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1. INTRODUCTION 
 

Numerical weather prediction (NWP) models 
use a wide array of conventional and non-
conventional observations estimating the state of 
the Earth's environment for their initial conditions 
(ICs).  Successful assimilation of observations 
involves sophisticated algorithms and techniques 
for quality control (QC) and analysis. Models that 
embody the physical laws governing the behaviour 
of the Earth's atmosphere, ocean and land 
surface, and computers with the power to run 
these models rapidly enough to make timely 
predictions are an essential element of an effective 
environmental analysis and prediction system.  
NCEP’s Global Forecast System (GFS) model 
integrates forecast cycles every 6 hours 
generating a background (guess) for the next 
assimilation and analysis of observations.  The 
analysis system in production at NCEP is the Grid-
point Statistical Interpolation (GSI) (Wu et al. 
2002) which uses the background and all available 
conventional and non-conventional observations to 
generate an optimal analysis including the global 
surface pressure, and 3 dimensional dependent 
variables of motion, mass and moisture. 

 
On approximately a monthly basis, poor 

forecasts or “Skill Score Dropouts” plague GFS 
performance.  Other national center forecasts, for 
example, the European Centre for Medium-range 
Weather Forecasts (ECMWF), often do not exhibit 
this loss in skill.  We attempt to quantify the skill 
differences between the GFS and ECMWF 
forecast system when there are dropouts, and 
define area(s) at IC time that have an impact on 5-
day forecasts.  Our goal is to find differences that 
can lead to algorithms to detect and correct data 
QC, bias correction and analysis issues in ICs 
before the forecast begins.  To do this one needs 
to construct experiments that will objectively 
compare results from these national center 
forecast systems.  For the experiments, we use 
the ECMWF standard 15 level pressure, 
longitude/latitude, 1°x1° ICs converted to 
simulated or “pseudo” RAOB observations.  To 

analyze low model forecast skill, we compare the 
operational GFS and ECMWF analyses as well as 
forecasts from these analyses.  Treating the 
ECMWF gridded ICs as pseudo-observations, and 
using them as sole input into the GSI analysis, 
which then acts as a “grand interpolator”, 
generating new ICs that inherit ECMWF analysis 
system characteristics are labelled as “ECM” runs 
described in more detail in section 3.  From these 
ICs, GFS forecast experiments, close to 
operational configuration (at T382L64), are made 
for comparison with NCEP’s operational forecasts 
(control) to detect differences between these 
systems in time and space for QC and other 
investigations.  The GSI analysis and GFS 
forecast model are each complex systems which 
require varied input and settings.  We also 
investigate controlling certain aspects of these 
systems such as the influence between different 
versions of the GSI over the last year as it has 
progressed with upgrades, and the method by 
which the model background (guess) is used. 
 

Generally, the ECM results show improvement 
in GFS 5-day skill scores in practically all Southern 
Hemisphere (SH) and most Northern Hemisphere 
(NH) cases.  In addition, application of GSI 
pseudo-observations derived from similar standard 
GFS (instead of ECMWF) post processed ICs 
produces forecasts similar to GFS production for 
typical and dropout cases.  This provides a way to 
make comparisons between forecast systems and 
isolate differences in QC of observations from 
conventional and non-conventional observation 
sources as well as other analysis differences.  
ECM runs can be used to find the locations that 
are responsible for dropouts. 
 

Regions that influence the sensitivity of 
forecast skill can be found by creating a hybrid IC 
from selectively using the ECMWF or GFS 
pseudo-observations as input data for the GSI 
analysis.  A region is chosen where “patches” over 
special areas are substituted in the pseudo-
observation file, e.g., areas where there is 
ambiguity in observation quality, perhaps from 



areas of cloudiness and other observation 
contamination, or in latitude bands to isolate bias 
and quality control problems that alter 5-day 
forecasts.  We show areas of meteorological 
potential action.  The interplay between QC, the 
assimilation of various observations, the analysis 
constraints on the incremental changes from a 
previous forecast, and the character of the model 
guess as “memory” of past events, is studied for 
GFS dropout forecasts.  Once the ECM analysis 
experiments are run, one can use the results 
interpolated to individual observation locations to 
analyze how the GSI and ECMWF analyses 
“draw” to these observations.  The resulting 
differences in statistics can be used to discover 
quality control issues and create algorithms for 
complex QC, and implement real-time QC 
detection/correction schemes.  This is also 
demonstrated in an accompanying report (Ballish 
et al. 2009). 
 
2. DESCRIPTION 
 

Differences in forecast skill between national 
weather centers can be due to differences in the 
observations ingested or from the use of 
observations and the QC employed.  Other 
differences can be due to the way the analysis 
system assimilates and “draws” for the 
observations.  The observation data cut-off for 
each analysis system cycle varies across national 
centers, 6-h for GFS and most national centers 
and 12-h for ECMWF.  The cycling analysis 
system, as used by national centers, is a never 
ending cycle of influence from model forecasts and 
the models physics package used there in that 
begins the analysis process with a background 
guess in combination with the available 
observations.  “The analysis background (guess), 
which comes from the forecast model, which came 
from the analysis, which comes from the previous 
background (guess), which comes from that 
previous analysis, etc”…makes the determination 
of analysis problems difficult as the influence from 
forecast model physics and analysis differences 
become a complex mix.  To investigate this 
problem with the goal of improving the QC and 
evaluating the conventional and non-conventional 
observations, a collection of tools for case study 
examination using an analysis system and 
statistics are used.  A suitable, but admittedly 
arbitrary criteria, to determine when “dropout” 
cases occur, that is, the GFS 5-day Anomaly 
Correlation (AC) 500 hPa forecast height score 
necessary to be  considered a dropout, has the 
following criterion:  

 
• At least two of the following criteria must 

be met: 
 

• a) ECMWF minus GFS AC > 15 AC 
points  

• b) GFS AC < 0.70 
• c) ECMWF AC < 0.75 
• d) Monthly avg. GFS AC score minus 

GFS forecast > 15 
• e) Monthly avg. ECMWF AC score 

minus ECMWF forecast > 15 
 
The point system is the following: if ECMWF=0.95 
and GFS=0.80, this represents a 15 point 
difference in 5-day AC score.  The dropout 
criterion is the same for NH and SH.  Using this 
criterion we list the IC dates for the last year in the 
form YYYYMMDDHH where HH is the cycle time 
at 00, 06, 12, or 18 Z in Table I.  A number of 
these days are selected for experiments and 
comparison with ICs supplied from ECMWF 
analysis as indicated in Fig 2.     
 
3. ECM EXPERIMENTS 
 

An independent national center source of 
information is needed to compare with GSI 
analyses.  Since ECMWF forecasts do not often 
exhibit the loss of skill that occasions the GFS 
forecasts, we chose it as a proxy for ground truth.  
That is, we chose fields from ECMWF to engineer 
GFS analyses suitable for comparisons and useful 
as a means to construct controlled experiments.  
Analyses that are derived from the ECMWF 
information by use of the GFS Gridded Statistical 
Interpolation (GSI) herein, will be called ECM 
analyses and the method to calculate them are 
schematically shown in Fig. 2.   
 

The ECMWF operational medium range 
prediction model is spectral T799 with 91 vertical 
levels.  The fields used for this study are from 15 
standard pressure levels, interpolated, and post 
processed files on a 1°x1° equally spaced 
cylindrical projection longitude/latitude grid.  Each 
file contains surface pressure, u-, v-components of 
the wind, temperature and relative humidity on 15 
standard levels (including the surface pressure) 
1000., 925., 850., 700., 500., 400., 300., 250., 
200., 150., 100.,50., 20., and 10 hPa.  The GFS 
operational model, by comparison, also is a 
spectral model with truncation T382 and uses a 
physics Gaussian grid of about 0.3 degrees with 
64 vertical levels. 
 

 



An orography grid from GFS operations is 
interpolated to the 1°x1° grid and a new surface 
pressure is constructed hydrostatically taking 
account of these elevations for pseudo-
observations.  Specific humidity and temperature 
are calculated from the given variables and 
converted to profiles with appropriate coding and 
headers to have them appear as profiles of 
“pseudo-observations” for the above given 
pressure levels at all the 360x180 grid points.  To 
assimilate these pseudo-observations we include 
fixed and background guess fields from production 
archives necessary to run the analysis system.  
The GSI observation input is confined to the 
pseudo-observations so they are assimilated in 
conjunction with the background guess taken from 
a previously run production analysis for the 
date/time in question.  Using 6-h forecast from the 
previous cycle or an analysis were found to give 
similar forecast skill for ECM runs.  The resulting 
analysis has some influence from the GFS 
background guess and this is discussed in section 
6.  To decrease the GFS influence or memory 
stored in the background, the resulting GSI 
analysis from the pseudo-observations is recycled 
as the background guess, and the GSI is rerun 
using the same pseudo-observations as the only 
observations to produce an analysis that can be 
considered a proxy for the ECMWF analysis.   
 

The resulting product is an analysis that can 
be considered as a “grand interpolation” for GFS 
ICs from the original ECMWF information.  These 
analyses are used in conjunction with surface and 
fix fields from GFS production archives as ICs for 
experiments.  The AC scores for ECM 
experiments (Fig. 3 top) used the Statistical 
Spectral Interpolation (SSI) system, the forerunner 
to the GSI which also gives similar results to the 
current GSI (Fig. 3 bottom).  For a period JAN-
MAR of 2007 for the SSI and DEC2007 for the 
GSI, we show AC skill scores in Fig. 3 for a series 
of GFS and ECMWF production and ECM  5-day 
forecasts.  These runs confirm similarities between 
the ECMWF production and the ECM pseudo-
observation runs in terms of AC skill.  In addition, if 
we repeat this process for the GFS production 
output files with the same information (15 pressure 
levels, 1°x1° grid, surface pressure, u-,v-
components of the wind, temperature, and relative 
humidity) as contained in the ECMWF files, then 
the results return forecast skill very similar to GFS 
operations.  The conclusion drawn from this is the 
analysis system faithfully reproduces a proxy for 
GFS or ECMWF model analysis system using 
pseudo-observations as input to the analysis 

system.  From Fig. 3, it is shown that significant 
improvement from using these ECMWF analysis 
as IC for 5-day forecasts in terms of the AC height 
score improving 3 points in the NH to 8 points in 
the SH for the period shown for the SSI.  The GFS 
with the new GSI is improved for this period but 
the ECM runs skill falls between GFS and ECMWF 
operations.  It should be noted that one difference 
between the hemispheres is the amount of Ocean 
area and therefore the amount of land based 
conventional observations especially RAOBs 
contributing to the analyses and forecasts.  This 
could be the reason for the ECM runs consistently 
making greater improvement in the SH skill scores 
compared to the NH.   
 
4. OVERLAY FOR A TYPICAL DROPOUT 

CASE  
 
An example of a NH dropout is the 

2007102212 GFS production IC (F00) which when 
integrated resulted in a 5-day forecast that verified 
with an AC skill score of 0.61, as shown on the 
banner at the top of Fig. 4. This particular case by 
definition is a dropout based on criterion a, b, and 
d earning this case a place on the dropout list 
(Table 1).  The production ECMWF 5-day forecast 
had AC score of 0.87 and the ECM run was 0.89 
(Fig. 4), both alleviating the dropout.  Comparison 
of the 500 hPa geopotential of the GFS and 
ECMWF production (similar to Fig. 4c) IC show 
very little difference and confirms that a slight 
difference is sufficient at IC time to cause very 
different day 5 forecasts.  What difference is 
present between these two national center model 
IC’s ranges as much as ± 20m in height with 
virtually all large differences located within a broad 
trough in the Central Pacific (within the box drawn 
in Fig. 4c as shown by the red color fill in that 
area).  The height fields at other levels (not shown) 
give a similar result, and similar differences in 
temperature (not shown) are predominately from 
this same Pacific location.  A number of wind 
maximums are present in both the ECMWF and 
GFS analyses (not shown but consider the height 
gradients) which completes a synoptic picture of a 
volatile broad trough with a number of short waves 
moving within.  The red color fill area indicates 
higher heights for the GFS (Fig. 4c).  This shows 
that the GFS IC difference is largely an amplitude 
problem and not from a phase error.  The largest 
5-day forecast error at 500 hPa, in this case, is 
found to the east of Greenland and is largely 
responsible for the low AC score as shown in Fig. 
5c.   
 

 



To test that the dropout originated from the IC 
differences in the Pacific region we integrate an 
“Overlay” (OVRLY) forecast experiment for 5-days 
with GFS pseudo-observations but with ECM 
pseudo-observations only over a prescribed area 
or “patch” in the Pacific as shown by the box in 
Fig. 4c.  The pseudo-observations used for the 
GFS and the ECM overlay include all the 
dependent variables and surface pressure at each 
latitude.   This “hybrid” set of pseudo-observations 
is used as the only observation input to the GSI 
analysis system.  The GFS production analysis is 
used as the background guess and GFS 
production fixed fields such as albedo, snow, etc… 
are needed to start the analysis as described in 
Fig. 2, and the resulting analysis is used to make a 
5-day forecast called the “OVRLY run”.  The 5-day 
forecasted height and their difference to the 
verifying analysis for this OVRLY run (GFS IC with 
the ECM overlay substituted only over the patch 
area) at 500 hPa, is shown in Fig. 5b.  The color fill 
in Fig. 5a compared with that in 5b shows much 
greater forecast error in the GFS production thus, 
the ECM values over the Pacific OVRLY patch 
area are sufficient to alleviate the dropout.  The 
OVRLY skill score shown in the banner of Fig. 5 
confirms this finding.  For a 5-day forecast, the 
GFS forecast errors are largest east of Greenland 
extending across the 0 meridian but these errors 
are greatly reduced in the OVRLY experiment.  
The associated trough error in the Greenland area 
5-day forecast can be traced back to the Pacific 
OVRLY region described above in Fig. 4c at IC 
time.  The resulting analysis is a hybrid of the two 
national center analyses, but the information 
content of the dependant variables from the better 
scoring ECMWF analysis is placed only over the 
Pacific area in question as shown in Fig. 4c.  The 
resulting 5-day OVRLY experiment forecast skill 
score is shown on the banner of Fig. 5 and is 0.90 
confirming that the problem area is the outlined 
Pacific area.  Smaller rectangles centered on the 
broad Pacific trough were studied with similar 
results; however when the OVRLY was moved to 
an area far away from the Pacific, the system 
reverted to the production GFS and the dropout re-
occurred with similar loss of skill.   This gives rise 
to the idea of possible areas of analysis/model 
sensitivity and we note the lack of conventional 
observations causing the analysis system to rely 
more on non-conventional observations as it does 
in the SH.  
 
    In the SH, the differences between the GFS and 
ECMWF ICs are seldom centered in a single area, 
as shown in Fig. 6 for a typical case, 2008030312 

at 500 hPa.  The differences shown in Fig. 6 color 
fill are aligned with the active areas of troughs and 
ridges, for example at 500 hPa (not shown) as in 
the NH except that the SH is more active.  
Experiments are run replacing GSI observational 
data with ECMWF pseudo-observations over two 
latitude bands:  20-60S and 60 – 90S as shown in 
Fig. 6.  The skill score results for this SH case, 
2008030312, are listed in Fig. 6 as well.  The GFS 
operational run has a score of 0.59 classifying it as 
a dropout, compared to 0.85 for both the ECMWF 
operational run and the ECM run.   When we apply 
the indicated overlays, each latitude band 
contributes information which improves the 5-day 
forecast, 0.84 from the southern mid-latitude band 
and 0.74 from the Antarctic latitude band.  
However, neither overlay area experiment returns 
the very high skill found in ECM forecast runs from 
global application of ECMWF pseudo-
observations, but they do alleviate the dropout 
according to our criteria.  The 5-day forecasts for 
these two overlay cases are shown in Fig. 7 with 
their respective skill scores.  The forecast error 
500 hPa map for the operational run is shown in 
Fig. 7a where there is significant error in the 
height, for example in the southern part of South 
America.  The forecast error in either overlay is 
reduced in this area as shown in Fig. 7b, and 
greatly reduced elsewhere in the mid-latitude 
overlay experiment.  Thus, the forecast error 
shown in Fig. 7b color fill is the smallest and the 
GFS minus the ECM overlay for the mid-latitude 
experiment (Fig. 7c color fill) is therefore similar to 
the GFS forecast error showing large forecast 
error but similar to Fig. 7a.   
 
5. SOUTHERN HEMISPHERE ECM 

EXPERIMENTS 
 

We have collected 10 SH dropout cases from 
the first half of 2008 and present the results of 5-
day forecast runs for GFS production, ECMWF 
production, and ECM runs in Table 2.  The GFS 
production has skill scores less than 0.7 in all 
cases while the ECMWF production is close to 0.8 
or above, except for one case 2008031812.  The 
ECM runs have significantly better skill by this 
measure than all of the GFS operations and by our 
criteria, alleviating all of the dropouts, and in the 
case mentioned, improved upon the ECMWF 
production forecast skill although this is not usually 
the case.  Most of the time the ECM runs are a few 
AC points behind ECMWF probably because of 
the vertical resolution, 15 vertical levels instead of 
91 used in ECMWF production, and the 1°x1° 
longitude/latitude grid compared to the higher 

 



resolution ECMWF physics grid from their 
corresponding T799 spectral truncation Gaussian 
grid of about ~0.2 degrees.   
 

One issue is could improvement in the 
background guess for the GSI analysis result in 
better forecast skill?  Using the given ECMWF 
pressure (GRIB) file as a background is not 
possible as the GSI normally uses 3-6-9-hour 
forecasts from the GFS model previous 6-hour 
cycle in an internal format with spectral and 
vertical coordinate representation for the 
background.  The ECM runs can be used as 
palatable background guess input to the GSI 
which remove past memory of the cycling 
production GSI.  Another issue is that the second 
GSI run used in creating the ECM analysis (see 
Fig. 2) will cause noise in the resulting analysis.  
We note that we always verify with the GFS 
operational analysis.  Such noise usually 
dissipates in the first forecast day and does not 
affect a 5-day forecast.  At this point we continue 
to investigate these details in order to obtain clean 
comparison tools to better examine assimilation 
and QC behavior.   
 

To examine the influence of the set of 
production observations one may use the ECM 
analysis, as described in Fig. 2, as the background 
guess plus the full set of observations from 
production†.  The analysis produced from this 
procedure can be integrated (T382L64) for the 
dropout cases and the result of these experiments 
are shown in Table 2 under the column 
ECMANLGES.  Comparing the ECMANLGES with 
integrations from the ECM runs (ECM column in 
Table 2) show that adding the conventional and 
non-conventional observations, and their 
processing by the GSI, causes degradation in skill 
score.  The GSI has had a number of upgrades 
and changes over the time the dropout examples 
have been compiled.  These improvements 
include the addition of new observation types and 
calibration changes for observations such as 
satellite radiance bias corrections.  These changes 
have improved the analysis which we rerun as a 
new control (the CNTRL column in Table2) to 
compare with the GFS column containing the GSI 
that was in force when the dropout occurred.  The 

results show that the GSI improvements have 
resulted in skill improvements in most cases.   
 

Finally we test the influence of replacing the 
GSI analyses previous 3, 6, & 9-hour forecasts 
(instead of a single 6-hour background guess) with 
ECM forecasts as background guess plus GDAS 
observations which is more like the GSI 
production.  This means running a previous ECM 
run from 6-hours earlier than the IC time and using 
the resulting 3, 6, and 9-hour forecasts as 
background guess input to the GSI.  The full set of 
observations is used for the analysis and the AC 
skill score is in the InterpECMGES column in 
Table 2.  Comparing the InterpECMGES with the 
ECMANLGES shows using the above ECM 
derived background guess improves the GSI 
analysis and alleviates some dropouts in a few 
cases, as did the CNTRL and ECMANLGES 
experiments, but does not have the skill found in 
the ECM runs.   
 

The implication that running the GSI with 
operational input data and an ECM background 
guess for some dropout cases decreased the skill 
of subsequent forecasts compared to ECM runs 
leads to the question of what is the cause of the 
degradation in forecast skill?  One possible cause 
we can investigate is whether some observation 
type and/or observation contributed to the 
degradation.  Work has been done in this area 
using adjoint methods (Zhu and Gelaro 2008), but 
it is instructive to run a set of experiments that 
include only one observation type to test the 
influence on the analysis and subsequent forecast 
skill.  This experiment is done for the 2008020300 
dropout case which originally had a skill score of 
0.65 from GFS operations.  A control run of the 
latest GSI system is rerun (slightly different from 
the earlier control “CNTRL”) described in Table 2 
and had a skill score of 0.70.  Conventional data 
including RAOBS, ships, buoys, aircraft, satellite 
cloud track winds, and other observation types 
were used, but not including the radiance 
observations, are called “PREPBUFR” runs after 
the file name that stores them.  In Table 3, shown 
in blue, a radiance observation type can be 
removed as in “CNTRL NO AIRS” meaning all 
data is present except these satellite radiance 
observations.  Or experiments with the 
conventional observations (PREPBUFR) present 
can add a single satellite radiance type which is 
shown in red.  In Table 3, the blue section 
indicates that removing each satellite radiance 
observation contribution from AIRS, HIRS 2,3,4, 
AMSUA, AMSUB, MHS, or no satellite radiances 

                                                 
† Experiments shown use the production Global Data 
Assimilation System’s (GDAS) observational data 
employing a 6-h cycle which accumulates observations 
over 6 hours instead of the analysis used for the 
operational GFS which has observation data cutoff of 
abut 2 ½ hours. 

 



present (only PREPBUFR present) had little effect 
in improving the 5-day forecast skill for this 
dropout case.  When individual satellite radiance 
contributions are included one at a time, in 
addition to the conventional observations in 
PREPBUFR, the result in Table 3 (red) show 3 
observation types which give significant positive 
improvement in skill score.  These are AMSUB 
(Advanced Microwave Sounding Unit B) at 0.77, 
GPSRO (GPS Radio Occultation) at 0.79 and 
MHS (Microwave Humidity Sounder) at 0.78.  
Including these three radiance observation types 
in addition to the conventional observations 
alleviates the dropout and returns the ECM (and 
ECMWF) skill.  The IC 500 hPa height and 
difference between the GFS operational run and 
the best three radiance observation types are 
shown in Fig. 8 for the above mentioned case of 
2008020300.  The total height fields are quite 
similar to the eye (Figs. 8a, b) but their difference, 
shown in Fig. 8c (left), indicate adding the 
radiance observation types causes a raising of the 
GFS heights (green areas) in a number of trough 
areas and lowering heights in ridges (red areas) 
along the active latitude band from 40 to 75S as 
well as a raising of heights in part of the Antarctic.  
The corresponding 5-day forecasts in Fig. 8a 
shows the GFS operational forecast error verifying 
against its own analysis with forecast errors 
ranging almost 500 m which is reduced by 4 fold in 
the forecast using the best three observation 
types.  The forecast difference shown in Fig. 8c 
(right) therefore shows large differences because 
of the reduced forecast error.  The three radiance 
observation types, AMSUB, GPSRO and MHS 
influence the specific humidity which is surprising 
as emphasis has been on mass and motion quality 
control issues.  However, applying this to two other 
dropout cases (two so far) on the list in Table 2 did 
not give similar improvement.   

 
6. APPLICATION OF THE EADY BAROCLINIC 

INDEX TO IDENTIFY SENSITIVITY OF 
ANALYSIS ERRORS 

 
There is a connection between baroclinic 

disturbances, growing model forecast errors, and 
synoptic activity in mid-latitudes (Klinker and 
Ferranti, 2001).  Accordingly, one measure of 
baroclinicity we have been applying is the Eady 
Baroclinic Instability (EBI) index, a rate with units 
of day-1, representative of the growth rate of 
unstable disturbances (Hoskins and Valdes, 
1990). The application of EBI to NH and SH 
forecast dropouts are demonstrated in a 
companion paper by Ballish et al. (2009).  

Figs. 9a,b (bottom left panel) show the EBI for 
the ECM run with two GSI iterations, and bottom 
right panel shows the ECM with a single iteration. 
A second GSI iteration is found beneficial, in terms 
of improved AC skill score, to force the ECM 
analysis/forecast to be more similar to ECMWF 
analysis/forecast (see Fig. 2).  The second 
application of the GSI causes EBI to be noisier 
and amplified compared to both the operational 
GSI (Fig. 9), and ECMWF (not shown).  With the 
operational GSI, the EBI rates for the background 
(06 UTC forecast from Dec22, 2008) and the 
corresponding analysis (12 UTC, Dec 22, 2008) 
show very similar characteristics (Figs. 10a,b). The 
initial noise and amplification of the EBI for the 
second application of the GSI disappears 
completely in the forecast evolution cycle as 
evident in the 5-day 500 hPa AC scores.   Figs. 
11a,b show the total EBI at 500 hPa  for the 24-h 
ECM forecast (bottom panel) from August 16, 
2008 00 UTC (a SH dropout event) and the 
corresponding operational GFS forecast (top 
panel). The ECM EBI distribution (Fig. 11b) is 
much smoother, and the operational GFS forecast 
shows more pronounced baroclinicity in the SH.  
The noise found at IC and the forecasts soon after 
is not present by 24-h forecast, and has little or no 
influence on the model skill.  A number of issues 
could be causing the noise in the ECM runs but it 
is probable that using an analysis as the 
background (guess) instead of a 6-h forecast from 
a previous cycle (as is done in GFS operations) is 
the cause.  This is due to a digital filter that is 
employed in the GFS model beginning at 3-h 
forecasts so the 6-h forecasts have a filter applied 
while analysis and ICs do not.  The 6-h and 18-h 
cycles from ECMWF model runs are needed to 
create a 6-h forecast for input as a background 
(guess) and this is now available. The enhanced 
baroclinicity of the GFS as measured by the EBI 
may indicate potential areas that can cause 
dropouts and could be an indicator in a dropout 
detection scheme compared to the more 
expensive and sophisticated adjoint techniques. 

 
7. SUMMARY 
 
    The use of ECMWF analysis pressure files to 
generate “pseudo-observations” for input to the 
Gridded Statistical Interpolation (GSI) and 
subsequent GFS 5-day forecasts, yield results that 
have the character of the ECMWF model in terms 
of forecast error and skill.  These are called “ECM” 
runs, where the GFS operational skill is improved 
in the NH and more so in the SH for every day 
cases as well as when the GFS model 5-day 

 



 

forecast has very low skill which we have termed 
“dropouts”.  Dropouts seen in the GFS model 
seem to occur once a month in the NH and more 
often in the SH.  A climatology of NH and SH 
dropouts has been generated to describe the 
systematic differences when the model has 
forecasts of very low skill.  The goal of this work is 
to diagnose problems in Quality Control and other 
analysis issues to implement operational 
improvements. 
 

GFS runs from ECM analyses show dropouts 
can be alleviated in GFS forecasts.  Running the 
operational GSI with an ECM derived background 
guess results in better forecast skill than the 
operational GFS but not as good as ECM runs.  
Running the operational GSI after removing select 
observation types offers a systematic approach for 
assessing the impact of different observation 
types.  Work continues to analyze what is the 
optimal fit of the analysis to observation types and 
to determine an implementable algorithm for 
improved quality control, bias correction, and 
analysis weighting of observations. 

 
Application of diagnostic tools such as EBI are 

found to be useful in identifying the location of 
sensitive regions from which GSI analysis errors 
grow and further degrade GFS forecast skill.  The 
second application of the GSI causes the EBI to 
be noisier compared to the single application of 
the GSI for an ECM run.  This could be an artifact 
of the digital filter which is under investigation.  
The noise from the EBI calculations is transient in 
nature and does not affect the forecast.  Additional 
diagnostic tools for the dropout analysis are 
currently being developed. 
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Table 1. Dates of Northern Hemisphere (NH) and Southern Hemisphere (SH) skill score dropout cases 
specified by initial condition date. 

Dropout Table 
Northern Hem. 

(NH) 
Southern Hem. 

(SH) 
2007102112 2007092912 
2007102200 2007100212 
2007102212 2007100412 
2007102312 2007100612 
2007111112 2007100700 
2007122012 2007101300 
2008012100 2007101400 
2008021712 2007102000 
2008030112 2007111912 
2008030400 2007121612 
2008030412 2007122000 
2008060400 2007122012 
2008060500 2008011100 
2008060600 2008011112 
2008062500 2008011212 
2008070200 2008020100 
2008070212 2008020112 
2008070300 2008020300 
2008070412 2008021512 
2008070600 2008021700 
2008070700 2008022000 
2008070712 2008030112 
2008070812 2008030212 
2008071000 2008030300 
2008071900 2008030312 
2008092300 2008030912 
2008092312 2008031012 
2008100400 2008031212 
2008100412 2008031300 
2008101012 2008031412 
2008101100 2008031800 
2008101112 2008031812 
2008101200 2008032012 
2008101212 2008040900 
2008101300 2008042500 
2008102100 2008042512 

 2008042600 
 2008050900 
 2008051000 
 2008051512 
 2008052200 
 2008052212 
 2008061212 
 2008062500 
 2008062512 
 2008072500 
 2008080500 
 2008081500 
 2008081600 
 2008081912 
 2008090212 
 2008090300 
 2008100912 
 2008101212 
 2008101300 
 2008101912 
 2008102112 
 2008102200 
 2008110600 
 2008110612 
 2008110700 
 2008110900 
 2008110912 

    Updated December 1, 2008 

 



 
Table 2.  SH 5-day anomaly correlation scores for experiments performed on dropout cases. 
 
Initialization Date GFS ECMWF ECM ECMANLGES CNTRL InterpECMGES 

2008011100 0.68 0.83 0.80 0.76 0.74 0.82 
2008011212 0.69 0.89 0.86 0.83 0.82 0.77 
2008020300 0.65 0.83 0.83 0.82 0.69 0.63 
2008030312 0.59 0.85 0.85 0.77 0.69 0.78 
2008031800 0.59 0.79 0.75 0.56 0.69 0.70 
2008031812 0.66 0.63 0.76 0.66 0.78 0.75 
2008042512 0.67 0.80 0.72 0.72 0.63 0.69 
2008042600 0.61 0.91 0.89 0.68 0.65 0.72 
2008052200 0.60 0.87 0.84 0.83 0.73 0.70 
2008062512 0.66 0.87 0.77 0.70 0.72 0.77 

 
 

 



Table 3. SH 5-day anomaly correlation scores.  The Q4 FY08 GSI is used for all experiments.  Tests in blue 
involve a GSI analysis without different satellite types in the analysis process (i.e. NO AIRS suggests that all 
other satellite data is available except AIRS).  The CNTRL (red) uses all available data and uses a 6-hr cut-off 
for the assimilation cycle; however the CNTRL W/PREPBUFR uses only the conventional data of the 
prepbufr file to create an analysis.  Other experiments involve the prepbufr file plus one satellite type to 
create an analysis. 
 
Initialization date: 2008020300 
Operational GFS SH AC=0.65 SH AC Score 
CNTRL NO AIRS 0.67 
CNTRL NO HIRS(2,3,4) 0.67 
CNTRL NO AMSUA 0.73 
CNTRL NO AMSUB 0.67 
CNTRL NO MHS 0.66 
CNTRL NO RADIANCE 0.72 
  
CNTRL 0.70 
CNTRL NO SATELLITE DATA (EXCEPT 
SSMI & TRMM) 0.70 
CNTRL W/PREPBUFR 0.68 
CNTRL W/PREPBUFR + AMSUA 0.70 
CNTRL W/PREPBUFR + AMSUB 0.77 
CNTRL W/PREPBUFR + HIRS2 0.68 
CNTRL W/PREPBUFR + HIRS3 0.72 
CNTRL W/PREPBUFR + HIRS4 0.67 
CNTRL W/PREPBUFR + AIRS 0.75 
CNTRL W/PREPBUFR + GPSRO 0.79 
CNTRL W/PREPBUFR + MSU 0.68 
CNTRL W/PREPBUFR + MHS 0.78 
CNTRL W/PREPBUFR + SNDR 0.68 
CNTRL W/PREPBUFR + 
GPSRO,AMSUB,MHS 0.87 

 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. 5-day forecast 500 hPa anomaly correlation skill score for 20-80 North (top) and 20-80 South 
(bottom) for the GFS at 00, 06, 12 and 18 Z cycles and ECMWF 00 and 12 Z cycles during October 2007.  
Red arrows point to skill score dropouts. 
 
 
 
 
 
 
 

 



 
 
Figure 2.  Schematic representation of an ECM run using the GSI/GFS system and ECMWF pressure grib 
analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
Figure 3. NH (left) and SH (right) 5-day anomaly correlation skill scores at 500 hPA for SSI (top where EXPs 
are the GFS operations, EXPa are the GFS run from the cycling analysis, EXPf are the ECM runs, and EXPe 
are ECMWF operations) from 26JAN2007 to 3MAR2007, and for GSI (lower where EXPs are the GFS 
operations, EXPf are the ECM runs, and EXPe are the ECMWF operations) from 9DEC2007 through 
22DEC2007. 
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Figure 4. Central Pacific “overlay/patch” (OVRLY) run for a dropout case initialized on 2007102212.  Patch 
is represented by box in (c). Top banner shows NH 5-day AC skill scores for the GFS, ECMWF, ECM, and 
OVRLY model runs.  Graphical maps represent the 500 hPa heights at F00, the initial condition, for the GFS 
(a) and OVRLY or ECMOVRLY (b) runs.  The forecast difference (GFS – OVRLY) map of the two F00 
forecasts is shown in (c). 
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Figure 5.  Banner is same as Fig. 4.  The NH 5-day F120 forecast of 500 hPa heights (contours) for the GFS 
(a) and OVRLY (b) runs.  Color fill in (a & b) represent the forecast minus verifying analysis differences for 
both model runs.  The F120 GFS minus OVRLY difference is color filled in (c). 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

 

 

 
Figure 6.  Mid-latitude and Polar OVRLY table and differences at initial condition (F00) time.  The latitude 
bands indicate the two overlay/patch areas.  Tables show the AC skill scores for the 20080303 12Z SH 
dropout experiments. 
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Figure 7. Mid-latitude (right) and Polar (left) OVRLY experiments of 5-day forecast (500 hPa) height 
contours and color fill as in Fig. 5 but for the 20080303 12Z dropout case: a) GFS operational 5-day forecast 
(note Left and Right maps are the same) b) overlay experiments, and c) GFS operations minus the respective 
ECMOVRLY run at F120. 
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Figure 8. Southern hemisphere dropout case (20080203 00Z) of 500 hPa height contours at F00 (left) and 
F120 (right) for the GFS (a) and CNTRLW3DATA (b) experiments.  CNTRLW3DATA uses GDAS 
conventional observations (PREPBUFR format) plus AMSUB, MHS, and GPSRO satellite radiance data to 
produce a GSI analysis.  Forecasts errors are shown in (c) at F00 and F120 as color fill.  The color fill in (a) 
and (b) is the same as Fig. 5. 
 
 
 
 
 
 

 



 
Figure 9.  The total Eady Baroclinic Index (EBI) (day -1) at 500 hPa for the F00 forecast from the August 16, 
2008, 00 UTC (2008081600) initial conditions for the a) GFS model (top panels) and b) ECM  model with two 
iterations of the GSI (bottom left panel) and ECM with a single application of GSI (bottom right panel). 
 

 

 

 



 

Figure 10. The total Eady Baroclinic Index (EBI) (day -1) at 500 hPa for the a) 6-h forecast from December 
22, 2008 06 UTC (BG) b) corresponding analysis valid at 12 UTC December 22, 2008. 
 

 



 

Figure 11. The total Eady Baroclinic Index (EBI) (day -1) at 500 hPa for the 24-h forecast from the August 16, 
2008, 00 UTC initial conditions for a) GFS (top panel) and b) ECM  models (bottom panel). 
 

 


