) as its 
inward advection is balanced by outward 
propagation owing to the gradient of azimuthal 
friction at r = X (Fig. 9).  During this time the 
maximum tangential winds increase (Fig. 8) 
because air with higher angular momentum 
reaches the surface and is advected inwards.  
Azimuthal friction acts to decelerate the air, but 
is too small to prevent a net increase in 
tangential wind (Fig. 10).  After t = 5, a central 
downdraft impacts the surface, and its outflow 
widens and weakens the vortex. 
 Now consider the evolution of the u 
minimum. It barely moves before t = 3 (Fig. 11) 
because the radial inertial force stays in balance 
with the RPGF (as in the IC), and the centrifugal 
force is weak at its location.  In the simulation, 
the maximum of v remains on the axis side of 
the u minimum (Fig.11).  Therefore, the 
differential of the radial centrifugal force is 
negative at the u minimum and acts in 
combination with the differential RPGF to reduce 
the inward speed of the minimum far below the 
advection speed (Fig. 12). The u minimum starts 
filling when the surface tangential wind at r = ρ 
becomes super-cyclostrophic (Cρ + Pρ > 0; Fig. 
13).  Thus, when the LBC is free, the surface 
centrifugal force blocks catastrophic collapse of 
the corner flow and prevents a strong tornado. 
 
3. CONCLUSIONS 
 

 In the D-J axisymmetric constant-viscosity 
model of tornadogenesis, the best of the three 
LBCs tested herein is no slip on the tangential 
motion and no stress on the radial flow.  This 
LBC allows the strong almost radial flow that 
occurs in the lower part of the turbulent 
boundary layer of a strong vortex. An intense 
tornado with an axial jet forms by Fujita's 
recycling hypothesis.  Measures of the near-
surface intensification of the tornado relative to 
the tornado cyclone aloft, and the relative 
strengths of the maxima in the three wind 
components agree well with theoretical 
predictions and values for some numerically 
simulated vortices in turbulent flow. 
 When constant viscosity is used in 
conjunction with a no-slip condition (u = v = 0), 
the inflow is weaker, deeper, more elevated and 
less radial than occurs in a turbulent boundary 
layer of a vortex.  An end-wall vortex still forms, 
but with significantly less intensification. 
 When a free-slip condition is used, a strong 
tornado does not form.  The circle of maximum 
tangential wind contracts rapidly to the tornado-
cyclone scale.  This happens only with this LBC.  
Owing to a balance between the radial inertial 
and pressure forces, the radius of maximum 
inflow does not begin to decrease until the 
precipitation-induced downdraft impacts the 
surface.  As the u minimum moves inward, it 
reaches a radius (outside the radius of 
maximum tangential wind) where the centrifugal 
force is large enough to prevent it from 
deepening further.  Since the centrifugal force is 
larger on the axis side of the minimum than on 
the outer side, it prevents further progress of the 
minimum toward the axis.  Thus, the centrifugal 
force at the surface does not allow the corner 
flow of the tornado cyclone to collapse in this 
case. 
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Fig. 1. Schematic showing how wind extrema intensify and move.  The inflow maximum intensifies if the 
radial force at its radius ρ is inward, and it moves inward if there is a greater inward force on its inner side 
than on its outer side. The tangential-velocity maximum intensifies if the tangential force at its radius X is 
in the counterclockwise direction, and it moves inward if there is a larger tangential force in this direction 
on its inner side than on its outer side. 



 

 

 
 
Fig. 2. The surface radial velocity as a function of nondimensional time and radius in the simulation that 
uses the mixed LBC.  The letter ρ marks the position of the minimum radial velocity (maximum inflow) as 
a function of time. 



 

 

 
 
Fig. 3. The velocity c(t) of the surface u minimum as determined by (5) in the simulation that uses the 
mixed LBC.  The letters α, Π, Φ, τ indicate the advection velocity (owing to the radial inertial force), the 
propagation velocities owing to the radial pressure and friction forces, and the net motion. 



 

 

 
 
Fig. 4. The tendency ∂u/∂t|ρ of the surface u minimum as determined by (3) in the simulation that uses the 
mixed LBC.  The letters A, P, F, T indicate the contributions from the radial inertial, pressure, and friction 
forces, and the sum of all the radial forces.  Note that the contribution from the inertial force should be 
zero. 



 

 

 
 
Fig. 5. The Bernoulli function, B(r) = σ + u2/2 (solid), the static energy, σ(r) (short dashes), and the 
specific kinetic energy, k(r) = u2/2 (long dashes), at the surface at t = 4.5 in the simulation with the mixed 
LBC.  The letters on the curve are at the radius of maximum surface inflow. 



 

 

 
 
Fig. 6. Clockwise from top left: Fields at t = 2 of radial, tangential and vertical velocity (u, v, w), static 
energy σ, angular momentum M, and streamfunction ψ in the simulation with the free-slip LBC.  The 
parentheses enclose the minimum value of the field, the minimum contour value, the maximum contour 
value, the maximum value of the field, and the contour interval, respectively, and generally every fifth 
contour is labeled.  Negative contours are dashed. Tick marks are in increments of 0.05R (422.5 m) 
along the ground and H/12 (1 km) along the axis. 



 

 

 
 
Fig. 7. As in Fig, 6 but at t = 4.75, and the .75 contour (dashed) of angular-momentum advection is 
included in the lower middle panel. 



 

 

 
 
Fig. 8. The surface tangential velocity as a function of nondimensional time and radius in the simulation 
that uses the free-slip LBC.  The letters X and ρ mark the positions of the maximum tangential velocity 
and the minimum radial velocity (maximum inflow), respectively, as a function of time. 



 

 

 
 
Fig. 9. The velocity c(t) of the surface v maximum as determined by (11) in the simulation that uses the 
free-slip LBC.  The letters α, Π, χ, Φ, τ indicate the advection velocity (owing to the tangential inertial 
force), the propagation velocities owing to the tangential centrifugal, pressure, and friction forces, and the 
net motion. 
 



 

 

 
 
Fig. 10. The tendency ∂v/∂t|ρ of the surface v maximum as determined by (10) in the simulation that uses 
the free-slip LBC.  The letters A, C, P, F, T indicate the contributions from the tangential inertial, 
centrifugal, pressure, and friction forces, and the sum of all the tangential forces.  Note that the 
contribution from the inertial force should be exactly zero. 
 



 

 

 
Fig. 11. The surface radial velocity as a function of nondimensional time and radius in the simulation that 
uses the free-slip LBC. The letters X and ρ mark the positions of the maximum tangential velocity and 
the minimum radial velocity (maximum inflow), respectively, as a function of time. 

 



 

 

 
 
Fig. 12. The velocity c(t) of the surface u minimum as determined by (5) in the simulation that uses the 
free-slip LBC.  The letters α, χ, Π, Φ, τ indicate the advection velocity (owing to the radial inertial force), 
the propagation velocities owing to the radial pressure, centrifugal and friction forces, and the net motion. 
 
 



 

 

 
 
Fig. 13. The tendency ∂u/∂t|ρ of the surface u minimum as determined by (3) in the simulation that uses 
the free-slip LBC.  The letters A, C, P, F, T indicate the contributions from the radial inertial, centrifugal, 
pressure, and friction forces, and the sum of all the radial forces.  Note that the contribution from the 
inertial force should be exactly zero. 

 



 

 

4. REFERENCES 
 
Davies-Jones, R., 2002: Linear and nonlinear 

propagation of supercell storms. J. Atmos. 
Sci., 59, 3178-3205. 

Davies-Jones, R. P., 2008: Global properties of 
a simple axisymmetric simulation of 
tornadogenesis. Can a descending rain 
curtain in a supercell instigate 
tornadogenesis barotropically? J. Atmos. 
Sci., 65, 2469-2497. 

Fiedler, B. H., 1993: Numerical simulation of 
axisymmetric tornadogenesis in forced 
convection. The Tornado: Its Structure, 
Dynamics, Prediction and Hazards. Geophys. 
Monogr., 79, Amer. Geophys. Press, 41-48. 

Fiedler, B. H., 1994: The thermodynamic speed 
limit and its violation in axisymmetric 
numerical simulations of tornado-like vortices. 
Atmosphere-Ocean, 32, 335-359. 

Fiedler, B. H., and R. Rotunno, 1986: A theory 
for the maximum windspeeds in tornado-like 
vortices. J. Atmos. Sci.,  43, 2328-2340. 

Fujita, T. T., 1975; New evidence from April 3-4, 
1974 tornadoes. Preprints, 9th Conf. on 
Severe Local Storms, Norman, OK, Amer. 
Meteor. Soc., 248-255. 

Howells, P. A. C., R. Rotunno, and R. K. Smith, 
1988: A comparative study of atmospheric and 
laboratory-analogue numerical tornado-vortex 
models.  Quart. J. Roy. Meteor. Soc., 114, 
801-822. 

Lewellen, W. S., 1993: Tornado vortex theory. 
The Tornado: Its Structure, Dynamics, 
Prediction and Hazards. Geophys. Monogr., 
79, Amer. Geophys. Press, 19-39. 

Lewellen, D. C., and W. S. Lewellen, 2007: 
Near-surface vortex intensification through 
corner flow collapse. J. Atmos. Sci., 64, 2195-
2209. 

Lewellen, D. C., W. S. Lewellen, and J. Xia, 
2000: The influence of a local swirl ratio on 
tornado intensification near the surface. J. 
Atmos. Sci., 57, 527-544. 

Petterssen, S., 1956: Weather Analysis and 
Forecasting. Volume I. Motion and Motion 
Systems. 2nd ed., McGraw-Hill, 428 pp. 

Rotunno, R., 1979: A study in tornado-like vortex 
dynamics.  J. Atmos. Sci., 36, 140-155. 

Shapiro, A., 1993: The use of an exact solution 
of the Navier-Stokes equations in a validation 
test of a three-dimensional nonhydrostatic 
numerical model. Mon. Wea. Rev., 121, 2420-
2425.  


