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1. INTRODUCTION 
  

Funded partly by NOAA CSTAR program and in its 
second project year, a real-time storm-scale ensemble 
forecasting experiment has been conducted as part of 
the NOAA Hazardous Weather Testbed (HWT) 2008 
Spring Experiments (Xue et al. 2008; Kong et al. 2008). 
At 4-km horizontal grid spacing, the WRF-ARW-based 
ensemble system, developed at the Center for Analysis 
and Prediction of Storms (CAPS), the University of 
Oklahoma, runs daily for 30 hours from 14 April through 
6 June, for a domain covering most of the continental 
U.S (Figure 1).  

This pilot system consists of ten hybrid perturbation 
members that consist of a combination of perturbed 
initial conditions and various microphysics and PBL 
physics parameterization schemes.  Close collabora-
tions among forecasters and scientists from CAPS, the 
Storm Prediction Center (SPC), the Aviation Weather 
Center (AWC), the Hydrometeorological Prediction 
Center (HPC), the Environmental Modeling Center 
(EMC/NCEP), the National Severe Storms Laboratory 
(NSSL), the NWS Norman Weather Forecast Office 
(WFO), the NWS Southern Region Headquarters, and 
the Pittsburgh Supercomputing Center (PSC) make this 
unprecedented experiment happen. 

Ensemble forecast products are created in real time 
through existing capabilities in the SPC version of the N-
AWIPS system for evaluation by researchers and 
operational forecasters during the experiment. The 
performance of the ensemble forecasts, in terms of 
quantitative skill scores, is evaluated to assess the 
effectiveness of the EFs at storm-scale. This extended 
abstract presents some post-season analysis results. 
Several comparisons of 2008 and 2007 ensemble data 
are also presented. More focus is given to evaluation of 
post-processing techniques that suit for deterministic 
QPF and probabilistic QPF (PQPF) derived from the 
storm-scale ensemble forecasts. 
 
2. EXPERIMENT HIGHLIGHT 
 

As the second year of the three-year project, the 
2008 Spring Program began on 14 April 2008 and 
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ended on 6 June. All experimental forecasts were 
generated with the Weather Research and Forecast 
(WRF) Advanced Research WRF (ARW) model (V2.2), 
as in 2007 experiment (Kong et al. 2007; Xue et al. 
2007). Several major changes from the 2007 
experiment were made for the 2008 season: (1) The 
model domain was enlarged (Figure 1); (2) Daily 30 h 
forecasts were initiated at 0000 UTC, using NAM 12 km 
(218 grid) 00Z analyses as background for initialization 
with the initial condition perturbations for the ensemble 
coming from the NCEP Short-Range Ensemble (SREF); 
(3) available WSR-88D data were assimilated through 
ARPS 3DVAR and cloud analysis package into all but 
one members; (4) Eight members were constructed as 
hybrid with both initial perturbations and physics 
variations. In 2007, only four members were hybrid, and 
no radar data was assimilated.  

The initial perturbations were extracted from the 3 h 
forecasts of eight 21Z SREF members and are scaled to 
their initial perturbation amplitudes. All forecast output at 
hourly intervals were archived at the Pittsburgh 
Supercomputing Center (PSC) Mass storage facility and 
will later be made available to the national weather 
community.  Figure 1 shows the coverage area of the 
model domain, with terrain height info in color shading. 

 
Figure 1. Model domain coverage for 2008 season, with 
terrain height in color shading. 

The daily 30 h ensemble forecasts, for the 
weekdays from Monday through Friday, started at 0000 
UTC and ended at 0600 UTC of the next day. Special 
weekend runs were arranged if it was requested by SPC 
based on the severe weather outlook. The ensemble 
configuration includes ten hybrid members, all of which 
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were run on BIGBEN, a NSF TeraGrid resource (Cray 
XT3) at PSC. Model execution began around 0230 UTC 
(21:30 local time) and finished in about 6-10 hours 

(depending on members and convection activities), 
using about 1000 CPUs, with results being processed 
as they become available.   

 
Table 1. Ensemble member configuration 

member IC LBC Radar data mp_phy sw-phy pbl_phy 

cn 00Z ARPSa 00Z NAMf yes Thompson Goddard MYJ 

c0 00Z NAMa 00Z NAMf no Thompson Goddard MYJ 

n1 cn –  
em_pert 

21Z SREF  
em_n1 

yes Ferrier Goddard YSU 

p1 cn +  
em_pert 

21Z SREF  
em_p1 

yes WSM  
6-class 

Dudhia MYJ 

n2 cn –  
nmm_pert 

21Z SREF 
nmm_n1 

yes Thompson Goddard MYJ 

p2 cn +  
nmm_pert 

21Z SREF 
nmm_p1 

yes WSM  
6-class 

Dudhia YSU 

n3 cn – 
 etaKF_pert 

21Z SREF  
etaKF_n1 

yes Thompson Dudhia YSU 

p3 cn +  
etaKF_pert 

21Z SREF  
etaKF_p1 

yes Ferrier Dudhia MYJ 

n4 cn –  
etaBMJ_pert 

21Z SREF 
etaBMJ_n1 

yes WSM  
6-class 

Goddard MYJ 

p4 cn +  
etaBMJ_pert 

21Z SREF 
etaBMJ_p1 

yes Thompson Goddard YSU 

 
Table 1 outlines the basic configuration for each 

individual members. cn refers to the control member, 
with radar data analysis, c0 is the same as cn except no 
radar data. n1-n4 and p1-p4 are members with initial 
perturbation added on top of cn initial condition, NAMa 
and NAMf refer to 12 km NAM analysis and forecast, 
respectively. ARPSa refers to ARPS 3DVAR analysis 
using NAMa as background. For the eight perturbed 
members, the ensemble initial conditions consist of a 
mixture of bred perturbations coming from the 21Z 
SREF perturbed members (one pair each from WRF-em, 
WRF-nmm, eta-KF, and eta-BMJ) and physics 
variations (grid-scale microphysics, shortwave radiation, 
land-surface and PBL physics). The lateral boundary 
conditions come from the corresponding 21Z SREF 
forecasts directly for those perturbed members and from 
the 00Z 12 km NAM forecast for the non-perturbed 
members (cn and c0). For all members, the long-wave 
radiation schemes are RRTM, the surface physics uses 
Noah scheme, and no cumulus scheme is used (see 
WRF manual for detail description for all physics 
schemes). 

In addition to the SPC’s N-AWIPS system, CAPS 
also makes available a webpage demonstrating the EF 
products (http://www.caps.ou.edu/wx/spc). 
 
3. VERIFICATION OF THE ENSEMBLE SYSTEM 

During the course of the experiment, there are a 
total of 36 days with complete forecasts for all ten 

members. Post analyses and verifications are carried 
out over these complete dates to assess the statistical 
feature and the performance of the ensemble system, 
unless specified in the text and figures.  

Figure 2 shows the domain-mean ensemble spread 
(defined as standard deviation against ensemble mean) 
of some fields, averaged over 36 complete forecast 
dates (covering most of the experiment period from April 
16 through June 6).. It can be seen that the hybrid 
perturbation configuration of the ensemble system 
exhibits reasonable dispersion for the mass-related 
fields such as sea level pressure and 500 hPa 
geopotential height.  For QPF related variables such as 
hourly accumulated precipitation and reflectivity fields 
diurnal pattern is evident, reflecting the quiet morning 
hours (low around 10am) and the active late afternoon 
hours (high around 7pm) for the summer convective 
storm activity (Figure 2c).   

The real-time storm-resolving (or storm-permitting, 
convection-permitting in some literatures) ensemble 
forecasting system offers a unique capability of 
producing quantitative precipitation forecast (QPF), both 
deterministic and probabilistic, at very high temporal and 
spatial resolution. For post-season verification purpose, 
the experimental fine grid (1 km) national radar mosaic 
and QPE products generated by the NSSL/NMQ 
project1  are first interpolated to the 4 km grid model 
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domain and used as verification dataset to verify the 
predicted QPF quantities (1 h accumulated precipitation 
and composite reflectivity).   

.  
Figure 2. Domain-mean ensemble spread (standard 
deviation), averaged over 36 forecast dates. (a) mean 
sea level pressure, (b)) 500 hPa geopotential height, 
and (c) 1 h accumulated precipitation.  

3.1 BIAS score 
In 2007 experiment season, systematically high 

QPF biases (Figure 3b) were observed compared to 
several other storm-scale deterministic forecasts 
produced during the same period by NCAR and NSSL 
(Kain, personal communication). Prior to the 2008 
season, several reruns of the 2007 dates were carried 
out to identify the cause of such high biases. Factors 
considered include model start time, data for lateral 
boundary condition, number of vertical levels, NAM data 
type used (12 km 218 grid vs 40 km 212 grid). It turns 
out the major culprit is the use of 21Z NAM analysis as 
the initial condition in 2007 season, combined with the 
use of 18Z NAM forecast as LBCs (Kong et al. 2007). 
Figure 4 shows an example of BIAS score comparison 
from the reruns of May 6, 2007. Dark black line refers to 
the condition of 2007 season - 21Z NAM analysis 
(NDAS) for IC and 18Z NAM forecast for LBC – with the 
highest BIAS score over the convection active hours. 
The forecast with 00Z NDAS and 00Z LBC (solid red 
line) has the lowest BIAS score. 18Z LBC also 
contributes to elevated BIAS (dash red line). The 
change to initiate ensemble forecasts at 0000 UTC 
using 00Z NAM analysis and forecast as IC background 
and LBCs for the 2008 season helps significantly bring 
down the QPF biases (Figure 3a).  

Figure 3 shows the BIAS scores of 1 h accumula-
ted precipitation exceeding 0.1 in (2.54 mm) for 
individual members and ensemble mean from both 2007 

and 2008 seasons. Other thresholds exhibit similar 
pattern. In spite of the large reduction of BIAS score in 
2008 season, some members (including cn and c0) still 
have maximum BIAS values of close to 2 during 
afternoon hours, pointing to over-prediction of precipita-
tion by some members.  

 

 
Figure 3. BIAS scores of 1 h accumulated precipitation 
�0.1in averaged over all complete forecast dates from 
(a) 2008 and (b) 2007seasons. For 2007 season, CN 
refers to control member, PERT refer to four initial 
perturbation plus physics perturbation, and PHYS refer 
to five physics perturbation only members (Kong et al. 
2007).  

 
Figure 4. BIAS scores of 1 h accumulated precipitation 
�0.1in for the data of May 6, 2007. IC and LBC refer to 
times of NAM analysis for initial condition and NAM 
forecast for lateral boundary condition, respectively. 

a 

b 

c 

a 
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3.2 ETS scores 
The ETS scores are calculated for the criteria of 1 h 

accumulated precipitation � 0.1 in for all members and 
the ensemble mean (Figure 5). Compared to 2007 
season, the unique feature of 2008 experiment is the 
addition of radar data for nine out of ten members. 
Figure 5 indicates that the inclusion of radar data helps 
boost the ETS scores for the initial hours and the 
influence lasts for 12 h. c0 member in 2008 and all 
members in 2007 underscore the nine 2008 members 
with radar data assimilated for the initial 6 h. The radar 
data influence fade away after 12 h.  

The ensemble means in Figure 5 show clear 
outscore to all individual members. However, it should 
be cautious to interpret the phenomena, as described in 
next subsection and in Figure 6 indicating less 
usefulness of ensemble means in high temporal (e.g., 1 
h accumulation) precipitation forecast. 

 
Figure 5. ETS of 1 h accumulated precipitation �0.1in 
averaged over all complete forecast dates from (a) 2008 
and (b) 2007seasons. 

 
3.3 Deterministic QPF from ensemble 

For many desired meteorological variables such as 
sea level pressure, 2 m temperature, 10 m wind etc. 
ensemble mean is a good deterministic quantity derived 
from ensemble forecasting products that can outscore 
forecasts using single model runs. However, owing to 
very high spatial and temporal variance associated with 
precipitation, especially when produced with very high-
resolution model runs like in this case, ensemble mean 
of precipitation field tends to be excessively broad in 
area coverage and too weak in magnitude, and thus is 
not a useful QPF product  (Ebert 2001; Kong et al. 2006; 
Clark et al. 2008). Figure 6a gives an example of 

ensemble mean of 1 h accumulated precipitation in 
comparison with observation (Figure 6d).  

Probability Matching (PM, hereafter) technique was 
demonstrated by Ebert (2001) and Clark et al. (2008) to 
be more useful by assuming that the best spatial 
representation of rainfall is given by the ensemble mean 
and that the best frequency distribution of rainfall is 
given by the ensemble member QPFs.  PM products for 
QPF are produced by first pooling QPF amounts of all 
ensemble members and over all grid points for a given 
forecast lead time and sorted from the highest to the 
lowest to obtain a QPF distribution. The ensemble mean 
QPF amounts are also sorted from the highest to the 
lowest. Then the QPF values from the ensemble mean 
are reassigned using values from the corresponding 
ranks of the QPF distribution. Given N ensemble 
members and M total grid numbers of model domain,  
there are MN elements in QPF distribution versus N in 
ensemble mean. Ebert (2001) picked every N sorted 
element from the QPF distribution pool. We denote it as 
PM Method 1. The problem of this method is that QPF 
values decrease drastically from higher ranks to lower 
ranks at the high end, especially when very high-
resolution storm-permitting models are involved. That 
can cause artificially high peak QPF values if the first 
element of each N segment is picked. Alternately, 
random picking among each N element can be used. 
We exercised a new approach by averaging the N 
elements and assigning the mean to the corresponding 
rank of ensemble mean (denoted PM Method 2).  

Figure 6 shows an example 1 h accumulated 
precipitation using both methods, with simple ensemble 
mean and observation side by side for comparison. Both 
methods demonstrate better spatial coverage and 
amplitudes than the ensemble mean, with PM Method 2 
(111 mm) more close to observation (65 mm) than PM 
Method 2 (132 mm) in maximum values. The ensemble 
mean (Figure 6a) has a maximum value of 28 mm. 
 

 
Figure 6. 1-h  accumulated precipitation from 24 h 
ensemble forecast initiated at 0000 UTC April 23, 2008 
for (a) ensemble mean, (b) PM in method 1, (c) PM in 
method 2, and from (d) NSSL observation, valid at 0000 
UTC April 24, 2008. 

a 

b 

a b 

c d 
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Figure 7 gives a more clear picture on how model 
predicted precipitation maximum values and area 
coverage (represented by grid count) in the forms of 
ensemble mean and PM (both Methods 1 and 2) are 
compared to observations. In this single day example 
(April 23, 2008), ensemble means significantly under-
estimate precipitation intensity and over-estimate 
precipitation area. Both PM methods improve the 
intensity (with Method 2 – PM2 in the figure – more 
close to observation) and lower precipitation area (in 
Figure 7b, PM1 and PM2 are identical). Figure 8 shows 
the same curves (without PM1) as Figure 7 but 
averaged over all available 36 days, confirmed the 
general improvement of using PM against simple 
ensemble mean. The improvement is especially 
significant for area coverage. 
 

 
Figure 7. Maximum 1 h accumulated precipitation (a) 
and grid counts (area coverage) (b) for the 30 h period 
starting at 0000 UTC April 23, 2008. PM1 and PM2 refer 
to PM method 1 and 2, respectively. 

 
Figure 8. Maximum 1 h accumulated precipitation (a) 
and grid counts (area coverage) (b), averaged over 36 
days. PM refers to PM method 2. 

In next several figures, traditional verification scores 
are compared among PM (method 2), ensemble mean, 
and individual members. BIAS scores of PM are 

generally in the middle of individual members and 
perform much better than ensemble means (Figure 9), 
with exception of 0.1in threshold. ETS scores of PM are 
close to ensemble mean for light rain (Figure 10a), with 
small outscore after 15 h, and clearly outscore 
ensemble mean for 0.5in rain threshold (Figure 10b), 
both outscore individual members. Such improvements 
are not reflected in RMSE scores with PM curve just  in 
between individual members (figure not shown). 
 

 
Figure 9. Averaged BIAS scores of 1 h precipitation � 
0.01in (a), 0.1in (b), 0.5in (c), and 1.0in (d). 

3.3 Probabilistic QPF from ensemble 
The ability to generate probabilistic QPF (PQPF) 

from ensemble members is one of selling point for 
ensemble forecasting. However, obtaining skillful and 

a 

b 

a 

b 

a 

b 

c 
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reliable PQPF from high-resolution and storm-permitting 
ensemble forecasts remains a huge challenging task, 
especially for high temporal PQPF such as 1 h 
accumulated precipitation as compared to 12 h, 24 h or 
even longer period of accumulation. 
 

 
Figure 10. ETS scores of 1 h precipitation � 0.01in (a 
and 0.5in (b). 

 
During the course of Spring Experiment, various 

probabilistic QPF forecast variables were derived by 
using simple relative frequency among ensemble 
members for specified thresholds. Figure 11 shows an 
example probability map produced in quasi real-time of 
the 24 h forecast of 1 h accumulated precipitation 
exceeding 0.1 in, valid at 0000 UTC April 24, 2008 
(Figure 6d is the corresponding observation).  

Post-season verification of these simple PQPF are 
conducted by means of verification rank histogram 
(Hamill and Colucci 1997) and reliability diagrams. 
Figure 12 presents 24 h and 30 h verification rank 
histogram charts for the 1 h accumulated precipitation, 
averaged over the complete 36 day dataset. Small right-
tilting and U-shape can be seen, indicating some degree 
of overprediction of precipitation and underdispersion. 
But in general, the verification rank histograms are quite 
flat. 

Figure 13 shows reliability diagrams, with both 2007 
and 2008 data presented, of two forecast lead-time and 
thresholds of 1 h accumulated precipitation. Even 
though 2008 ensemble data show improvement over 
2007, both years feature reliability lines quite away from 
(below) the diagonal line (perfect reliability), indicating 
much less ideal PQPF for 1 h accumulated precipitation. 
Verification of longer period accumulated precipitation 
PQPFs may show different performance and are the 
next set of analysis tasks. Bias-correction and various 
calibration procedures are also called into attention for 
post-processing of ensemble forecasts to improve skills 
and reliability/resolution of PQPFs. 

 
Figure 11. Probability of 1 h accumulated precipitation � 
0.1in for the 24 h forecast valid at 0000 UTC April 24, 
2008. 

 

 
Figure 12. Verification rank histogram of 1 h accumu-
lated precipitation for the forecast hours of (a) 24 h and 
(b) 30 h. 

 
3.3 PQPF and bias correction 
Many researches demonstrated the merit and success 
in post-processing ensemble forecasting data through 
bias-correction and various calibration techniques to 
produce PQPF with improved skills and reliabilities for 
24 h accumulated period and longer and over very 
coarse grids (e.g., Hamill and Colucci 1997; Eckel and 
Walters 1998). Post-processing high-resolution PQPF 
for periods shorter than 24 h have not been examined 
until recent (Stensrud and Yussouf 2007; Yussouf and 
Stensrud 2008).  In the two journal papers last cited,  
Stensrud and Yussouf (2007, 2008) employed a simple 
binning technique to remove bias of 3 h accumulated 
precipitation from a multimodel short-range ensemble 
forecasting system, using past 12 days as a training 

a 

b 

a 

b 
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period, and produced significantly more skillful and 
reliable PQPFs than the raw forecast  probabilities. 
However, the inclusion of zero observation in populating 
QPF bins leads to somewhat noisy precipitation field 
after adjustment, which in turn leads to noisy probability 
maps and irregular (noisy?) verification rank histogram 
charts. 

 
 

 
Figure 13. Reliability diagrams for the 1 h accumulated 
precipitation � 0.01in at 24 h (a) and 0.1in at 12 h. Solid 
lines are from 2008 season data, and thick dash lines 
are from 2007 season data. 

Recently, Clark et al. (2008) demonstrated that 
applying a bias correction approach similar to probability 
matching (PM) (Ebert 2001), except using observation 
as QPF distribution, to all individual members can result 
in more flat rank histograms. This approach, however, is 
not a bias correction technique to produce PQPFs 
because current observation is required. 

Another challenge of QPF bias correction lies in the 
use of high-resolution storm-permitting model forecasts 
which produce very high variance precipitation fields 

with excessively high maxima (see Figure 8).  
Traditional bias correction concept of removing a mean 
bias based on a short training period prior to forecast 
time doesn’t address such excessive peak value issue 
when applying to QPF, since mean bias for QPF, when 
averaged over domain, is often a very small amount.  

Having the correction of excessive precipitation in 
mind, a new approach is exercised by correcting 
precipitation biases based on ranks. For each member 
at each forecast hour, the 1 h accumulated precipitation 
field is sorted from the highest to the lowest, and the 
same ranks are averaged over a training period (12 
days in this exercise). The observations over the same 
12 days period are also sorted and averaged.  Figure 
14a is a example ranking results for the 24 h forecast, 
averaged over a 12 day period from April 16 through 
May 7, 2008.  

 
Figure 14. (a) Sorted 1 h accumulated precipitation, and 
(b) differences between members and observation (bias) 
for the 24 h forecast, averaged over a 12-day period 
from April 16 to May 7, 2008.  

In Figure 14, be aware of the use of logarithm 
coordinate for rank (from 1 to M, M is total horizontal 
grid points), and only a first third of ranks are shown. It 
can be seen that individual members vary widely around 
observation for the highest several hundred ranks, with 

a 

b 

2007 

2008 

a 
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peak biases (difference between members and 
observations for the first rank – Figure 14b) swing 20 
mm on either side. This specific training period shows 
high positive biases for cn, co, and n2, and high 
negative bias for p4. The mean biases in Figure 14b are 
used to correct each member forecast of the following 
date by applying the mean biases to corresponding 
ranks of sorted precipitation field of each member at 
each forecast hour. A total 15 days of bias-corrections 
are made, from May 8 through May 26, 2008. Ensemble 
means and PMs are generated from the corrected 
dataset. 

BIAS scores are presented in Figure 15, using the 
corrected 15 days dataset. Compared with Figure 9, 
significant improvement can be seen, especially for the 
two lower thresholds, across all forecast hours. 

 
Figure 15. Same as Figure 9, except bias corrected and 
averaged over 15 days. 

Figure 16 shows rank histogram charts of two 
forecast hours, 18 h and 24 h, both with more flat 
distributions compared to raw ensemble. The difference 
is very small for the 6 h and 30 h forecast times (figure 
not shown). 
 

 
Figure 16. Verification rank histogram of 1 h accumu-
lated precipitation for the forecast hours of (a) 18 h, and 
(b) 24 h, averaged over 15 days of bias corrected 
dataset. 

 
In spite of big improvement in BIAS score and some 

improvement in rank histogram, no improvement is 
shown in reliability diagrams (Figure not shown).  

 
4. DISCUSSION 
 

The extremely high variance nature of 1 h accumu-
lated precipitation from high-resolution storm-permitting 
WRF ensemble forecast may intrinsically discourage 
post-calibration effort to be able to produce reliable and 
high-skill PQPFs measured by conventional verification 
metrics.  New verification approaches such as object 
oriented and neighborhood methods (Schwartz et al. 
2008) may be a solution. 

As a future focus, we will further examine various 
post-processing techniques including refining the bias 
correction approach exercised in this paper, and apply 
to 3 h accumulation or longer period. Comparisons of 
QPF/PQPFs, in terms of quantitative skill scores, from 
the high-resolution ensemble forecast in the Spring 
Experiment with the NCEP operational NAM 12 km and 
SREF forecasts over the same domain and period will 
be another valuable effort.  
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