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thunderstorm outflows were attained with attention 
focused on the RFD.  The purpose of this study is 
to document the conditions and variability along 
the RFGF and investigate the presence of pre-
tornadic circulations 1-4 km in size along the 
RFGF and their possible contribution to 
tornadogenesis.  

1. INTRODUCTION AND MOTIVATION 
 

Kinematic boundaries, as defined by 
sharp wind shifts, have been implicated in type-II 
tornadogenesis in numerous studies (e.g., Wilson 
1986; Brady et al. 1989; Roberts and Wilson 
1995).  Pockets of vertical vorticity are typically 
observed along these boundaries, which can then 
be stretched by updrafts to amplify rotational 
velocity.  Vortices of this nature have been 
observed (e.g., Pietrycha and Rasmussen 2004; 
Murphey et al. 2006) and simulated (e.g. Lee and 
Wilhemson 1997a). These pockets of vorticity, 
called misocyclones (Fujita 1981), have a 
spectrum of sizes, ranging from landspouts to dust 
devils, and form in differing environmental 
conditions.  Relatively quiescent boundaries, such 
as those found in the Denver Convergence and 
Vorticity Zone or stationary drylines, produce 
vortices (Pietrycha and Rasmussen 2004).  
Numerical simulations and observations of 
misocyclones also suggest that they can be 
generated on advancing outflow boundaries. The 
rear flank downdraft (RFD) of supercells produces 
an outflow boundary known as the rear flank gust 
front (RFGF).  Conditions along this boundary are 
often conducive for misocyclone formation. 

 
2. METHODOLOGY 
 

To adequately assess the relevance of the 
data collected for this study, SN placements were 
overlaid on WSR-88D reflectivity (Figure 1).  
Those platforms in close proximity of radar-
identified mesocyclones or visually reported 
phenomenon (e.g., funnel cloud) were examined 
in greater detail.  Using the time series collected at 
these platforms, wind discontinuities identifying the 
RFGF are noted while paying special attention to 
higher-order variability within the RFGF zone.  
Concurrent analysis of pressure and temperature 
variability is used to deduce whether a 
misocyclone transversed the platforms.  A 
particularly useful method for identifying rotation is 
observing opposite directional trends in winds at 
adjacent platforms.  For example, if a cyclonically 
rotating misocyclone were to pass between two 
platforms, backing and veering winds would occur 
at the north and south platforms, respectively. 

During the spring of 2008, Texas Tech 
University, in collaboration with the University of 
Michigan, conducted the Multiple Observations of 
Boundaries In the Local Storm Environment field 
project (MOBILE_2008).  Using StickNet (SN), the 
rapidly deployable observation network newly-
developed by Texas Tech, detailed observations 
of the surface thermal and kinematic variability of 
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Radar data, when available, are 
incorporated into the analysis to assist in the 
determination of possible misocyclones. The 
presence of misocyclone-scale vertical vorticity 
can be inferred from couplets in instantaneous 
radial wind velocity and time-to-space converted 
SN observations.  The translation and evolution of 
these vertical vorticity maxima are estimated by 
creating time series of these observations so their 
position and motion relative to developing 
tornadoes can be measured. 
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3. CASE STUDY 
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It should be noted that the storm produced 
a tornado approximately 20 minutes after passing 
through the selected window where one SN probe 
far to the east captured the RFD near the 
developing tornado. 

 
FIG. 3 – PPI Display of reflectivity as observed by 
the DOW radar.  Range rings have 2 km spacing. 
The radar is centered just below center on the 
right. Time of the image is 22:37:45Z.  Time-to-
space conversion for the three platforms 
discussed above is plotted every 10 seconds from 
22:37:00Z to 22:40:00Z.  Numbers in red are 
temperature in Fahrenheit. DOW is stationary 
during this image. Wind barbs are in knots. 
 
4.  SUMMARY AND FUTURE GOALS 
 
 During spring of 2008, MOBILE_2008 
conducted research using StickNet platforms 
developed by Texas Tech.  This instrumentation 
intercepted multiple supercell thunderstorms 
during the course of the project.  Presented here is 
the preliminary analysis of one such deployment 
near Eden, TX on May 14, 2008.  

Additional cases exist and await analysis. 
While much of the current work is preliminary, 
analyzing more cases with the methodology 
defined above will expand the current 
understanding of misovortex dynamics.  Moreso, 
should a sufficient number of misovortex 
observations be found, some conclusions could be 
drawn concerning the thermodynamic and 
kinematic conditions generating misocyclones in 
the supercell environment.  Inferences pertaining 
to the influence of misocyclones in supercell 
tornadogenesis will also be attempted.   

FIG. 2 – A collection of time series from platforms 
102, 222, and 103, from north to south is 
displayed with minutes past 22Z on the x-axis. 
Blue dots represent the instantaneous 
measurements of wind direction.  Notice the 
contrasting backing winds of 102 with the veering 
winds of 222 and 103.  102 and 103 also display 
temperature in Celsius as a function of time. 
Platform 222 displays wind velocity, in knots, and 
is representative of the other two platforms.   

 A complete study of this phenomenon can 
more easily be accomplished in the future with the 
addition of the newly-developed Texas Tech Ka-



band (TTUKa) radars.  Since misocyclones often 
occur in the absence of hydrometeors, the high 
sensitivity of the TTUKa platforms will aid in their 
detection. 

 
FIG. 4 – As in figure 3 except for radial velocity 
(m/s).  Wind barbs are in knots. The white circle 
identifies the area of the "hook" seen in figure 3.  
Some cyclonic shear exists in this area.  A second 
area of shear seems to be nearly collocated with 
the turning of the winds seen in the time-to-space 
plots. 
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