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Abstract: Observation of cloud cover has became, since several decades ago, a key topic of interest for study for several 
purposes such as greenhouse effect study, freezing and de-freezing of roads and highways, airport observation and 
atmospheric UV radiation transfer. Several instruments measuring thermal infrared radiation and providing cloud base 
brightness temperature have been developed, like the CIR (Cloud Infrared Radiometer) technique. We will show in this paper 
that several ways of research have been initialised to improve the algorithm performance of the cloud brightness temperature 
measurement and optimize the accuracy of cloud data provided by CIR instruments. 
 
 

1. INTRODUCTION 
 

Since several decades ago, cloud cover 
monitoring has became a topic of interest 
throughout the world for many research groups 
and also for weather monitoring networks of 
national weather offices. Several techniques 
are used for the measurement of cloud cover, 
including thermal infrared spectroscopy. In our 
previous papers, Gillotay et al. (2001), Berger 
et al. (2003), Besnard et al. (2004), we 
presented the concept of our instruments and 
their use in the field. The feedback of the 
different measurement campaigns that we 
performed under various locations and 
climates showed us some bias in the 
measurements that are linked to geometric and 
atmospheric considerations, such as the 
effects of water vapour and aerosols.  We shall 
discuss here, for CIR instruments, such effects 
on the cloud brightness temperature 
measurements and the improvement methods. 
 

2. UNDER ESTIMATION OF BRIGHTNESS 
TEMPERATURE RETRIEVAL  

 
2-1- Introduction 
 
Pyrometric devices field of view, used in the 
CIR4 (which consists of four pyrometric 
transducers), is 4° and zenith angle set up is 
30° (from zenith). The total “observation 
surface” monitored by the instrument at 3000 
m high is around 0.18 km².  
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This value has to be compared to 33 m² 
sensed by a laser ceilometer beam at the 
same height (Field of view 0.06° / zenith angle 
15°). These data are represented on Figure 
#1. 
 
 
 
 
 
 
 
 
 

Figure #1: Comparison of CIR4 (left) and 
ceilometer (right) field of view 

 
CIR4 pyrometers receive infrared energy from 
the “observation surface” of each pyrometer. 
Under broken cloud situation, transducers with 
finite field of view receive integration of 
radiation from cloud bottom layer and/or clouds 
located above the first layer and/or the sky. In 
the observation of the brightness temperature 
of the clouds of the lowest base height, there 
would be effect from the clouds higher up as 
well as the sky, which are of lower 
temperatures, and hence underestimation of 
the brightness temperature. We call this effect 
the “background” effect. In order to simplify our 
discussion, we consider that the background is 
only “clear sky”. In that case, the background 
brightness temperature is the average 
tropopause temperature which varies with the 
season, geographic location and time of the 
day, between -25°C and -55°C.  
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This situation implies that the smaller the cloud 
fraction, the lower would be the observed 
brightness temperature. This bias due to the 
CIR4’s finite field of view is proportional to 
cloud fraction and altitude. 
 
Cloud fraction is a continuous variable.  As a 
first approximation, we adopt a discrete 
approach to the cloud fraction. Moreover, 
instead of developing a theoretical equation 
about the effect of cloud fraction on the 
brightness temperature measurement for the 
clouds of the lowest base height, we take on 
an empirical approach as a first step based on 
the data in a a measurement campaign.  The 
classification of cloud fraction in this discrete 
and empirical approach is described in Chart 
#1 and Figure #2 below. 
 

Sky state Cloud fraction 
Clear Sky 0-1 Octa (0-12,5%) 

Broken Clouds 1-7 Octa (12,5-87,5%) 
Overcast 7-8 Octa (87,5-100 %) 

 
Chart #1: Discrete state of the model 

 
 

 
 
Figure #2: Sky state diagram versus cloud 

fraction. 
 
 
2-2- Processing method 
 
The aim of this empirical model is based on the 
three discrete “sky states” described above, to 
determine for each of them an offset coefficient 
to apply on the measured brightness 
temperature. By analogy with Long et al. 
(2003), we decided to use the variance of the 
measured brightness temperature.  Long et al. 
(2003) used a running variance with a 5Hz 
sampling rate which is not available with our 
experimental devices. That’s the reason why 
we decided to apply a variance over a period 
of 10 minutes. Long et al. (2003) looked for 
variations due to cloud shape. In the scope of 
this study we looked for statistical data 
corresponding to changes of the sky condition 
due to clouds.  
 
Figure #3 is the diagram showing, for the three 
discrete “sky states”, the relation between 
brightness temperature variance versus 
temperature difference between sky and 
ground. It is based on experimental data in a 

measurement campaign of Meteo France in 
Trappes (France) in the first quarter of 2008. 
 

 
 

Figure #3: Partial experimental results of 
the field measurement campaign. 

 
The classification of the three different sky 
states (cf. Chart#1) should be performed by an 
external method. We chose data produced by 
Vaïsala CT25K ceilometer that we processed 
for each 10 minute period according to the 
ASOS algorithm of U.S.A. The Figures #4, #5 
and #6 show graphical representation of 
experimental data sets respectively for clear 
sky, broken clouds and overcast situations 
based on the sky states determined from the 
ASOS algorithm. 
 

 
 

Figure #4: Cloud brightness temperature 
variance versus difference between Tsky 

and Tground, for clear sky conditions 
 

 
 

Figure #5: Cloud brightness temperature 
variance versus difference between Tsky 

and Tground,  for broken clouds conditions 



 

 
Figure #6: 
variance versus 

and T
 
Through a statistical analysis of the entire set 
of data obtained during the measurement 
campaign
we have reached 
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Figure #8: Distribution of ceiling 
differences between CIR4 and ceilometer 
after application of corrective algorithm. 
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With this second step, under different climatic 
conditions from the CIR-13 measurements in 
section 3-3 a), the average of E? obtained 
reaches 40.1 W/m². It will be also necessary to 
confirm this data over a longer measurement 
period, covering seasonal variations of the 
climatic conditions. 
 

4. CONCLUSIONS AND FUTURE WORK 
 
With measurements accumulated over longer 
periods, an upgrade of processing could be 
implemented for CIR13. Two possibilities of 
improvement could be foreseen. On one hand, 
using a CIR-M as reference, values of 
background energy (emitted by water droplets 
and aerosols along the optical path) can be 
obtained in real time and used to modify 
infrared temperature measurements of CIR-13 
and hence remove the positive bias mentioned 
in Section 3 above.   
 
A measurement campaign is under planning in 
Hong Kong to run both CIR-13 and CIR-M at 
the same time at the same site. On the other 
hand, we could just use a mean value, which 
varies with season or nebulosity for example, 
to adjust CIR-13 results. 
 
With CIR-4 instrument, the situation will be 
more complicated due to identical ZA position 
of transducers. It will be perhaps of interest to 
design a CIR-5 instrument, with a zenithal 
sensor. 
 
In conclusion, all research ways that we 
developed on this abstract aim at improving 
the cloud cover measurement by thermal 
infrared spectroscopy. Algorithms of CIR 
instruments (CIR-4, CIR-13 and CIR-M) will 
probably be upgraded during the following 
year. 
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