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1. INTRODUCTION  
 

Numerical Weather Prediction (NWP) models 
have improved remarkably in the past decade and 
progress is continually being made year to year in 
all disciplines of NWP particularly in the field of 
data assimilation. Regardless of the steady 
progress, most NWP models are blighted with the 
occasional forecast busts, referred here as 
dropouts which influence deeply the overall skill of 
the 5-day forecasts. In a companion paper, Alpert 
et al. (2009), we define the model dropouts in 
terms of 5-day 500 hPa anomaly correlation (AC) 
scores, and show that the NCEP Global Forecast 
System (GFS) can significantly reduce the number 
of dropouts when using analyses from the 
European Centre for Medium-Range Weather 
Forecasts (ECMWF) to initialize the GFS (ECM 
runs).  The primary motivation of this study is to 
understand the genesis of these dropouts with a 
view to alleviate the forecast dropouts as they 
produce poor quality forecast guidance and are 
responsible for the reduction of NCEP GFS 5-day 
forecast skill.  

 
2. BASIS OF FORECAST DIFFERENCES  
 

There are numerous reasons why different 
forecast models will have forecast differences.  
There are differences in whole classes of 
observational data being used in analyses, 
differences in data time windows and cutoff times, 
data bias corrections, data Quality Control (QC), 
as well as analysis and forecast model differences.  
Even though the GFS performs well in these ECM 
runs, it is still possible that deficiencies in the GFS 
model could be harming the performance of the 
NCEP Gridpoint Statistical Interpolation (GSI) 
analysis, (Wu et al. 2002).  For example, a 
temperature bias in the model may have small 
impact on the 5-day AC score but could cause 
incorrect perturbations in temperatures and winds 
in the assimilation system.  Differences in two 
analyses at one point are due to all of the above 
listed factors accumulated nonlinearly over a long 

time as each analysis has large impact from the 
background, which has memory of all these 
differences.  Forecast differences are due not only 
to forecast model differences but also the analysis 
differences accumulated for many reasons.    
Large errors in the model 5-day forecast in one 
area can be due to errors in the analysis at 
different locations as well as model errors.  Since 
the analyses and forecast models are very 
complicated in addition to the above reasons, it 
can be difficult to find the cause of a forecast 
dropout. 
 
3. ANALYSIS OF FORECAST DIVERGENCE 
AND MODEL DROPOUTS 
 

One simple method of analyzing large forecast 
errors is to track the location of large errors during 
the 5-day forecast as a function of forecast time.  
For example, if there is a 400m height error at 500 
hPa southeast of Greenland, where the error is the 
difference in the 5-day forecast and the verifying 
analysis, then we can examine how this error grew 
with time and location.  Readers can use our 
website:  

 
http://www.emc.ncep.noaa.gov/gmb/dcarlis/directo
ry/dropout_cases/  
 
to track forecast errors for many GFS dropout 
cases.  The error in 5-day forecasts can be much 
bigger than the analysis uncertainty, but for 
analyzing short-range forecast errors, it is very 
important to have analyses from different centers 
to check forecast errors.  For example, if the 
ECMWF has a small forecast error compared to 
the above GFS forecast error near Greenland, 
then the ECMWF analysis at hour zero in areas 
important for this case can be considered more 
reliable than that of the GSI.  Then how the GSI 
and ECMWF analyses differed at hour zero as well 
as how the GFS forecasts differ from the ECMWF 
analyses in time can help find problem areas in the 
analysis that appear to have led to the 5-day 
forecast error.   

http://www.emc.ncep.noaa.gov/gmb/dcarlis/directory/dropout_cases/
http://www.emc.ncep.noaa.gov/gmb/dcarlis/directory/dropout_cases/


       
   
    

This sort of analysis can be useful, but it can 
be complicated to analyze a dropout case.  For 
example, an analysis error around jet-level at hour 
zero in the Pacific can lead to large 500 hPa 
height errors at 48 hours over the USA.  A 
separate analysis error in moisture at hour zero in 
the tropics can then feed into the weather system 
over the USA at roughly 48 hours making the 500 
hPa forecast error at 5 days even larger.  In 
addition to the two above analysis errors, there 
could be other minor errors in the analysis as well 
as GFS errors to complicate analysis of the final 
errors in the 5-day forecast.    Although the above 
analysis can be difficult and is not fruitful in all 
dropout cases, it often indicates that dropouts in 
the Northern Hemisphere (NH) for the GFS often 
originate in the Pacific.  GFS dropouts in the 
Southern Hemisphere (SH) often originate from 
roughly 40 to 60 degrees south.  For both of these 
areas, there are few radiosondes or other high 
quality conventional observational data to help 
both the analysis and estimates of analysis error. 
 

It would be useful to have an adjoint or tangent 
linear version of the model forecast, such as in 
(Errico and Raeder, 1999), to estimate the 
analysis error based on the observed 5-day 
forecast error.  However, the uncertainty in the 
verifying analysis coupled with large error in using 
such models well beyond their expected 
usefulness of about one day makes this option 
non-robust.  It would be useful to have a combined 
adjoint of the analysis and forecast model to 
estimate whether observed data helped or hurt the 
forecasts through short ranges such as one day 
(Zhu and Gelaro 2008).  Unfortunately, such 
adjoint tools are not currently available at NCEP.   
  

However, it is useful to check if various 
observed data may have caused analysis error in 
select areas that are suspected to be leading to 
large forecast errors.  We can compare the GSI 
analysis and background in such areas with the 
ECMWF analysis and observational data and then 
try to estimate if either error in the background or 
observational data resulted in large analysis 
differences.  Although many cases were found 
where clearly wrong observational data passed 
QC and had negative analysis impact, so far, no 
cases have been found where QC error led to a 
forecast dropout.  It is possible that QC errors 
some time in the past before the start of the 
analysis that led to a dropout could be important, 
but this sort of problem is more difficult to analyze.  
As mentioned earlier, most dropouts seem to 

originate in areas with no high quality conventional 
observational data.  Such areas often have 
satellite radiance, satellite wind and surface data.  
These data seldom have large egregious one time 
impact due to both QC protection and because 
they have smaller analysis weights than high 
quality conventional data.  Never the less, such 
data do have systematic impacts that are 
important but are difficult to analyze. 
 

Since some analysis errors lead to forecast 
errors that get smaller with time, but some errors 
lead to forecast errors that amplify with time, 
diagnostics are needed to check on model 
forecast sensitivity to analysis errors.  Although 
adjoint model sensitivity error estimates are not 
perfect and are reliable to about one day, Rolf 
Langland’s FNMOC website: 
  
http://www.nrlmry.navy.mil/adap-bin/tcs_adap.cgi  

 
is useful to estimate sensitive areas for growth in 
forecast error (click on “Global Domain NAVDAS” 
and select desired 00Z case).  Although this 
website has estimates in sensitivity for the 
FNMOC model, it is helpful to use it to look for 
areas where GFS analysis differences may lead to 
large forecast errors.  For example, Fig. 1 shows 
this sensitivity for 00Z 21 October 2007.  Note the 
high sensitivity in the Pacific.  For the next few 
days, there were areas of high sensitivity down 
wind of this initial time.  It is no wonder that the 
GFS had low 5-day AC scores for this period, as 
analysis errors in the Pacific then moved into 
areas where the analysis and GFS may have high 
sensitivity down wind. 
 

For cases where suspect observational data 
may be harming the analysis and leading to a bad 
forecast, such data can be deleted and the GSI 
analysis and the GFS rerun to see if the forecast 
skill improves.  So far, no examples have been 
found where deleting select observational data has 
prevented a dropout, but such cases are still 
looked for.  For cases where the GSI analysis is 
suspect in an area, the GSI analysis can be rerun 
with ECM pseudo observations (fake radiosonde 
reports derived from ECMWF analyses) overlayed 
in the suspect area (Alpert et al. 2009) to confirm 
that this was a problem area.  Often such 
experiments result in better forecast skill but not 
usually as good as full global ECM runs. 
    

 

http://www.nrlmry.navy.mil/adap-bin/tcs_adap.cgi


       
   
    
4. INVESTIGATION OF SYSTEMATIC GSI 
VERSUS ECMWF ANALYSIS HEIGHT AND 
TEMPERATURE DIFFERENCES  
 

Since egregious QC errors have not been 
found to be leading to dropouts, systematic 
differences between the GSI and ECMWF 
analyses are now investigated.  One systematic 
analysis difference is the tendency for the GSI 
analysis to be approximately 10 meters higher 
than that of the ECMWF at 200 hPa for roughly 40 
to 60 degrees south and in the north Pacific.  See 
Fig. 2 for a NH example and Fig. 3 for a SH 
example.  Note in both of these cases, there is a 
predominance of red indicating that the GSI 
heights are higher than the heights from the 
ECMWF.    For other examples of these height 
differences for dropout cases, see 
 
http://www.emc.ncep.noaa.gov/gmb/dcarlis/directo
ry/dropout_cases/ 
 

Since the GSI has heights that are 
systematically higher than that of the ECMWF 
analysis, experiments were performed using an 
ECM analysis run to provide a new background for 
the GSI, where the background has a height bias 
similar to that of the ECMWF.  Using these 
backgrounds as input along with the full suite of 
operational data, the GSI was rerun for ten 
different cases and composite analysis minus 
background (ANMBG) were constructed as shown 
in Fig. 4.  The top portion of the figure shows zonal 
average cross sections of ANMBG temperatures 
for the control and InterpECMGES experiments.  
The control is a rerun of the operational GSI.  The 
InterpECMGES experiment is the same as the 
control except the background was from a 6-hour 
previous ECM run.  The average heights from the 
ECM derived background are similar to the 
appropriate ECMWF analysis (not shown).  The 
zonal averaged analysis temperature changes in 
the control run are small compared to the 
InterpECMGES experiment, which has relatively 
large temperature changes at roughly 60 degrees 
south around 900 hPa.  This later experiment 
shows mostly higher heights in the analysis 
compared to the background around 50 to 80 
degrees south.  Additional work suggests that 
large numbers of automated aircraft temperatures 
with relatively warm biases as in Ballish and 
Kumar (2008) is partly to blame for the GSI 
analysis being too warm.  The resulting warm bias 
in the analysis may impact the GSI use of satellite 
radiances and add to these height differences. 

Rolf Langland of FNMOC has produced 
Hovmoller diagrams showing systematic height 
differences between the GFS and ECMWF 
analyses.  See Fig. 5 showing 500 hPa height 
differences, GFS – ECMWF, from 35-65 degrees 
north from October to December 2007.  He reports 
that other centers show similar height differences 
compared to ECMWF analyses.  This is an 
important finding needing further analysis.  The 
height differences show patterns suggestive of 
differences in use of satellite radiances.  Langland 
points out that the ECMWF is the only center using 
a time window of +/- 6 hours rather than the more 
common +/- 3 hours.  Bias correction differences 
in satellite radiances could also be a factor.  

 
5. INVESTIGATION OF SYSTEMATIC GSI 
VERSUS ECMWF ANALYSIS FITS TO 
OBSERVATIONS 
  

Since the ECM analyses are designed to be 
similar to ECMWF analyses and because the ECM 
analyses can be interpolated to observations with 
exactly the same methodologies as the GSI 
analyses, various statistics comparing these 
analysis fits to observations were generated.  Here 
the analysis is converted from spectral coefficients 
to the model’s Gaussian grid and then interpolated 
horizontally and then vertically to the observations.  
For these statistics, non-satellite radiance data 
were used for GDAS data that passed QC for all 
12Z runs in April 2008.  Similar statistics were 
found using roughly the same number of cases for 
various model run times in October 2007 (not 
shown).  The statistics were for many classes of 
data for temperature, surface pressure, relative 
humidity and winds in 100 hPa thick layers.  Since 
these interpolations do not include time 
interpolation of the analysis to the observations, 
only observations with in +/- 1.5 hours from the run 
time were used.  The statistics were binned in 
different categories of how different the two 
analyses differed, and were made for different 
regions of the globe.  Note that the ECM analyses 
are not identical to those of the ECMWF, and for 
this study, it was not known what data was 
available or passed QC at the ECMWF; however, 
these statistics are very informative. 
   

In Fig. 6 is a comparison of whether the GSI or 
ECM analysis draws more closely towards various 
observational wind types in the pressure range of 
300 to 200 hPa for all 12Z runs in April 2008.  For 
the 10 data types on the right side of Fig. 6, the 
GSI draws more closely than the same for the 

 

http://www.emc.ncep.noaa.gov/gmb/dcarlis/directory/dropout_cases/
http://www.emc.ncep.noaa.gov/gmb/dcarlis/directory/dropout_cases/


       
   
    
ECM analyses.  These summaries based on 
percentages of better draw are consistent with 
RMS winds differences of the analyses versus 
observations (not shown).  For Canadian AMDAR 
(CANDAR) and European satellite winds 
(EUSATW), the ECM analyses draw more closely 
probably because the GSI is monitoring these data 
types and not yet assimilating them in the analysis.  
For the vertically averaged azimuth Doppler radar 
data (VADW), that do not report pressure, the 
interpolation of the analysis to the observations 
used in this analysis uses pressure derived from 
the data’s altitude along with a standard 
atmosphere.  The GSI uses pressure derived from 
the height pressure relation of the background and 
analysis to determine pressure, which has been 
shown to be more accurate. 

 
Figure 7 shows that the GSI draws more 

closely to radiosonde winds than that of the ECM 
analyses for 12Z April 2008 except for 300 to 200 
hPa.  The relative increase in the draw of the ECM 
versus GSI analyses at jet-level could in part be 
due to the ECMWF analyses using thinning of 
aircraft data (Cardinali et al. 2003).  In Fig. 8, the 
GSI draws much more closely than that of the 
ECM analyses when the two analyses have vector 
wind differences in the category of 5-10 m/sec 
(outliers).   This analysis draw difference is smaller 
near jet-level.  If the GSI were to be found to 
perform better by drawing less for wind outliers, 
this could be accomplished by tuning the 
variational data QC.   
 

Figure 9 shows that the GSI and ECM 
analyses have similar fits to radiosonde 
temperatures for the same time period as above, 
but with the ECM analyses fitting more closely 400 
hPa and above.  In Fig. 10, for analyses fits to the 
above temperatures when the two analyses differ 
by 2-4 degrees (outliers), the GSI fits more closely 
from about 900 to 400 hPa.  Otherwise, the ECM 
analyses fits more closely.  Again, tuning of the 
variational data QC could perhaps make these 
data fits more similar along with improving forecast 
performance. 
 

Figure 11 shows that the GSI draws more 
closely for Antarctic radiosonde temperatures and 
winds than that of the ECM analyses below about 
700 hPa for the same period as above.  The 
Antarctic region has radiosondes only along the 
coastline, except at the South Pole, and there are 
few other high quality observations.  This lack of a 
network with good data coverage coupled with 

energetic and difficult to predict weather at low 
levels, could mean that we do not have enough 
data coverage to successfully analyze the 
Antarctic atmosphere in too much small scale 
detail at lower levels.  It is possible that the GSI 
would result in better quality forecasts if it drew 
less for the radiosonde data at lower levels.  This 
supposition is contrary to the opinion that we need 
to draw more closely for such data in data sparse 
areas.   
 

Figure 12 shows the speed biases in m/sec of 
GSI and ECM analyses versus four different types 
of satellite wind observations that passed QC in 
GDAS analyses for 12Z April 2008.  At first glance, 
the GSI appears to have better biases by roughly 
.5 m/sec compared to the ECM analyses.  
However, this bias difference is likely due to the 
ECMWF data QC either rejecting or giving lower 
weights to satellite winds with speeds appreciably 
slower than the background, see the ECMWF 
report available at:  

 
http://www.ecmwf.int/research/ifsdocs/CY31r1.   
 
These bias differences imply that the ECM 
analysis speeds are faster than that of the GSI by 
roughly .5 m/sec at satellite wind locations.  This 
needs further investigation, as these speed 
differences over large areas could have significant 
impact. 

 
6. SPATIAL DISTRIBUTION OF FORECAST 
ERRORS AND EADY BAROCLINICITY INDEX 
 

One rationale behind developing dynamical 
tools to assist the forecast busts/dropout analysis 
is to understand and predict the location of 
sensitive regions from which the GSI analysis 
errors grow disproportionately and consequently 
degrade forecast skill of the GFS.  These sensitive 
regions result because of dynamical reasons 
emanating from flow dependent characteristics 
and cause forecast amplification of analysis errors.  
Since the differences in GSI and ECMWF 
analyses are an estimate of analysis error, the 
geographical distributions of the root mean square 
error (RMSE) differences between GFS and ECM 
are constructed at each grid point for NH and SH 
dropouts. Fig. 13 represents the spatial RMSE 
difference between GFS and ECM runs for the 
forecast range of 24 hours verifying on GFS 
(operational) analysis for a SH dropout initial 
condition (IC) dated 00Z 16 August 2008. Large 
error differences displayed as shades of red 

 

http://www.ecmwf.int/research/ifsdocs/CY31r1


       
   
    
(shades of blue) colors corresponding to positive 
(negative) values, meaning that GFS errors are 
larger (smaller) than ECM errors. The evolution 
and propagation characteristics of large forecast 
error differences are significant. Both models 
display equal areas of red and blue colors 
between 30S to 90S with some deeper red colored 
areas, implying the higher forecast errors for the 
GFS compared to ECM, indicating that the 
sensitive regions lie primarily in the southern belt 
of mid-latitudes. Vector wind differences between 
GFS and ECM displayed as arrows are 
superimposed in Fig. 13. Large wind differences 
are observed in a few areas near the Antarctic.  In 
order to delineate the origin of analysis and 
forecast error differences between two models, it 
is paramount to understand the critical differences 
between their respective thermodynamic and 
dynamical characteristics. This is explored 
computing the baroclinic instability growth of the 
transient eddy activity of the GFS and ECM basic 
flows.  

 
The growth of transient waves in the mid-

latitude westerlies in the presence of vertical shear 
originates from baroclinic instability mechanism 
discovered by Charney (1947) and Eady (1949). 
The maximum growth rate of the most unstable 
mode provided by the Eady’s model, i.e., the 
measure of the Eady Baroclinicity Index (EBI) as 
shown by Hoskins and Valdes, 1990, is given by 
 
σBI = 0.31 f |(-gp/RT) ∂V/ ∂p| N-1,         
 
where f is the Coriolis parameter, V is the total 
vector wind, N is the Brunt Väisällä frequency and 
all other parameters have their usual meaning.  
EBI is proportional to the vertical wind shear and 
the static stability of the basic flow.  The Eady 
index is computed using the three dimensional 
analysis and forecast fields of GFS, ECM as well 
as the ECMWF models to show potential action 
areas or volatility to propagate IC errors into 
forecast differences.  Figs. 14a,b show 
respectively the total EBI at 800 hPa in units of per 
day (day-1) for the 24-h GFS forecast (top panel) 
and the corresponding ECM model forecast 
(bottom panel) from 00Z 16 August 2008 ICs.  It is 
quite evident that the GFS model shows more 
pronounced baroclinicity in the SH compared to 
the ECM model and it is quite likely that the larger 
RMSE as shown in Fig. 13 for the GFS originates 
due to enhanced unstable conditions in the SH 
mid-latitude band. The increase in baroclinicity of 
the GFS in a SH mid-latitude band, the differences 

in this case, may potentially cause a dropout in the 
5-day forecast skill.  
 

Figs. 15a,b show the total EBI for a NH 
dropout case on 12Z 21 October 2008 at 500 hPa 
for the F00 GFS forecast (top panel) and the 
corresponding ECMWF (bottom panel) model. It is 
clear that the greatest baroclinic potential lies in 
the eastern part of the broad Pacific trough, the 
differences in this case, cause a dropout in the 5-
day forecast.  The adjoint sensitivity of 24h 
forecast error to IC for the same case (Fig. 1) 
shows similar sensitive areas. Large differences 
are along the trough line with dipole structures (not 
shown) indicating differences in position (phase), 
and large potential for these Rossby wave details. 
The GFS model shows more pronounced 
baroclinicity compared to ECMWF operations.  
The differences are as much as 20% of the total 
index. Using this index to find potential baroclinic 
areas, and intersection with differences between 
background guess and analysis, shows promise to 
form the basis for an automated real-time dropout 
detection system. 

 
7. CONCLUSIONS AND PLANS FOR FUTURE 
WORK  
 

Since the GFS has better forecast skill in the 
ECM runs, which are initialized using the ECMWF 
analysis as input, than with the operational GFS 
running from the GSI analysis, attempts have been 
made to find systematic differences in the GSI and 
ECMWF analyses.  One systematic difference is 
for the GSI analysis to have higher heights.  This 
difference maybe due to the impact of overly warm 
aircraft temperature data in the GSI and possible 
resulting impact on satellite radiance bias 
corrections.  It is also found that the GSI draws 
more for most wind observations, especially wind 
observations with moderate analysis differences.  
The ECM runs draw more for radiosonde 
temperatures than the GSI in the upper 
troposphere and above, but less so for 
temperature outliers. 
  

Further work will involve tuning the variational 
data QC to try to optimize the GSI fits to 
observations, possibly more like that of the 
ECMWF analysis.  Bias correcting of aircraft 
temperatures and tuning of the satellite radiance 
bias corrections could give heights more similar to 
that of the ECMWF analysis as well as better 
forecast skill. 
  

 



       
   
    

 

Diagnostic tools such as EBI are useful in 
identifying the location of sensitive regions from 
which GSI analysis errors grow and subsequently 
degrade GFS forecast skill. The RMSE differences 
between GFS and ECM both verified against GFS 
analyses indicate errors concentrated in the mid-
latitude baroclinic zones for the NH and SH 
dropouts, and these areas correspondingly show 
larger instability rates as diagnosed from the EBI.  
The EBI calculations show that the GFS model 
possesses more pronounced baroclinicity when 
compared to the ECM model and the ECMWF 
operations.  Additional diagnostic tools for the 
dropout analysis are currently being developed. 
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Figure 1. FNMOC model sensitivity error estimates from 00Z 21 October 2007. 
 

 



       
   
    

 

Figure 2. 200 hPa heights GFS versus ECMWF Northern Hemisphere 00Z 21 October 2007. 

 



       
   
    

 

Figure 3. 200 hPa heights GFS versus ECMWF Southern Hemisphere 00Z 6 November 2008. 

 



       
   
    

 

Control Run InterpECMGES Run 

 
Figure 4. Differences of analysis minus background, control (left) and InterpECMGES (right).  Temperature 
cross section differences (top) of zonal averages and 850 hPa height differences (bottom) for 5-day composite 
average. 

 



       
   
    

Rolf Langland (NRL Monterey)
shows systemic height differences 
between all models and ECMWF  
(shown is ECMWF-NCEP).

Cause may be the difference in satellite 
window coverage (under study):

ECMWF (12-h) vs. others (6-h).

Plots at left show height difference plots of 
time (October to December 2007) vs. 
longitude, averaged over 35-65N latitudes.

The range of the bias is ±12 m

  
  
Figure 5. Hovmoller diagrams of 500 hPa height differences (GSI - ECMWF) courtesy of Rolf Langland. 

 



       
   
    

Percent Better Draw for GDAS and ECM Analyses 300-200 hPa 
12Z April 2008
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Figure 6.  Comparison showing frequency of better draws to GDAS observations of the GSI and ECM 
analyses, 300 to 200 hPa, 12Z April 2008.  See Table 1 for description of data types. 

 



       
   
    

Percent Better Draw for GDAS and ECM Analyses for all Radiosonde 
Winds 12Z April 2008
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Figure 7.  Comparison showing frequency of better draws to all GDAS radiosonde wind observations passing 
QC for the GSI and ECM analyses. 

 



       
   
    

Percent Better Draw for GDAS and ECM Analyses for Radiosonde Winds 
with 5-10 m/sec Analysis Difs 12Z April 2008

0

10

20

30

40

50

60

70

80

90

100

SFC-
900

900-
800

800-
700

700-
600

600-
500

500-
400

400-
300

300-
200

200-
100

100-
000

Pressure Category in hPa

B
et

te
r 

D
ra

w
 in

 %

GSI

ECM

 
Figure 8.  Comparison showing frequency of better draws to GDAS radiosonde wind observations passing 
QC where the two analyses have vector differences of 5-10 m/sec for the GSI and ECM analyses. 

 



       
   
    

Percent Better Draw for GSI and ECM Analyses for all Radiosonde 
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Figure 9.  Comparison showing frequency of better draws to all GDAS radiosonde temperature observations 
passing QC for the GSI and ECM analyses. 
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Figure 10. Comparison showing frequency of better draws to GDAS radiosonde temperature observations 
passing QC where the two analyses have temperature differences of 2-4 degrees C for the GSI and ECM 
analyses. 
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Figure 11.  Comparison showing frequency of better draws to GDAS Antarctic radiosonde temperature and 
wind observations passing QC for the GSI and ECM analyses. 
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Figure 12.  Comparison of speed biases in m/sec (observation minus analysis) for GSI (blue) and ECM (red) 
analyses for 12Z April 2008 for 4 different satellite wind types. 
 
 
 
 
 
 
 
 
 
 
 
 

 



       
   
    
                                         

 
Figure 13.  Geopotential height (m) root mean square 24-h forecast error differences between GFS and ECM 
runs at 800 hPa for 00Z 16 August 2008 .  Vector wind differences (GFS – ECM) (m s-1) are shown as arrows. 
 

 



       
   
    

 
 
Figure 14.  The total Eady Baroclinicity Index (EBI) (day -1) at 800hPa for the 24-h forecast from the 00Z 16 
August 2008 initial conditions  for a) GFS (top panel) and b) ECM (bottom panel) runs.  
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Figure 15. The total Eady Baroclinicity Index (EBI) (day -1) at 500hPa for the F00 forecast from the 12Z 21 
October 2007 initial conditions for a) GFS (top panel) and b) ECMWF (bottom panel) runs.  
 
 


