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1. INTRODUCTION 

Convection-allowing numerical weather 
prediction (NWP) models recently became 
operational at the United States National 
Centers for Environmental Prediction (NCEP).  
Specifically, NCEP’s EMC (Environmental 
Modeling Center) produces “high-resolution 
window” forecasts from two versions of the 
Weather Research and Forecasting (WRF) 
model that differ in terms of physical 
parameterizations and dynamic cores.  One 
configuration uses the Advanced Research 
WRF (WRF-ARW; Skamarock et al. 2005) 
dynamic core while the other uses the WRF 
Nonhydrostatic Mesoscale Model (WRF-NMM; 
Janjic et al. 2001; Janjic 2003) core.  Both 
models are run without convective 
parameterization (CP) over domains covering 
three-fourths of the contiguous U.S. at ~ 4 km 
grid spacing.  This development represents an 
important step in the progression of NWP within 
an operational setting.   

Nonetheless, despite this exciting 
development, there remains considerable doubt 
regarding the appropriateness of 4 km 
convection-allowing forecasts.  For example, 
some operational centers have chosen to 
continue to parameterize convection at 4 km, 
though in modified forms, out of concern that 
abandoning CP altogether will result in 
unrealistic forecasts [e.g., UKMET Office Unified 
Model (UM; Roberts and Lean 2008, hereafter 
RL08); Japanese Meteorological Agency 
Nonhydrostatic Mesoscale Model (MSM: Narita 
and Ohmori 2007)]. Furthermore, models with 
grid spacing finer than 4 km almost certainly  

 
 
 
 
 
 
 

provide more realistic representations of 
physical processes in areas of sharp 
topographic, land use, and land-sea gradients. 
Additionally, several studies (e.g. Petch et al. 
2002; Adlerman and Droegemeier 2002; Bryan 
et al. 2003; Xue and Martin 2006) have 
demonstrated that grid spacing on the order of 1 
km or less is necessary to truly resolve 
convective-scale circulations and produce the 
most realistic storms.  In fact, there seems to be 
little disagreement amongst the research 
community that storm structure becomes more 
realistic as resolution is increased, perhaps 
epitomized by Weisman et al. (1997) treating 
output (albeit cautiously) from their 1 km 
simulation as “truth.”    

Moreover, within the past year, two 
studies have been published that appear to 
provide contradictory results on the utility of 4 
km grid spacing. The first study was based on 
work conducted at the UKMET Office (RL08) 
using the UM.  RL08 suggested that forecasts of 
heavy precipitation greatly improve when 
horizontal grid spacing is reduced from 4 to 1 
km.  Moreover, they found little 4 km 
improvement over a 12 km forecast.  The 
second study (Kain et al. 2008, hereafter KA08) 
stemmed from work during the 2005 National 
Oceanic and Atmospheric Administration 
(NOAA) HWT (Hazardous Weather Testbed) 
Spring Experiment1.  KA08 studied the output 
from 2 and 4 km grid spacing versions of the 
WRF-ARW model.  They observed that the 2 km 
configuration produced more realistic storm 
structures than the 4 km forecasts.  Yet, using 
both objective and subjective verification  (Kain 
                                                           
1 This experiment, formerly called the SPC/NSSL 
(Storm Prediction Center/National Severe Storms 
Laboratory) Spring Program, has been conducted 
from mid-April through early June annually since 
2000. Details about the experiments can be found at 
URL http://www.nssl.noaa.gov/hwt. 
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et al. 2003a) techniques, KA08 concluded that 
both models provided virtually identical value in 
terms of next-day guidance to severe storm 
forecasters, as both configurations were 
remarkably similar in their representation of 
convective initiation, evolution, and mesoscale 
organizational mode.  The two models were also 
found to be similar in terms of forecast quality. 
Although systematic differences in experimental 
designs (see Section 5) between RL08 and 
KA08 may have largely led to these dissimilar 
findings, nonetheless, the fact that such different 
results were achieved raises additional 
questions about 4 km grid spacing. 

The results of KA08 highlight one of the 
underlying challenges regarding evaluation of 
high-resolution models, namely, that greater 
realism does not necessarily translate into 
greater forecast value or quality [as defined by 
Murphy (1993)].  Therefore, it might not be 
necessary to run NWP models at say, 1 km, if 
the same information can be gleaned from 4 km 
grid spacing.  Additionally, statistical measures 
of quality do not always corroborate perceptions 
of value.  Numerous studies have highlighted 
these inconsistencies.  For example, Mass et al. 
(2002) found that 4 km model forecasts 
produced more realistic and valuable 
meteorological simulations than 12 and 36 km 
forecasts over the United States Pacific 
Northwest.  However, they noted that objective 
measures of forecast quality failed to 
substantiate the perceived 4 km improvement 
over the 12 km output.  Along similar lines, 
although Done et al. (2004) found 4 km WRF 
forecasts were more valuable and realistic than 
10 km WRF forecasts, the equitable threat score 
(ETS) applied to precipitation thresholds 
indicated the two forecasts behaved similarly.   

This persistent conflict between realism, 
quality, and value, coupled with the different 
findings of KA08 and RL08, significantly 
increases the difficulty of determining how much 
resolution to include in future generations of 
operational NWP models, given finite 
computational resources.  The ultimate solution 
to this problem, though elusive, is very important 
given practical concerns regarding high-
resolution modeling, since finer grid spacing 
comes at a substantial price.  As increased 
resolution means additional computational 
demand and storage, doubling horizontal 
resolution alone requires approximately a ten-
fold cost increase.  Additionally, higher 
resolution models take longer to complete their 
integrations.  The challenge is to find an optimal 

grid spacing that maximizes model forecast 
quality and value while justifying the cost. 
  In an attempt to address this important 
issue, this study provides a second look at 2 and 
4 km WRF-ARW output and brings us closer to 
meeting this challenge.  As in KA08, the focus is 
again on the utility of the WRF-ARW as a next-
day guidance tool.  Similarly, whereas KA08 was 
based on 2005 Spring Experiment data, this 
study uses data from the 2007 Spring 
Experiment.   
 Although both Spring Experiments 
featured parallel WRF-ARW forecasts generated 
using 2 and 4 km grid spacing, the 2005 
configurations introduced some ambiguity into 
the assessment of sensitivity to resolution, as 
the two models used different computational 
domains, initialization procedures, and vertical 
resolution (see KA08).  Nonetheless, differences 
in output were likely dominated by the different 
horizontal resolutions.  However, in 2007, 
identical model domains, initialization 
procedures, and number of vertical levels were 
used, and the 2 and 4 km model configurations 
only differed in terms of horizontal grid length.  
This setup permitted a clean isolation of the 
impact of horizontal grid spacing on WRF-ARW 
forecasts. 
 While this study provides a second look 
at 2 and 4 km WRF-ARW forecasts, it does so 
from a somewhat different perspective than 
KA08.  Whereas KA08 focused on the 
representation of severe convection, we shift 
here to a greater emphasis on heavy rainfall, as 
in RL08.  Additionally, we embrace the 
verification approach of RL08.  Lastly, the 2 and 
4 km output here is compared to operational, 
CP-using, 12 km North American Mesoscale 
(NAM; Black 1994) model forecasts to assess 
the impact of CP and further investigate grid 
spacing sensitivity.  The topics in this paper 
work in concert to address the question of how 
much resolution is needed to provide severe 
weather (including damaging convection and 
heavy rain) forecasters with the best possible 
guidance at a justifiable cost.  Model 
configurations are described next, followed by 
an overview of the verification procedures and a 
presentation of the results.  Finally, implications 
of the results are discussed before concluding. 
 
2. MODEL CONFIGURATIONS  

On each of the ~35 days of the 2007 
Spring Experiment (hereafter SE2007), the 
Center for Analysis and Prediction of Storms 
(CAPS) at the University of Oklahoma produced  
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Model configurations 
 
 

 
 
 
 
 
 
 

Table 1. Model configurations.  MYJ: Mellor-Yamada-Janjic (Mellor and Yamada 1982; Janjic 2002); 
Ferrier: (Ferrier 1994); WSM6: WRF single moment, 6-class microphysics (Hong et al. 2004); BMJ: Betts-
Miller-Janjic (Betts 1986; Betts and Miller 1986; Janjic 1994). 
 

 
forecasts from a single deterministic 2 km model 
and a 10-member ensemble prediction system 
with 4 km grid spacing (Xue et al. 2007; Kong et 
al. 2007).  The models themselves were run 
remotely at the Pittsburgh Supercomputer 
Center (PSC).  All ensemble members and the 2 
km deterministic model used version 2.1 of the 
WRF-ARW core (Skamarock et al. 2005) with 
explicitly represented convection.  The models 
were initialized at 2100 UTC and ran for 33 
hours over a domain encompassing 
approximately three-fourths of the continental 
United States (Fig. 1). 

Other than the difference in horizontal 
grid spacing, the ensemble control member 
(hereafter WRF4) was configured identically to 
the 2 km model (hereafter WRF2).  For example, 
both used the same physical parameterizations, 
had 51 vertical levels, and employed a “cold-
start” without data assimilation. Initial conditions 
(IC) were interpolated to the respective 2 and 4 
km grids from the 2100 UTC analysis of the 12 
km NAM (J. Du, NCEP/EMC, personal 
communication) and the 1800 UTC NAM 
forecasts provided the lateral boundary 
conditions (LBC).   

Additionally, WRF2 and WRF4 
(hereafter collectively referred to as the “high-
resolution” models) output were compared to 
forecasts from the 12 km operational NAM.  
However, whereas the high-resolution models 
differed just in terms of horizontal grid spacing, 
there were many differences between the NAM 
and WRF-ARW configurations (Table 1).  Most 
significantly, the NAM used CP, a different 
dynamical core (WRF-NMM; Janjic et al. 2001; 
Janjic 2003), integrated over a much larger 
domain, and was initialized at 0000 UTC, three 
hours later than the high-resolution forecasts.  

 

 
 Fig. 1. Model integration domain for the 
 WRF2 and WRF4 forecasts. 
 

In light of these many differences, 
disparities between the NAM and high-resolution 
forecasts cannot be attributed entirely to 
resolution and CP.  Rather, inclusion of the NAM 
dataset provides a baseline and operational 
benchmark to which the high-resolution model 
performance can be compared. It is important to 
assess whether the high-resolution models can 
improve upon coarser resolution model 
forecasts to justify the significantly higher 
computational cost of the high-resolution 
forecasts. 
 
3. VERIFICATION PROCEDURES 

Meaningful verification of high-resolution 
model forecasts is challenging.  As grid spacing 
decreases a model becomes capable of 
resolving progressively smaller-scale processes 
and features, such as individual thunderstorms.  
But, when the scale of these features is 
comparable to the model grid length, spatial 
displacement errors become significant and 
specific and point values are likely to incur 

 NAM WRF2 WRF4 
Dynamic Core WRF-NMM WRF-ARW WRF-ARW 

Horizontal Grid (km) 12 2 4 
Initialization 0000 UTC 2100 UTC 2100 UTC 

Vertical Levels 60 51 51 
PBL Parameterization MYJ MYJ MYJ 

Microphysics Parameterization Ferrier WSM6 WSM6 
Cumulus Parameterization BMJ None None 
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significant errors.  Therefore, when measured by 
traditional point by point metrics, such as ETS, 
finer grids are the most heavily penalized for 
timing and displacement errors and often score 
relatively poorly (Gallus, 2002).  The information 
conveyed by the poor objective score, however, 
may directly contradict perceived value of the 
forecast. 
  In an attempt to reconcile the often-seen 
disparities between realism, value, and quality, a 
variety of non-traditional objective verification 
approaches have been developed for mesoscale 
model verification.  One approach is to identify 
certain features (e.g. bow echoes, supercells) in 
the model forecast and compare them to 
corresponding entities seen in the observations.  
This method is the so-called “object-based” 
approach (see Ebert and McBride 2000; Done et 
al. 2004; Marzban and Sandgathe 2006).  
Another general approach is to relax the 
requirement that forecast and observed grid 
boxes match exactly in order for forecasts to be 
considered correct (Ebert 2008).  This method is 
referred to as “fuzzy verification” or a 
“neighborhood” approach.  In this study, the 
neighborhood method is used in lieu of the 
object-based approach.  The specific verification 
methods are now discussed. 

 
 3.1  Subjective verification 

A cornerstone of the HWT Spring 
Experiment is to foster lively discussion between 
researchers and forecasters.  One method to 
promote this interaction is through the use of 
systematic subjective verification of 
experimental human-produced and model 
forecasts (Kain et al. 2003b, 2006).  Experiment 
participants are encouraged to discuss their 
observations and subjective ratings of forecast 
accuracy are assigned by group consensus. 
Since an element of personal bias is inherent 
with subjective evaluations, diversity of 
viewpoint is essential to minimizing 
predispositions (Kain et al. 2006).  Such 
diversity was achieved in SE2007, with 
participants from both forecasting and research 
communities, including academic, government, 
private sector, and military affiliations. 

Subjective verification activities occurred 
each weekday of SE2007.  While many model 
output fields were examined, subjective 
verification focused on comparisons of model-
simulated 1-km AGL (above ground level) and 
observed, lowest elevation angle radar 
reflectivity for lead times of 21-33 hours (f21-
f33).  Radar reflectivity was regarded as “truth.”  

These subjective evaluations were conducted 
over regional spatial domains that were 
relocated daily to correspond to the region 
severe weather was deemed most likely to 
occur.  While the geographic domain shifted 
each day, its size remained constant throughout 
the Experiment.  

Subjective verification is important 
because it yields insight about human-perceived 
forecast value that traditional objective metrics 
do not measure well (Kain et al. 2003a; Done et 
al. 2004).  Some of these objective measures 
are now discussed.     
 
3.2 Objective verification of model 
climatology 

At the conclusion of SE2007, average 
model performance characteristics were 
assessed using several statistical measures 
applied primarily to hourly precipitation fields.  
Hourly model precipitation forecasts were 
compared to gridded Stage II precipitation fields 
produced hourly at NCEP (Lin et al. 2005).  
Stage II precipitation fields are generated from 
radar-derived quantitative precipitation estimates 
and rain gage data (Seo 1998), and they were 
regarded as “truth.” 

Objective verification of the model 
climatology was performed over a fixed domain 
comprising most of the central United States 
(Fig. 2).  This domain covered a large area over 
which Stage II data were robust and springtime 
weather was active.  Additionally, this region 
was also sufficiently removed from the 
WRF2/WRF4 lateral boundaries so as to 
minimize contamination from the boundaries.  
Attention was focused on the f.21-f.33 (1800-
0600 UTC) period to examine the utility of the 
high-resolution models as next-day convective 
storm guidance.   

 
 Fig. 2. Verification domain used for 
 model climatology. 
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When possible, statistics were 
computed on native grids.  However, in order to 
calculate certain performance metrics 
(discussed below), it was necessary that all data 
be on a common grid.  Therefore, for certain 
objective verification procedures, model output 
was interpolated onto the Stage II grid (grid 
spacing of ~ 4.7 km), which will be referred to as 
the “verification grid.” 
 
3.2.1  Point by point techniques 

Dichotomous (yes-no) forecasts are 
routinely verified against observations by the 
use of a 2 x 2 contingency table (Table 2).  To 
use the table, the models and observations must 
be on the same grid, so the model output was 
interpolated onto the verification grid.  By 
selecting precipitation accumulation thresholds 
(q)(e.g. 1.0 mm hr-1) to define an event, each of 
the N grid points on the verification grid within 
the verification domain (Fig. 2, N = 204,073) 
were placed into their proper quadrants of Table 
2 depending on the correspondence between 
the forecast (F) and observations (O) at that 
point.  The ith grid point fell into category a if the 
event was correctly predicted (Fi ≥ q and Oi ≥ q); 
b, if the event was forecast but did not occur (Fi 
≥ q and Oi < q); c, if an event occurred but was 
not forecast (Fi < q and Oi ≥ q); and d, if a non-
event was correctly predicted (Fi < q and Oi < q).  
It follows that a+b+c+d = N. 
  A variety of metrics to assess model 
performance can be computed from the 2x2 
contingency table.  Among the myriad of scores 
are the bias (B), threat score (TS; also known as 
the critical success index) and equitable threat 
score (ETS).  Bias is simply the ratio of the 
coverage of forecasts to the coverage of 
observations, given by B = (a+b)/(a+c).  For a 
given value of q, a bias > 1 indicates 
overprediction and B < 1 indicates 
underprediction at that threshold.  TS is given by 
TS = a/(a+b+c), ranges from 0 to 1, and is 
positively oriented.  The TS can be made more 
“equitable” by adjusting the TS to account for 
“hits” (elements in quadrant a) due to random 
chance.  This correction is given by e = 
 

2 x 2 Contingency Table 
  Observed  
  Yes No  

Yes a b a+b Forecast No c d c+d 
  a+c b+d N 
Table 2. Standard 2x2 contingency table for 

dichotomous events. 

 (a+b)(a+c)/N and is used in the ETS [ETS = (a-
e)/(a+b+c-e)].  ETS ranges from -1/3 to 1, with a 
perfect forecast achieving a score of 1. 
 
3.2.2  A neighborhood approach 

In general, models have little skill at 
placing features that are comparable in scale to 
their grid spacing.  Thus, as horizontal grid 
length has decreased in recent years to the size 
of convective-scale features, a variety of 
methods that incorporate a “neighborhood” 
around each grid point have been created to 
allow for spatial and/or temporal error or 
uncertainty [reviewed in Ebert (2008)].  One of 
these neighborhood techniques was developed 
by Roberts (2005) and RL08 and is adopted 
(with slight modifications) in this study. This 
technique is outlined below. 
  
3.2.2.1  Creation of binary fields 

As with the contingency table approach, 
model output was interpolated to the verification 
grid.  Precipitation accumulation thresholds (q) 
were selected to define an event and convert 
both the observed (O) and model forecast (F) 
rainfall fields into binary grids.  Grid boxes with 
accumulated precipitation ≥ q were assigned a 
value of 1 and all others a value of 0.  That is, 
letting the subscript i denote the accumulated 
precipitation in the ith grid box,  
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where BO(i) and BF(i) denote the newly created 
binary grids corresponding to the observational 
field and model output, respectively.  Here, i 
ranges from 1 to N.  
 In addition to absolute accumulation 
thresholds, percentile thresholds were also used 
to create binary fields, as in RL08.  For example, 
the yth percentile threshold (e.g. 95th percentile) 
selected the top (100-y) percent of forecast and 
observed accumulations to determine a new 
absolute threshold value (qy) that corresponded 
to the yth percentile.  We determined these 
values of qy from a climatological perspective, 
where the climatological period included every 
hour during SE2007.  Specifically, all grid points 
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 Fig. 3. Schematic example of neighborhood determination and fractional creation for a (a) model      
  forecast and (b) the corresponding observations.  Precipitation exceeds the accumulation            
  threshold in the shaded boxes, and a radius of 2.5 times the grid length is specified. 

 
on the verification grid within the verification 
domain containing non-zero hourly precipitation 
accumulations were aggregated over all days of 
SE2007 separately for each model and the 
observations.  The accumulations were ranked 
and the specific values of qy computed for 
different values of the yth percentile.  Binary 
fields were obtained from Equation 1, where the 
unique value of qy corresponding to the 
particular model or observation was substituted 
in place of q.  Using percentile thresholds 
removed the effect of bias and allowed for a 
robust comparison of spatial accuracy amongst 
the different models.  Note that this approach 
differed somewhat from that of RL08, who 
computed qy based on ranking accumulation 
values each output time, including points with 
zero accumulation. 
 
3.2.2.2 Creation of fractional grids 

After creating binary fields, a radius of 
influence (r) was specified (e.g., r = 25, 50 km) 
to construct a “neighborhood” around each grid 
box in the observed and forecast binary fields.  
All grid points surrounding a given point that fell 
within the radius were included in the 
neighborhood.  Whereas RL08 constructed a 
square neighborhood around each grid box, a 
circular neighborhood was used in this study. 
Essentially, choosing a radius of influence 
defines a scale over which the model is 
expected to have accuracy, and this scale is 
applied uniformly in all directions from each grid 
point.  

   
 
To generate a fractional value at each 

point, the number of grid boxes with 
accumulated precipitation ≥ q within the 
neighborhood was divided by the total number of 
boxes within the neighborhood.  This fraction 
can be interpreted as the probability that 
precipitation will equal or exceed q in the grid 
box when considering a radius r.  In essence, 
this procedure recognizes the inherent 
unpredictability at the grid scale and extracts 
probabilistic information from deterministic grids 
(Theis et al. 2005). 
  Fig. 3 illustrates the determination of a 
neighborhood and computation of a fractional 
value for hypothetical observed and model 
forecasts valid at the same time, assuming a 
radius of influence equal to 2.5 times the grid 
spacing. Grid boxes within the radius of the 
central grid square are included in the 
neighborhood.  Note that by using circular 
geometry, the corner grid points are excluded, 
such that the neighborhood consists of 21 
boxes. Grid boxes with accumulated 
precipitation ≥ q are shaded, and these are 
assigned a value of 1.  So, the forecast and 
observed fractions at the central grid box are 
both 8/21 (eight shaded squares within the 
neighborhood).  Notice that although the model 
does not forecast precipitation ≥ q at the central 
grid box (quadrant c of Table 2, a “miss” using 
conventional point-by-point verification), when 
the surrounding neighborhood is considered, the 
same probability as the observations is 
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achieved.  Therefore, in the context of a radius r, 
this forecast is considered correct. 

Fig. 4 illustrates fractional grid creation 
for a model forecast and the corresponding 
observations using q = 5.0 mm hr-1.  Both the 
WRF4 forecast (Fig. 4, left column) and the 
observations (Fig. 4, right column) were valid at 
0600 UTC 23 May—a lead time of 33 hours.  
The raw, direct model output is depicted in Fig. 
4a and the observations in Fig. 4b.  Binary fields 
are shown in Fig. 4c,d.  Probabilities generated 
with a radius of influence of 25 km (75km) are 
depicted in Fig. 4e,f (Fig. 4g,h).  Notice that as r 
increased from 25 to 75 km, probabilities 
lowered, decreasing from over 90% to 70% (and 
even lower) over north-central Kansas and 
south-central Nebraska in the WRF4 forecast.  
The reduction of probabilities in central Kansas 
was even greater in the observed field.  
Evidently, in this case, as the radius of influence 
expanded to include more points in the 
neighborhood, few of these newly-included 
points contained precipitation accumulations ≥ q.  
In general, whether probabilities increase or 
decrease as the radius of influence changes is 
highly dependent on the meteorological 
situation.  However, for most situations, 
increasing r typically reduces the sharpness 
(RL08) and acts as a smoother that reduces 
probability gradients and usually the probability 
values themselves. 

This approach can be applied to model 
output fields other than precipitation, such as 
radar simulated reflectivity, maximum surface 
winds, and updraft helicity.  At this time, the 
optimal value of r is unknown, and this optimum 
may vary from model to model and parameter to 
parameter.  In fact, Roberts (2008) suggests that 
the optimal radius of influence varies within a 
single model configuration and is a function of 
lead time.  
  
 3.2.2.3  Calculation of fractions skill scores 

The forecast and observed fractional 
grids were then compared to each other by use 
of a simple skill score.  A variation on the Brier 
Score (Brier 1950) called the Fractions Brier 
Score (FBS) (Roberts 2005) is given by  
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where PF(i) and PO(i) are the fractional 
(probability) values at the ith grid box in the 
model forecast and observed probability fields, 

respectively.  Note that the FBS compares 
fractions with fractions and differs from the 
traditional Brier Score only in that the 
observational values are allowed to vary 
between 0 and 1. 
  Like the Brier Score, the FBS is 
negatively oriented—a score of 0 indicates 
perfect performance.  A larger FBS indicates 
poor correspondence between the model 
forecasts and observations.  The worst possible 
(largest) FBS is achieved when there is no 
overlap of non-zero fractions and is given by 
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On its own, the FBS does not yield much 
information since it is strongly dependent on the 
frequency of the event (i.e., points with no rain in 
either the observations or forecast can dominate 
the score).  However, a skill score (after Murphy 
and Epstein 1989) can be constructed that 
compares the FBS to a low-skill reference 
forecast—FBSworst—and is defined by Roberts 
(2005) as the fractions skill score (FSS): 
 

worstFBS
FBSFSS −=1 .                    (4) 

 
 The FSS ranges from 0 to 1.  A score of 
1 is attained for a perfect forecast and a score of 
0 indicates no skill.  As r expands and the 
number of grid boxes in the neighborhood 
increases, the FSS improves as the observed 
and model probability fields are smoothed and 
overlap increases, asymptoting to a value of 
2B/(B2 + 1), where B is the bias (RL08). 
 
3.2.2.4  FSS example 

To illustrate how the FSS reflects visual 
impressions of actual model output, an example 
from SE2007 is presented.  Figure 5 shows 
observed and model forecast 1-hour 
accumulated precipitation valid 0600 UTC 21 
May 2007—a 33-hour lead time for 
WRF2/WRF4 and a 30-hour lead time for the 
NAM.  All three models developed precipitation 
ahead of cold front advancing through the 
Northern Plains region of the United States.  
However, the forecasts differed with regard to 
precipitation placement. 

The color shadings in Fig. 5b-d outline 
areas of observed precipitation exceeding 1.0 
and 5.0 mm hr-1.  Model forecasts are overlaid, 
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< 5 mm/hr

(b)

(d)

(f)

(h)

 
 Fig. 4. (a) WRF4 1-hr accumulated precipitation forecast, (b) observed 1-hr precipitation   
  accumulation, binary image of precipitation accumulations exceeding 5.0 mm/hr using (c) 
  WRF4  output and (d) observations, and fractional grids computed from (b) and (d) using 
  radii of  influence of (e)-(f) 25 km and (g)-(h) 75 km.  All panels are valid 0600 UTC 23  
  May 2007 and the WRF4 has been projected onto the verification grid. 

  
 



 9

(b) WRF2

(c) WRF4 (d) NAM

(a) Obs (b) WRF2

(c) WRF4 (d) NAM

(a) Obs

 
 Fig. 5.  (a) Observed 1-hr precipitation and 1-hr model forecast precipitation from (b) WRF2 (c)  
  WRF4 (d) NAM.  All panels are valid 0600 UTC 23 May 2007—a 33 hour   
  forecast for the  WRF2 and WRF4 and 30 hour NAM forecast.  Shadings in b, c,  
  and d indicate observed 1-hr accumulated precipitation greater than 1.0 and 5.0   
  mm hr-1, and dashed lines denote model forecasts at the same thresholds. 
 
 
with the solid line corresponding to the 1.0 mm 
hr-1 threshold and the dashed line enclosing 
areas forecast to receive at least 5.0 mm hr-1of 
precipitation. 
  The observations (Fig. 5a) indicate 
precipitation was oriented primarily NNE-SSW 
through southeastern South Dakota, eastern 
Nebraska, and central Kansas.  At the 1.0 mm 
hr-1 threshold, the NAM forecast (Fig. 5d) 
appeared to be in general agreement with the 
observations.  However, WRF4 (Fig. 5c) 
predicted more of a NE-SW alignment, bringing 
the precipitation well into Minnesota; WRF2 (Fig. 
5b) even more so.  Additionally, both WRF2 and 
WRF4 developed spurious convection in 
northern Arkansas and southwestern Missouri, 
while the NAM produced erroneous precipitation 
in eastern Colorado.  From the figure, 
subjectively, it appears as if the NAM produced 
the best forecast at the 1.0 mm hr-1threshold and 
WRF2 the worst.   This impression is confirmed 
by the FSS (Fig. 6a), with the NAM (WRF2) 
receiving the highest (lowest) score at all values 
of r. 

At a threshold of 5.0 mm hr-1, however, 
the NAM did not maintain an area as large as 
the observations.  Both WRF4 and WRF2 
produced a wider area of precipitation exceeding 
5.0 mm hr-1, but much of it was displaced to the 
northeast in the WRF2 forecast.  While a 
northeastward displacement was also evident in 
the WRF4 output, an area exceeding 5.0 mm hr-

1 in northeast Nebraska was at least partially co-
located with the observations.  Given this partial 
overlap, WRF4 appeared to be best.  
Distinguishing between the WRF2 and NAM is 
more difficult.  While the NAM underpredicted 
the areal coverage, WRF2 generated the 
precipitation in the wrong area.  Again, the 
corresponding FSS (Fig. 6b) confirms the 
subjective interpretation, with the highest score 
assigned to the WRF4 and roughly equal values 
for the NAM and WRF2. 
 
4. RESULTS 
 
4.1  Subjective assessment of simulated 
reflectivity 
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  Fig. 6. Fractions skill score (FSS) as a function of radius of influence for 1-hr precipitation 
   accumulations valid 0600 UTC 23 May 2007 using accumulation thresholds of (a) 
   1.0 mm hr-1and (b) 5.0 mm hr-1. 
 
 Subjective ratings of 1 km AGL 
simulated reflectivity forecasts produced from 
WRF2 and WRF4 (on their native grids) were 
assigned each day of SE2007.  Specifically, the 
model representation of convective evolution, 
including initiation, coverage, mesoscale 
configuration, orientation, and movement, was 
assessed.  Participants scored each model’s 
forecast on a scale from 0 to 10, where a score 
of 10 was reserved for a superior forecast and 
extremely poor forecasts received a score of 0.  

Of the 22 days where subjective ratings 
for WRF2 and WRF4 were available, the two 
models were assigned an equal score 16 times.  
Of the remaining six days, WRF2 scored a point 
higher than WRF4 four times, and WRF4 scored 
a point higher twice.  It is noteworthy and 
revealing that the subjective ratings never 
differed by more than one point, implying that on 
the occasions when Experiment participants 
perceived differences in convective evolution, 
they were not extreme.  

The similar subjective ratings suggest 
WRF2 and WRF4 1 km AGL reflectivity 
forecasts provided comparable value.  These  

 

 
principles are further illustrated in Fig. 7, which 
depicts simulated reflectivity forecasts from the 
model runs initialized at 2100 UTC 29 April 
2007. By 2100 UTC on 30 April (f24), both  
models developed convection over southern 
Minnesota that stretched northeastward into 
northwestern and central Wisconsin (Fig. 7a,b).  
At this time, the convective mode was similar in 
both model forecasts with a broken line evident 
in each.  By 0000 UTC on 1 May (f27), bowing 
structures were present in both the WRF2 and 
WRF4 simulated reflectivity fields over roughly 
the same location in northeastern Iowa.  
Additionally, both models also increased 
convective coverage and in linear structure in 
central Wisconsin.  By 0300 UTC 1 May (f30), 
both models weakened the convection as it 
moved through southern Wisconsin but 
maintained similarly oriented convection over 
central Iowa.   

Upon closer scrutiny, there were subtle 
differences.  For example, the WRF4 developed 
a more “solid” line than the WRF2 and exhibited 
greater curvature at f27.  In addition, there was 
more fine-scale detail in the WRF2 reflectivity 
representation (e.g. Fig. 7c,d over central 
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(a) (b)

(c) (d)

WRF2; f24 WRF4; f24

WRF2; f27 WRF4; f27

(e) WRF2; f30 (f) WRF4; f30

(a) (b)

(c) (d)

WRF2; f24 WRF4; f24

WRF2; f27 WRF4; f27

(e) WRF2; f30 (f) WRF4; f30

 Fig. 7. WRF2 (left column) and WRF4 (right column) simulated 1 km AGL reflectivity forecasts 
 valid (a)-(b) 2100 UTC 30 April, (c)-(d) 0000 UTC 01 May, and (e)-(f) 0300 UTC May 1. 
 

 
Wisconsin—WRF2 was not as “blobular” as 
WRF4).  This increased detail comes as little 
surprise and is expected from a higher 
resolution model.  However, this added detail 
emerged on scales approaching the grid 
spacing, where there is little predictive skill, and 
the overall impressions indicated that WRF2 
provided little additional guidance regarding 
convective evolution in this case.  

Additional snapshots of simulated 1-km 
AGL reflectively valid at 0000 UTC (f27) 17 May 
(Fig. 8a,b), 30 May (Fig. 8c,d), and 08 June (Fig. 
8e,f) are presented to further illustrate the 
similarity of the WRF2 and WRF4 reflectivity 
patterns the were observed routinely during 
SE2007.  Though the individual elements were  

 
typically smaller on the WRF2 grids, these 
forecasts provided essentially the same value as 
guidance for severe weather forecasters as 
those from the WRF4.   
 
4.2 Case study of precipitation fields 
 To illustrate the differences between the 
high-resolution and NAM output, observed and 
forecast 1-hr precipitation accumulation is 
shown in Fig. 9, valid at 2100 UTC 29 May 
2007.  The observations (Fig. 9a) indicated 
localized areas of intense precipitation in east-
central Colorado on the southern end of a plume 
of lighter precipitation extending northward into 
Wyoming.  These pockets of heavy precipitation 
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(a) WRF2 (b) WRF4

(c) WRF2 (d) WRF4

(e) WRF2 (f) WRF4

(a) WRF2 (b) WRF4

(c) WRF2 (d) WRF4

(e) WRF2 (f) WRF4

  Fig. 8. WRF2 (left column) and WRF4 (right column) simulated 1-km AGL reflectivity  
  forecasts valid 0000 UTC (a)-(b) 17 May, (c)-(d) 30 May, and (e)-(f) 08 June. 
 

 
corresponded to supercell thunderstorms that 
produced a few tornadoes.  A second area of 
precipitation was observed over southern 
Nebraska.   

The  NAM (Fig. 9d) predicted an area of 
precipitation over eastern Colorado, However, it 
developed an extensive area of spurious 
precipitation in Kansas and overpredicted the  
areal coverage of precipitation in Nebraska.  The 
WRF2 and WRF4 forecasts appeared rather 
similar to each other.  Both developed intense 
precipitation cores in Colorado slightly too far  
 

 
 
south and east and developed areas of rain in 
far northwestern Kansas that were not observed.   
While there were errors in both the NAM and 
high-resolution forecasts, the high-resolution 
forecasts revealed far more about the character 
of the precipitation than the NAM output.  The 
NAM’s broad outlines yielded little information 
about the likely convective mode of the day.  On 
the other hand, the high-resolution (Fig. 9b-c) 
precipitation fields suggested discrete cells were 
likely.  This information about storm mode is 
quite valuable to severe weather forecasters and 
can increase confidence about the character of 
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(a) Obs (b) WRF2

(c) WRF4 (d) NAM

(a) Obs (b) WRF2

(c) WRF4 (d) NAM
 Fig. 9.  One-hour (a) observed, (b) WRF2 forecast, (c) WRF4 forecast, and (d) NAM forecast  
  accumulated precipitation valid 2100 UTC 29 May. 
 
 
severe weather events.  However, a forecaster 
relying solely on the NAM would be unlikely to 
gain any such insight. 
 
4.3 Objective assessment of model 
climatology 
 
4.3.1 Areal Coverages  

Fig. 10 depicts fractional coverages of 
precipitation exceeding various accumulation 
thresholds, aggregated hourly over all days of 
SE2007.  These statistics were generated from 
data on each model’s native grid. The diurnal 
cycle was well-captured in the WRF2 and WRF4 
output, with an afternoon maximum 
corresponding well in time to the observations.  
A very high bias was noticed at the time of peak 
coverage, however2.  Areal coverages of two  
                                                           
2 The high bias values measured in WRF2 and WRF4 
precipitation forecasts were considerably higher than 
corresponding values from other convection-allowing 
WRF-ARW forecasts examined during SE2007 that 
were initialized at 0000 UTC instead of 2100 UTC. 

 
 

high-resolution models were similar as well, 
though WRF2 produced, on average, slightly 
more precipitation exceeding relatively lower 
thresholds (≤ 5 mm hr-1).  As the WRF2’s finer 
grid spacing was expected to resolve a greater 
number of isolated showers producing light 
rainfall, these findings were not surprising.  
However, as q  was increased to 5.0 mm hr-1, 
the WRF2 and WRF4 areal coverages were 
nearly identical.   
 In contrast to the WRF2 and WRF4 
patterns, the diurnal cycle was not well-

                                                                                       
Testing by CAPS scientists at the conclusion of 
SE2007 indicates that the high bias was significantly 
reduced when the models were initialized with 0000 
UTC ICs and LBCs.  Thus, it appears that some 
aspect associated with the 2100 UTC ICs, and 
perhaps the 1800 UTC LBCs, led to the very high 
bias (Kong et al. 2008).  Although this condition was 
less than optimal, it affected the WRF2 and WRF4 
equally and should not detract from a meaningful 
comparison of the WRF2 and WRF4 forecasts. 
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  Fig. 10. Fractional grid coverage of hourly precipitation exceeding (a) 0.2 mm hr-1, (b) 1.0  
   mm hr-1, (c) 5.0 mm hr-1, and (d) 10.0 mm hr-1as a function of time, averaged  
   over all  days of SE2007, calculated on each model’s native grid. 
 
  
represented by the 12 km NAM at absolute 
thresholds ≥ 2.0 mm hr-1.  In fact, the NAM 
indicated a maximum coverage when the 
observations showed a relative minimum, and 
vice-versa.  At thresholds ≥ 5.0 mm hr-1, the 
NAM was incapable of resolving areas of 
heavier precipitation consistently, while at lower 
thresholds (e.g. 0.2 mm hr-1) the NAM generated 
precipitation over too large an area.  The 
tendency to produce broad areas of light 
precipitation and underpredict the occurrence 
and coverage of heavy precipitation is 
characteristic of a model configuration that relies 
on parameterized rather than explicit prediction 
of deep, moist convection. 

  
4.3.2  Accumulated Precipitation 

Total accumulated precipitation 
throughout the verification domain, calculated on 
native grids and aggregated hourly over all days 
of SE2007, is depicted in Fig. 11.  WRF2 and 
WRF4 produced nearly the same amount of total 
precipitation while the NAM generated lesser 
values.  A high (low) bias was evident in the  

 
high-resolution models (NAM) during the 
afternoon convective period.  Again, WRF2 and 
WRF4 accurately depicted the timing, but not  
the amplitude, of the diurnal cycle, while the 
NAM struggled with both amplitude and timing. 
 
4.3.3  Contingency Table Metrics 
 Bias, TS, and ETS aggregated over all 
days of SE2007 between 1800-0600 UTC (f21-
f33) are plotted as a function of precipitation 
threshold in Fig. 12.  WRF2 and WRF4 bias 
scores (Fig. 12a) indicated overprediction at all 
but extremely low and high accumulation 
thresholds.  On the other hand, at low 
exceedance thresholds, the NAM displayed a 
tendency to overforecast precipitation area, but 
at higher thresholds its bias was very low—the 
NAM was simply unable to consistently generate 
areas of intense precipitation.  As the TS 
rewards overforecasting (Baldwin and Kain 
2006), this skill score was highest for the NAM 
at q = 1.0 and 2.0 mm hr-1 (Fig. 12b).  The TS 
and ETS for the WRF2 and WRF4 were virtually
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  Fig. 11. Total precipitation over the domain aggregated over all days of SE2007,   
  normalized by number of grid boxes.  Calculated on each model’s native grid. 

 
  Fig. 12. (a) Bias, (b) TS, and (c) ETS as a function of accumulation threshold,   

  aggregated during 1800-0600 UTC (f21-f33) over all days of SE2007. 
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identical, indicating little difference in forecast 
skill using a point by point verification approach.  
Above the 10.0 mm hr-1 threshold, none of the 
three models showed appreciable skill as 
measured by the contingency table metrics. 
 
4.3.4  Fractions Skill Scores 

FSS aggregated over all days of 
SE2007 during the 1800-0600 UTC (f21-f33) 
period is shown in Fig. 13 for various hourly 
absolute precipitation thresholds.  As expected, 
as r increased, the FSS improved. However, as 
q increased, the FSS worsened at all scales, 
indicating the models had the least skill at 
predicting heavy precipitation events.  At all 
precipitation thresholds, there was no 
improvement of the WRF2 forecasts over those 

of the WRF4, indicating the two models 
performed similarly at all thresholds and spatial 
scales.  But, especially for higher values of q 
and r, the high-resolution models showed a 
substantial improvement over the NAM output.  
Thus, even though forecast quality degraded at 
higher exceedance thresholds, high-resolution 
improvement over the NAM was maximized at 
these levels. 
  The large high-resolution improvement 
at higher absolute thresholds was due to the 
NAM’s inability to consistently generate high 
precipitation totals, as evidenced by its very low 
bias (Fig. 12a).  As a result, fractions generated 
from the NAM output were generally low, leading 
to a large numerator in Equation 4 which 
decreased the FSS. 

 
  Fig. 13.  Fractions skill score (FSS) as a function of radius of influence, aggregated  
   during 1800-0600 UTC (f21-f33) over all days of SE2007 using accumulation  
   thresholds of (a) 0.2 mm hr-1, (b) 0.5 mm hr-1, (c) 1.0 mm hr-1, (d) 2.0 mm hr-1, (e)  
   5.0 mm hr-1, and (f) 10.0 mm hr-1. 
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  Fig. 14. Fractions skill score (FSS) as a function of radius of influence, aggregated during 
   1800-0600 UTC (f21-f33) over all days of SE2007 using percentile thresholds of  
   (a) 50%, (b) 70%, (c) 80%, (d) 90%, (e) 95%, and (f) 99%. 

 
When climatological percentile 

thresholds were used, similar results were 
obtained (Fig. 14).  Again, the high-resolution 
models showed the greatest improvement over 
the NAM at the highest percentile thresholds 
and there was virtually no separation between 
the WRF2 and WRF4 scores.  FSS aggregated 
hourly over all days of SE2007 is shown in Fig. 
15 for various values of r and an accumulation 
threshold of 5.0 mm hr-1.  There was little 
difference between the high-resolution models, 
though the WRF4 performed slightly better 
toward the end of the integration. Both WRF2 
and WRF4 demonstrated more skill than the 
NAM throughout the period, with the gap 
widening at larger values of r. 

 
5. DISCUSSION 
 Our results corroborate the findings of 
KA08.  While the WRF2 in the present study 
produced more detailed storm structures than 
the WRF4 output, the differences were on 
scales approaching the resolution limits of the 
model configurations, where there is little 
predictive skill.  In terms of overall 
representation of convective evolution, 
subjective verification and visual inspection 
indicated the WRF2 and WRF4 behaved 
similarly on most days.  This general 
consistency suggests that WRF2 and WRF4 
simulations are likely to provide comparable 
value as guidance for the prediction of next-day 
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 Fig. 15. Fractions skill score (FSS) using a threshold of 5.0 mm hr-1 as a function of time for a  
  radius of influence of (a) 25 km, (b) 50 km, (c) 75 km, (d) 100 km, (e) 125 km, (f) 150 km,  
  (g) 175  km, and (h) 200 km, averaged over all days of SE2007. 
 
disruptive convective events, such as severe 
thunderstorms and heavy rain/flash floods.  
Moreover, forecast quality, as measured by the 
FSS, showed little objective difference between 
the high-resolution forecasts, on average, over 
the course of SE2007, indicating similar skill at 
all spatial scales.  

On the other hand, the high-resolution 
models improved significantly upon the NAM, 
producing more skillful precipitation forecasts at 
all spatial scales. It is noteworthy that the high-
resolution improvement over the NAM was 
maximized at higher accumulation thresholds, 
as these thresholds correspond to relatively 
extreme events. Additionally, the high-resolution 
models provided added value in terms of 
convective-mode guidance, consistent with 
previous studies (e.g. Kain et al. 2006; Weisman 

et al. 2008) and an important benefit for severe 
weather forecasters.  As tools to improve heavy 
precipitation and severe weather forecasting are 
quite valuable, these findings lend additional 
evidence to suggest high-resolution, convection-
allowing models may have much to offer to the 
forecasting community.  

However, our results seem to contradict 
those of RL08, who used the FSS to 
demonstrate 1 km forecast superiority to 4 km 
forecasts in the UM.  They also concluded a 4 
km configuration of the UM performed little, if 
any, better than a 12 km version.  The dissimilar 
conclusions of RL08 and the present study can 
be attributed partly to different experimental 
designs.  For example, in this experiment, the 4 
km model explicitly resolved convection, while 
RL08 used a modified form of CP at 4 km.  Also, 
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RL08 employed radar data assimilation, while 
WRF2 and WRF4 in the present study were both 
run from a cold start without any data 
assimilation.  Furthermore, RL08 focused on the 
first seven hours of model integration, while the 
focus here was on model-forecast times 
between 21 and 33 hours.  Finally, the studies 
examined model forecasts produced by 
completely different dynamic cores (WRF-ARW 
vs. UM).   

In light of these many differences in 
experimental design, the results presented 
herein can co-exist, but are difficult to reconcile 
with RL08.  The vastly different conclusions only 
add to the challenge of trying to determine how 
much resolution to include in future NWP 
models.  . 

 
6. SUMMARY AND CONCLUSION 

During SE2007, convection-allowing 2 
and 4 km configurations of the WRF-ARW 
model were run over a large domain 
encompassing much of the United States.  Aside 
from the difference in horizontal grid spacing, 
the configurations were otherwise identical, 
allowing for a clean isolation of the impact of 
horizontal resolution on WRF-ARW forecasts.  
Forecasts from the 12 km NAM were also 
considered in order to provide an operational 
benchmark for the high-resolution output. 

Using subjective verification techniques, 
the convection-allowing, high-resolution models 
(horizontal grid spacing of 2 and 4 km) were 
found to provide significant added value for next-
day forecasts compared the operational NAM.  
For example, the high-resolution forecasts 
provided useful information regarding the 
mesoscale organizational mode of convection 
that was not available from the NAM.  Since the 
characteristics of severe convection appear to 
be strongly linked to convective mode, this 
guidance is particularly valuable.  Moreover, 
these added details did not result in degradation 
of forecast quality, as indicated by the improved 
high-resolution FSS compared to the NAM.  In 
addition, the results suggest that convection-
allowing models are substantially more skillful at 
predicting both the location and amplitude of 
heavy rain events, thus, holding great promise 
for the hydrometeorological community.  

In these areas where the high-resolution 
models showed distinct improvements over the 
NAM, 4 km grid length seems to be nearly as 
advantageous as 2 km spacing.  While the 
WRF2 produced finer scale structures that were 
likely more realistic, the WRF2 and WRF4 

appeared to provide comparable value as 
guidance for the prediction of convective mode 
and placement and intensity of heavy rainfall.  
Thus, for severe weather and heavy rainfall 
forecasting applications, there should be no rush 
to decrease horizontal grid spacing beyond 4 
km, and it seems difficult to justify the added 
cost to run large-domain forecasts at 2 km grid 
spacing rather than 4 km.   

This conclusion should not be seen as 
pessimistic to the future of operational high-
resolution modeling, however.  Rather, instead 
of immediately increasing resolution further as 
computers become evermore powerful, 
resources can be devoted to ensemble 
forecasting and post-processing algorithms.  In 
fact, some new post-processing methods have 
shown promise at outlining areas of severe 
weather and heavy rainfall potential when 
applied to output from convection-allowing WRF-
ARW models with ~ 4 km grid spacing (Schwartz 
et al. 2008; Sobash et al. 2008).  However, as 
data assimilation techniques advance, and 
especially when it becomes conceivable to 
assimilate and predict the evolution of specific 
storm-scale features, this conclusion regarding 2 
vs. 4 km grid length may change.  But, until 
then, 4 km grid spacing seems to be a good 
starting point for the first generation of 
convection-allowing NWP models.  
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